max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0"

Transcript

1 Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } st. : g ( x,..., x ) 0 g ( x,..., x ) 0 k x 0, i =,...,. i Αντικειμενική συνάρτηση μεταβλητών ( ) Ανισοτικοί περιορισμοί πλήθους k Περιορισμοί μη αρνητικότητας πλήθους - Για να λύσουμε το πρόβλημα, ακολουθούμε την εξής μεθοδολογία:. Σχηματίζουμε τη συνάρτηση Lagrage: L = f( x) + λ g ( x) λ g ( x) [όπου x= ( x,..., x )]. k k

2 2. Γράφουμε και λύνουμε τις Αναγκαίες Συνθήκες μεγιστοποίησης ή Συνθήκες ης τάξης (FOCs) ήσυνθήκεςkuh-tucker (Κ-Τ), σύμφωνα με το παρακάτω θεώρημα: * * Θεώρημα (Κ-Τ): Αν x* = ( x,..., x ) είναι μια λύση του παραπάνω προβλήματος μεγιστοποίησης, τότε υπάρχουν * * πολλαπλασιαστές λ,..., τέτοιοι ώστε το διάνυσμα λ 0 k * * * * ( x,..., x, λ,..., λk) = ( x*, λ*) ικανοποιεί τις ακόλουθες συνθήκες: Lx (*, λ*) () 0, i =,..., xi Lx (*, λ*) * (2) xi = 0, i =,..., x FOCs (K-T) i Lx (*, λ*) (3) = g j ( x*) 0, j =,..., k λ j Lx (*, λ*) j k * (4) λ j = 0, =,..., λ j * (5) xi 0, i=,...,. * (6) λ j 0, j =,..., k. (Αναγκαίες Συνθήκες Μεγιστοποίησης) 2

3 Οι συνθήκες (2) και (4) ονομάζονται συνθήκες συμπληρωματικής χαλαρότητας: (2) * Lx (*, λ*) - Αν xi > 0 (χαλαρή ανισότητα) = 0 xi (4) * Lx (*, λ*) - Αν λ j > 0 (χαλαρή ανισότητα) = g j( x*) = 0 λ 3. Ελέγχουμε αν ισχύουν οι συνθήκες 2 ης τάξης (SOCs) ή Ικανές Συνθήκες Μεγιστοποίησης, οι οποίες διατυπώνονται ως εξής: Αν οι f, g,, g k είναι κοίλες συναρτήσεις, τότε κάθε λύση x* των αναγκαίων συνθηκών (FOCs) αποτελεί ολικό μέγιστο του προβλήματος. - Μια εναλλακτική (ασθενέστερη) συνθήκη 2 ης τάξης δίνεται από το ακόλουθο θεώρημα: Θεώρημα (Arrow-Ethove): Αν οι f, g,, g k είναι οιονεί κοίλες συναρτήσεις, τότε κάθε λύση x* των αναγκαίων συνθηκών (FOCs) αποτελεί ολικό μέγιστο του προβλήματος. j 3

4 Κριτήρια Ελέγχου Κοιλότητας Οιονεί Κοιλότητας (Κριτήρια 2 ης Παραγώγου) () Έλεγχος Κοιλότητας (α) Έλεγχος Κοιλότητας για συναρτήσειςμίαςμεταβλητής(=) - Μια συνάρτηση f(x) (όπου f : X R R) είναι: κοίλη, αν και μόνο αν αυστηρώς κοίλη, αν και μόνο αν κυρτή, αν και μόνο αν f ( x) 0 x X. f ( x) 0 x X. αυστηρώς κυρτή, αν και μόνο αν - Παραδείγματα κοίλων συναρτήσεων: f( x) = ax+ b, a, b R (γραμμική) α f( x) = x, 0 < a (εκθετική) f( x) = l x, x> 0 (λογαριθμική) f ( x) < 0 x X. f ( x) > 0 x X. 4

5 - Αν η συνάρτηση f είναι κοίλη, τότε και η g=αf, α>0 είναι μια κοίλη συνάρτηση. - Θεώρημα: Έστω f, f2,..., f κοίλες συναρτήσεις. Τότε, η g = af+ a2f af (όπου a, a2,..., a > 0) μια κοίλη συνάρτηση. είναι επίσης (δηλαδή: το άθροισμα κοίλων συναρτήσεων είναι επίσης μια κοίλη συνάρτηση) - Παράδειγμα: Ησυνάρτηση f( x, x2, x3) = 2x+ 3lx2 + x3 είναι κοίλη ως άθροισμα κοίλων συναρτήσεων. 5

6 (β) Έλεγχος Κοιλότητας για συναρτήσεις δύο μεταβλητών (=2) - Έστω μια συνάρτηση f(x, x 2 ). H Εσσιανή μήτρα (Η) της f είναι η μήτρα όλων των δεύτερων μερικών παραγώγων της f: 2 f f2 f ij 22 i H = όπου: f = = f ji, i, j =, 2 f f x xj - Ησυνάρτηση f(x, x 2 ) είναι: κοίλη, αν και μόνο αν η Η είναι αρνητικά ημιορισμένη, δηλαδή αν και μόνο αν: f 0, f 0 και Η 0. 2 αυστηρώς κοίλη, αν και μόνο αν η Η είναι αρνητικά ορισμένη, δηλαδή αν και μόνο αν: f < 0 και Η> 0. κυρτή, αν και μόνο αν η Η είναι θετικά ημιορισμένη, δηλαδή αν και μόνο αν: f 0, f 0 και Η 0. 2 αυστηρώς κυρτή, αν και μόνο αν η Η είναι θετικά ορισμένη, δηλαδή αν και μόνο αν: f > 0 και Η > 0. 6

7 Παράδειγμα. Έλεγχος κοιλότητας για τη συνάρτηση: k k f( x, x ) = x x, με x, x > 0, k > 0 -H Εσσιανή μήτρα της f είναι: H k 2 k 2 k k f f2 kk ( ) x x2 kx x 2 = =, με: 2 k k k k 2 f2 f22 kx x2 kk ( ) xx H = k ( 2 k) x x f κοίλη 2 2k 2 2k 2 f αυστηρώς κοίλη f κυρτή 2 f αυστηρώς κυρτή f 0, f 0 και Η 0 k /2 2 f < 0 και Η > 0 k < /2 f 0, f 0 και Η 0 Αδύνατο f > 0 και Η > 0 Αδύνατο 7

8 2. Έλεγχος Οιονεί Κοιλότητας για συναρτήσεις δύο μεταβλητών (=2) - Για να ελέγξουμε αν η συνάρτηση f ( x, x2) είναι οιονεί κοίλη, ακολουθούμε τα εξής βήματα: (i) Σχηματίζουμε την περιφραγμένη Εσσιανή μήτρα (Β) της f : 0 f f2 2 f B= f f f2 όπου: fij = = f ji, i, j =, 2 xi xj f2 f2 f 22 f fi = xi (ii) H f είναιοιονείκοίληαν Β 0. (Αντίθετα, η f είναι οιονεί κυρτή αν Β 0) 8

9 Παράδειγμα (συνέχεια). Έλεγχος οιονεί κοιλότητας για τη k k συνάρτηση: f( x, x2) = xx2, με x, x2 > 0, k > 0 k k k k 0 kx x2 kxx 2 k k k 2 k 2 k k (i) B= kx x2 k( k ) x x2 k x x2 k k k k k k 2 kxx 2 k x x2 k( k ) xx 2 (ii) B = 2k x x 0 k k 2 Άρα, η f είναι οιονεί κοίλη για όλες τις τιμές του k. Επομένως: Για k</2, η f είναι αυστηρώς κοίλη, κοίλη και οιονεί κοίλη. Για k=/2, η f είναι κοίλη και οιονεί κοίλη (αλλά όχι αυστηρώς κοίλη). Για k>/2, η f είναιοιονείκοίλη(αλλά όχι κοίλη ούτε αυστηρώς κοίλη). - Γενικά: Αν μια συνάρτηση f είναι κοίλη, τότε είναι και οιονεί κοίλη. Το αντίστροφο δεν ισχύει πάντα. 9

10 Μονοτονικός Μετασχηματισμός - Έστω f(x,,x ) συνάρτηση μεταβλητών και g(x) μια (μονομεταβλητή) γνησίως αύξουσα συνάρτηση. Τότε, ησυνάρτηση: g[f(x,,x )]= v(x,,x ) είναι ένας μονοτονικός μετασχηματισμός της f. - Παράδειγμα: f( x, x2) = xx2 () i Για g( x) = lx ( ) => H συνάρτηση g[ f( x, x2)] = l xx2 = lx+ l x2 = v( x, x2) 2 2 είναι ένας μονοτονικός μετασχηματισμός της f. 2 ( ii) Για g( x) = x, x > 0 ( ) => H συνάρτηση g[ f( x, x)] = xx = xx = v( x, x) 2 είναι επίσης ένας μονοτονικός μετασχηματισμός της f. Πρόταση: Αν η f είναι μια κοίλη συνάρτηση, τότε κάθε μονοτονικός μετασχηματισμός της f είναι μια οιονεί κοίλη (αλλά όχι σίγουρα κοίλη) συνάρτηση. 0

11 () Μεγιστοποίηση Κερδών Παραδείγματα Μεγιστοποίησης Έστω q= 2 L, όπου q: η παραγόμενη ποσότητα προϊόντος L: η χρησιμοποιούμενη ποσότητα εργασίας. Ο μισθός είναι w=0 και η τιμή του προϊόντος είναι p=50. -H επιχείρηση επιλέγει την ποσότητα εργασίας (L) που μεγιστοποιεί τα κέρδη της: max Π ( L) = p q( L) w L= 00 L 0L { L} st.. L 0 L =Π ( L) = 00 L 0L FOCs : dπ dl /2 dπ = 50L 0 0, L= 0 dl L L L /2 Υπόθεση: > = 0 * = 25

12 SOC : -3/ 2 Η συνάρτηση Π( L) είναι κοίλη, διότι: ( L) -25L 0. Άρα, η λύση L* = 25 αποτελεί ολικό μέγιστο. Η μέγιστη τιμή των κερδών είναι Π * = 250. (2) Άριστη Περίφραξη Π = < - Ένας αγρότης διαθέτει συρματόπλεγμα μήκους P=400 μέτρων, με το οποίο επιθυμεί να περιφράξει τη μεγαλύτερη δυνατή ορθογώνια επιφάνεια Ε. Ε x x 2 -To πρόβλημα του αγρότη μπορεί να γραφτεί ως εξής: max Ε ( x, x ) = x x { x, x } st.. 2x+ 2x2 P= 400 x, x 0 2

13 L= x x2 + λ(400 2x 2 x2) FOCs : L L = x2 2λ 0, x = 0 x x L L = x 2λ 0, x2 = 0 x2 x2 L L = 400 2x 2 x2 0, λ = 0 λ λ Υπόθεση: x, x > 0. Τότε: x > 0 x 2λ = 0 λ = x / 2 > x 2x = 0 () 2 x > 0 x 2λ = 0 λ = x /2 = x /2 x = x ( 2) 2 (2) () x = x = 00, οπότε: λ* = 50 * * SOC : H συνάρτηση E = xx2είναι οιονεί κοίλη, ενώ η συνάρτηση-περιορισμός gx (, x2) = 400 2x 2 x2 είναι κοίλη. Άρα, η λύση (x, x ) = (00,00) αποτελεί ολικό μέγιστο. * * 3

14 Η μέγιστη περιφρασσόμενη επιφάνεια είναι: Ε*=0000 τ.μ. Δυαδικότητα - Σε κάθε αρχικό (πρωτογενές) πρόβλημα μεγιστοποίησης υπό περιορισμούς αντιστοιχεί ένα δυαδικό πρόβλημα ελαχιστοποίησης υπό περιορισμούς τέτοιο ώστε: Η αντικειμενική συνάρτηση του πρωτογενούς προβλήματος είναι ο περιορισμός του δυαδικού προβλήματος. Ο περιορισμός του πρωτογενούς προβλήματος είναι η αντικειμενική συνάρτηση του δυαδικού προβλήματος. - Παράδειγμα (συνέχεια): Στο παραπάνω πρωτογενές πρόβλημα της άριστης περίφραξης αντιστοιχεί το εξής δυαδικό πρόβλημα: mi P( x, x ) = 2x + 2x max P( x, x ) = 2x 2x { x, x } st.. x x2 E= 0000 x, x 0 { x, x } 2 st.. x x2 E= 0000 x, x 0 4

15 LD = 2x 2 x2 + λd( x x2 0000) FOCs : LD LD = 2+ λdx2 0, x = 0 x x LD LD = 2+ λdx 0, x2 = 0 x2 x2 LD LD = x x , λd = 0 λ λ D Υπόθεση: x, x D 2 D 2 2 D > 0. Τότε: D x > λ x = 0 λ = 2 / x > 0 x x = 0000 () x > 0 2+ λ x = 0 λd = 2/ x = 2/ x2 x = x2 (2) (2) D D * () x = x2 = 00, οπότε: λd = /50 = / λ* Η άριστη (ελάχιστη) περίμετρος του φράχτη είναι P*=400 μ. 5

16 - Γενικό Συμπέρασμα: Η λύση του δυαδικού προβλήματος είναι * D ίδια με τη λύση του πρωτογενούς προβλήματος ( xi = xi ), ενώ η τιμή του πολλαπλασιαστή στο δυαδικό πρόβλημα είναι η αντίστροφη της τιμής του πολλαπλασιαστή στο πρωτογενές D * πρόβλημα ( λ = / λ ). Ομογενείς Συναρτήσεις - Ορισμός: Μια συνάρτηση f ( x,..., x ) ονομάζεται ομογενής βαθμού k αν: k f ( tx,..., tx) = t f ( x,..., x), t > 0 - Ειδικές Περιπτώσεις: Ομογενής συνάρτηση μηδενικού βαθμού (k=0): f( tx,..., tx ) = f( x,..., x ), t > 0 Ομογενής συνάρτηση πρώτου βαθμού (k=): f ( tx,..., tx ) = t f ( x,..., x ), t > 0 6

17 Ιδιότητες Ομογενών συναρτήσεων () Θεώρημα: Αν η συνάρτηση f ( x,..., x ) είναι ομογενής βαθμού k, τότε οι πρώτες μερικές παράγωγοι της f είναι ομογενείς βαθμού k-: f x i f ( tx,..., tx ) = t ( x,..., x ), t > 0 k xi (2) Θεώρημα (Euler): Αν η συνάρτηση f ( x,..., x ) είναι ομογενής βαθμού k, τότε: f f f x + x x = k f ( x) x x x 7

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0 Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } 1 n 1 st. :

Διαβάστε περισσότερα

Ελαχιστοποίηση του Κόστους

Ελαχιστοποίηση του Κόστους Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης των κερδών: () Επιτρέπει τη διατύπωση μιας θεωρίας

Διαβάστε περισσότερα

Μεγιστοποίηση της Χρησιμότητας

Μεγιστοποίηση της Χρησιμότητας Μεγιστοποίηση της Χρησιμότητας - Πρόβλημα Καταναλωτή: Επιλογή καταναλωτικού συνδυασμού x=(x, x ) υπό ένα σύνολο φυσικών, θεσμικών και οικονομικών περιορισμών κατά τρόπο ώστε να μεγιστοποιεί τη χρησιμότητά

Διαβάστε περισσότερα

Μεγιστοποίηση του Κέρδους

Μεγιστοποίηση του Κέρδους Μεγιστοποίηση του Κέρδους - Έστω η συνάρτηση παραγωγής: q = f ( x,..., x ). - Η τιμή του παραγόμενου προϊόντος είναι και οι τιμές των εισροών είναι w= ( w,..., w ). - Υπόθεση: Η επιχείρηση είναι αποδέκτης

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 4: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις πολλών μεταβλητών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) + KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1 Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Χαρακτηριστικά αλγορίθμων τύπου simplex (5) Αν το βασικό σημείο ικανοποιεί ακριβώς n-m ανισότητες

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής -H πλευρά της προσφοράς στην οικονομία μελετάει τη διαδικασία παραγωγής των αγαθών και υπηρεσιών που καταναλώνονται από τα

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο α οριζουμε

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο α οριζουμε page 1 of 12 ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Ορισμος Για καθε συναρτηση f : S R και καθε αριθμο α οριζουμε Την καμπυλη αδιαφοριας(idifferece curve, level set) της f I = { x Sfx, ( ) = α} α Το υπερτερο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20 Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f Page 1 of 13 covexity Ορισμος Για καθε συναρτηση ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f : S R και καθε αριθμο οριζουμε Την καμπυλη αδιαφοριας(idifferece curve,level set) της f I { xs, f( x ) } Το υπερτερο

Διαβάστε περισσότερα

Ελαχιστοποίηση του Κόστους

Ελαχιστοποίηση του Κόστους Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης του κέρδους: (1) Επιτρέπει τη διατύπωση μιας

Διαβάστε περισσότερα

Το δυϊκό πρόβλημα,οι πολλαπλασιαστές Lagrange και ερμηνείες τους

Το δυϊκό πρόβλημα,οι πολλαπλασιαστές Lagrange και ερμηνείες τους Το δυϊκό πρόβλημα,οι πολλαπλασιαστές Lagrange και ερμηνείες τους ΣΗΜΜΥ Ιανουάριος, 2013 Αρχικό πρόβλημα βελτιστοποίησης με περιορισμούς: Πρωτεύον min f(x)st x X, g j 0, j = 1 r Για να λύσουμε το πρόβλημα,

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w : ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος

Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος - Τα προϊόντα που παράγουν οι επιχειρήσεις μπορούν να διαφοροποιούνται ως προς ένα πλήθος χαρακτηριστικών. Παράδειγμα: Τα αυτοκίνητα διαφοροποιούνται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Θεώρημα ΚΚΤ - Γενικές συνθήκες (ΝEC) - Δυαδικά προβλήματα ΠΕΡΙΟΡΙΣΜΟΙ ΑΝΙΣΟΤΗΤΑΣ Πως χειριζόμαστε

Διαβάστε περισσότερα

Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης

Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης - Στο εξής, συμβολίζουμε την ποσότητα του καταναλωτικού αγαθού με q. - Έστω ότι η συνάρτηση παραγωγής της επιχείρησης είναι: q=f(k,l),

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σκ της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα Χ=(Χ, Χ,, Χ ) από πληθυσμό το

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Δυϊκότητα Θα δείξουμε πώς μπορούμε να αντιστοιχίσουμε ένα πρόβλημα ελαχιστοποίησης με ένα πρόβλημα ΓΠ στην συνήθη του μορφή. Ένα πρόβλημα στην συνήθη του μορφή μπορεί να είναι ένα κατασκευαστικό πρόβλημα,

Διαβάστε περισσότερα

A = x x 1 + 2x 2 + 4

A = x x 1 + 2x 2 + 4 Επιχειρησιακή Ερευνα η Σειρά Ασκήσεων Ενδεικτικές Λύσεις 1. (α ) Η συνάρτηση f(x 1, x ) = x 1 + x x 1 x + x μπορεί να γραφεί ως f( x) = x A x + b x όπου x = x 1 A = 1 1 1 x b = 0 Θα χρειαστούμε το διάνυσμα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 11: Σχέσεις Πρωτεύοντος και Δυϊκού Προβλήματος, Χαρακτηριστικά Αλγορίθμων τύπου Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει

Διαβάστε περισσότερα

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ: ΜΟΝΟΜΕΤΑΒΛΗΤΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Αλγεβρικές συναρτήσεις... 3 1.1 Η έννοια της συνάρτησης... 3 1.2 Ασαφείς και σαφείς συναρτήσεις... 3 1.3 Γραφικές απεικονίσεις των

Διαβάστε περισσότερα

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:

Διαβάστε περισσότερα

ή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0

ή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0 KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Χωρίς Περιορισµούς. ΕΙΣΑΓΩΓΗ Το γενικό πρόβληµα βελτιστοποίησης διατυπώνεται ως εξής: Ζητούνται οι τιµές των µεταβλητών απόφασης u που ελαχιστοποιούν την αντικειµενική

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας

Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας - Υποθέτουμε μια οικονομία που αποτελείται από: Δύο καταναλωτές 1,. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ και το καταναλωτικό αγαθό

Διαβάστε περισσότερα

Af(x) = και Mf(x) = f (x) x

Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής

Διαβάστε περισσότερα

Τμήμα Εφαρμοσμένης Πληροφορικής

Τμήμα Εφαρμοσμένης Πληροφορικής Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Δυϊκή Θεωρία (1) Θεώρημα : Το δυϊκό πρόβλημα του γραμμικού προβλήματος 0 0 1 1 2 2 0 0 T

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Kοίλες και Οιονεί Kοίλες Συναρτήσεις Ονοματεπώνυμο Φοιτητή Πεσλή Στυλιανή Πατρώνυμο

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 7: Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού

Διαβάστε περισσότερα

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

Γενική Ανταγωνιστική Ισορροπία

Γενική Ανταγωνιστική Ισορροπία Γενική Ανταγωνιστική Ισορροπία - Υποθέτουμε μια οικονομία που αποτελείται από: Δύο καταναλωτές 1,. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ και το καταναλωτικό αγαθό Α. - Οι προτιμήσεις των καταναλωτών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 9: Δυϊκή Θεωρία Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 6. 1}. Να βρεθούν οι τιμές της θετικής παραμέτρου p> 0, για τις οποίες η λύση είναι συνοριακή:

ΔΙΑΓΩΝΙΣΜΑ 6. 1}. Να βρεθούν οι τιμές της θετικής παραμέτρου p> 0, για τις οποίες η λύση είναι συνοριακή: Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 6 1. (3.9 μονάδες) (α). Η συνάρτηση f(x) έχει το γράφημα του παραπλεύρως σχήματος. Να βρεθεί γραφικά το σημείο ισοελαστικότητας: Ef(x) =± 1. Να γίνει το γράφημα της συνάρτησης Af(x)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος X X X ), όπου X ~ N (,) και όλα τα X μεταξύ τους ανεξάρτητα Τότε ( ) (,, ) (, )

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0 Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4) Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων Γραμμικά χρονικά μεταβαλλόμενα συστήματα Συνάρτηση συστήματος Ένα σύστημα L απεικονίζει κάθε σήμα εισόδου x σε ένα σήμα εξόδου y, δηλ., συνεχής

Διαβάστε περισσότερα

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ . ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό

Διαβάστε περισσότερα

Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση Ευαισθησίας

Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση Ευαισθησίας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0,

ΔΙΑΓΩΝΙΣΜΑ 8. Μέρος Α. 1. (3.2 μονάδες) Η συνάρτηση f(x) είναι ορισμένη στο διάστημα x 0, Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 8. (3. μονάδες) Η συνάρτηση f() είναι ορισμένη στο διάστημα 0, και έχει το γράφημα του παραπλεύρως σχήματος. α). Να βρεθεί γραφικά το σημείο ισοελαστικότητας β). Να γίνουν τα γραφήματα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΒΑΣΙΚΑ ΕΡΩΤΗΜΑΤΑ Ποια η ποσότητα που μεγιστοποιεί τα κέρδη μιας επιχείρησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 15' 1 (4 μονάδες) f() α) Να βρεθούν γραφικά τα σημεία ισοελαστικότητας, αν υπάρχουν, της συνάρτησης f() που έχει το γράφημα του παραπλεύρως

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί

Διαβάστε περισσότερα

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΕΚΔΟΣΗ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΥΑΓΓΕΛΟΣ Φ. ΜΑΓΕΙΡΟΥ ΚΑΘΗΓΗΤΗΣ ΟΙΚΟΝΟΜΙΚΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ ΑΘΗΝΑ ΕΚΔΟΣΗ 2.4 ΜΑΪΟΣ 2012 1-1 Κεφάλαιο 1. Μαθηματικός Προγραμματισμός...1-3

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: 2 ώρες ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 15 Διάρκεια εξέτασης: ώρες Μέρος Α 1. (4 μονάδες) (α). Να γίνει το γράφημα μιας συνεχούς συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος.

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ

B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ B5. ΠΛΑΙΣΙΩΜΕΝΟΣ ΕΣΣΙΑΝΟΣ 1.Περιορισμένη τετραγωνική μορφή. Χαρακτηρισμός πλαισιωμένων συμμετρικών πινάκων 3.Συνθήκες για περιορισμένα τοπικά ακρότατα 4.Περισσότερες μεταβλητές και περιορισμοί 5.Περιορισμένα

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Οµοιογενή Προϊόντα Ισορροπία Courot-Nash Έστω δυοπώλιο µε συνάρτηση ζήτησης: ( ) a b a, b > 0 () Βέβαια ισχύει ότι: + () Ακόµα υποθέτουµε ότι η τεχνολογία παραγωγής

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: μέθοδος simplex Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 4 η /2017 Η γεωμετρία των προβλημάτων γραμμικού

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία

Διαβάστε περισσότερα

Διάλεξη 5- Σημειώσεις

Διάλεξη 5- Σημειώσεις Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό

Διαβάστε περισσότερα

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος. ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως

Διαβάστε περισσότερα

2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4

2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Παράδειγμα 2x 1 +2x 2 +0x 3 +6x 4 = 8 2x 1 + x 2 x 3 + x 4 = 1 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Επαυξημένος πίνακας: 2 2 0 6 8 2 1 1 1 1 Ã = 3 1 1 2 3 1 2 6 1 4 Γενικό σύστημα a 11 x 1 +a

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Πρόβλημα 1 «Φασίνα» Εύρεση εκτέλεσης εργασιών με τον μικρότερο συνολικό χρόνο

Πρόβλημα 1 «Φασίνα» Εύρεση εκτέλεσης εργασιών με τον μικρότερο συνολικό χρόνο ΦΡΟΝΤΙΣΤΗΡΙΟ 2 /4/206 Πρόβλημα «Φασίνα» Εύρεση εκτέλεσης εργασιών με τον μικρότερο συνολικό χρόνο Έστω ότι θέλουμε να καθαρίσουμε το σπίτι. Για λόγους μείωσης πολυπλοκότητας θεωρούμε ότι θέλουμε να καθαρίσουμε

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα