Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C"

Transcript

1

2 Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο των διανυσματικών χώρων, όσο και των γραμμικών συναρτήσεων. Αν και οι περισσότερες από τις έννοιες αυτές πρέπει να είναι γνωστές από τη μέση εκπαίδευση, εντούτοις θα πρέπει να μελετηθούν με προσοχή, ώστε να γίνει κατανοητή η χρήση τους στην περίπτωση των διανυσματικών χώρων. 1.1 Συμβολισμοί και συναρτήσεις Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C το σύνολο των φυσικών αριθμών, το σύνολο των ακεραίων αριθμών, το σύνολο των ρητών αριθμών, το σύνολο των πραγματικών αριθμών, και το σύνολο των μιγαδικών αριθμών. Η σχέση που συνδέει τα παραπάνω σύνολα είναι γνωστή N Z Q R C. Η σχέση A B θα σημαίνει ότι κάθε στοιχείο του συνόλου A θα ανήκει και στο σύνολο B, χωρίς να αποκλείεται η ισότητα A = B. Αν θέλουμε να δείξουμε ότι το σύνολο A είναι γνήσιο υποσύνολο του B, θα γράφουμε τη σχέση A B. Αν A και B είναι τυχόντα σύνολα, μια συνάρτηση ή απεικόνιση f από το σύνολο A στο σύνολο B, σχηματικά f : A B, είναι μια αντιστοιχία των στοιχείων του

3 8 Εισαγωγικές έννοιες συνόλου A στα στοιχεία του B τέτοια, ώστε σε κάθε στοιχείο a A αντιστοιχεί ένα μοναδικό στοιχείο b B. Το στοιχείο αυτό b συμβολίζεται με f(a). Αν ισχύει f(a) = b, θα λέμε ότι το b είναι η εικόνα του a δια της συνάρτησης f. Το σύνολο A λέγεται πεδίο ορισμού, ενώ το σύνολο B λέγεται πεδίο τιμών της συνάρτησης f. Από τα προηγούμενα προκύπτει ότι μια συνάρτηση είναι τρία πράγματα μαζί: το πεδίο ορισμού A, το πεδίο τιμών B, και ο κανόνας αντιστοιχίας f. Οποιαδήποτε από τις τρεις αυτές οντότητες και αν αλλάξει θα έχουμε μια άλλη συνάρτηση. Αυτό σημαίνει ότι δύο συναρτήσεις f : A B και g : Γ, θα είναι ίσες μόνον όταν ισχύουν f = g, A = Γ, και B =. Μερικές φορές αναφερόμαστε σε μια συνάρτηση χρησιμοποιώντας μόνο το γράμμα με το οποίο συμβολίζεται ο κανόνας αντιστοιχίας. Δηλαδή για συντομία, λέμε «η συνάρτηση f», χωρίς αυτό να είναι απόλυτα σωστό. Διότι, όπως είδαμε, μια συνάρτηση αποτελεί πακέτο τριών πραγμάτων. Συνήθως, όμως, χρησιμοποιούμε την ορολογία αυτή, όταν το πεδίο ορισμού και το πεδίο τιμών είναι προφανή. Από τον ορισμό της ισότητας συναρτήσεων προκύπτει ότι οι συναρτήσεις φ 1 : R R, όπου φ 1 (x) = x 2, και φ 2 : R [0, ), όπου φ 2 (x) = x 2, δεν είναι ίσες, εφόσον δεν έχουν το ίδιο πεδίο τιμών. Όπως είδαμε, μια συνάρτηση f : A B απεικονίζει κάθε στοιχείο του A σε ένα και μοναδικό στοιχείο του συνόλου B. Επομένως, κάθε στοιχείο του A έχει κάποια εικόνα στο B, δεν είναι, όμως, απαραίτητο κάθε στοιχείο του B να είναι εικόνα κάποιου στοιχείου του συνόλου A. Για παράδειγμα, το στοιχείο 1 ανήκει στο πεδίο τιμών της συνάρτησης φ 1, που είδαμε προηγουμένως, αλλά δεν είναι εικόνα κανενός στοιχείου του A. Επίσης, δύο διαφορετικά στοιχεία του συνόλου A δεν είναι απαραίτητο να απεικονίζονται σε διαφορετικά στοιχεία του συνόλου B. Για παράδειγμα, τα στοιχεία 2 και 2 του πεδίου ορισμού της συνάρτησης φ 2 έχουν την ίδια εικόνα, εφόσον φ 2 ( 2) = 4 = φ 2 (2). Η παρατήρηση αυτή οδηγεί σε μεγαλύτερη εξειδίκευση του γενικού ορισμού της συνάρτησης.

4 1.1 Συμβολισμοί και συναρτήσεις 9 Ο ρ ι σ μ ό ς Μια συνάρτηση f : A B θα λέγεται αμφιμονότιμη αν, για κάθε a 1, a 2 A, ισχύει a 1 a 2 f(a 1 ) f(a 2 ), ή ισοδύναμα f(a 1 ) = f(a 2 ) a 1 = a 2. Με άλλα λόγια, μια αμφιμονότιμη συνάρτηση απεικονίζει διαφορετικά στοιχεία του πεδίου ορισμού σε διαφορετικά στοιχεία του πεδίου τιμών. Π α ρ ά δ ε ι γ μ α Θεωρούμε τη συνάρτηση ψ : R R, που ορίζεται με τη σχέση ψ(x) = e x, για κάθε x R. Εύκολα διαπιστώνεται ότι ψ(a) = ψ(b) e a = e b a = b. Επομένως η συνάρτηση ψ είναι αμφιμονότιμη. Το παρακάτω παράδειγμα αφορά τη γνωστή συνάρτηση ημίτονο. Π α ρ ά δ ε ι γ μ α Θεωρούμε τη συνάρτηση g : [ 2π, 2π] R, που ορίζεται με τη σχέση g(x) = ημx, για κάθε x [ 2π, 2π]. Είναι γνωστό ότι ισχύει ημ( π 2 ) = ημ( π 2 ) = 1 = ημ( 3π 2 ). Άρα η συνάρτηση g δεν είναι αμφιμονότιμη, εφόσον διαφορετικές τιμές του πεδίου ορισμού έχουν την ίδια τιμή στο πεδίο τιμών. Είναι προφανές ότι αν περιορίσουμε το πεδίο ορισμού της g, τότε είναι δυνατόν να βρούμε μια αμφιμονότιμη συνάρτηση. Όμως, σε αυτή την περίπτωση θα έχουμε μια άλλη συνάρτηση, και όχι τη συνάρτηση g, εφόσον θα αλλάξει το πεδίο ορισμού. Συγκεκριμένα, μπορούμε να θεωρήσουμε τη συνάρτηση g 1 : (0, π 2 ) ( 1, 1), που ορίζεται με τη σχέση g 1 (x) = ημx, για κάθε x (0, π 2 ). Εύκολα μπορούμε να διαπιστώσουμε ότι η συνάρτηση g 1 είναι αμφιμονότιμη.

5 10 Εισαγωγικές έννοιες Ο ορισμός της αμφιμονότιμης συνάρτησης, θα μπορούσαμε να πούμε ότι κατά μία έννοια «διορθώνει» ένα λάθος του γενικού ορισμού της συνάρτησης. Ο επόμενος ορισμός «διορθώνει» ένα άλλο λάθος. Ο ρ ι σ μ ό ς Μια συνάρτηση f : A B θα λέγεται επί αν για κάθε στοιχείο b B υπάρχει κάποιο στοιχείο a A τέτοιο, ώστε να ισχύει f(a) = b. Δηλαδή, μια συνάρτηση είναι επί όταν κάθε στοιχείου του πεδίου τιμών της είναι εικόνα ενός τουλάχιστον στοιχείου του πεδίου ορισμού. Π α ρ ά δ ε ι γ μ α Ας θεωρήσουμε τις συναρτήσεις φ 1 : R R, και φ 2 : R [0, ), που είδαμε προηγουμένως, και ορίζονται με τις σχέσεις φ 1 (x) = x 2, και φ 2 (x) = x 2, αντίστοιχα. Η συνάρτηση φ 1 δεν είναι επί, διότι για το στοιχείο 2 του πεδίου τιμών της δεν υπάρχει κάποιο στοιχείο x στο πεδίο ορισμού, ώστε να ισχύει η σχέση φ 1 (x) = 2. Αντίθετα, η συνάρτηση φ 2 είναι μια συνάρτηση επί, εφόσον για κάθε στοιχείο a [0, ), υπάρχει ένα στοιχείο x = a R τέτοιο, ώστε να ισχύει φ 2 (x) = x 2 = a. Επιπλέον, καμία από τις συναρτήσεις αυτές δεν είναι αμφιμονότιμη, διότι ισχύουν φ 1 ( 2) = 4 = φ 1 ( 2) και φ 2 ( 2) = 4 = φ 2 ( 2). Δηλαδή, διαφορετικά στοιχεία του πεδίου ορισμού τους έχουν την ίδια εικόνα. Η ταυτοτική συνάρτηση ενός συνόλου A είναι η συνάρτηση I : A A, η οποία απεικονίζει κάθε στοιχείο του A στον εαυτό του, δηλαδή I(a) = a, για κάθε a A. Επειδή η ταυτοτική συνάρτηση εξαρτάται από το σύνολο πάνω στο οποίο ορίζεται, πολλές φορές χρησιμοποιείται ο συμβολισμός I A για την ταυτοτική συνάρτηση του συνόλου A. Όταν χρησιμοποιείται ο απλούστερος συμβολισμός I, θα πρέπει να είμαστε προσεκτικοί ως προς το σύνολο πάνω στο οποίο ορίζεται η ταυτοτική συνάρτηση.

6 1.1 Συμβολισμοί και συναρτήσεις 11 Θεωρούμε, τώρα, μια συνάρτηση f : X Y, ένα υποσύνολο A του X, και ένα υποσύνολο B του Y. Η εικόνα του συνόλου A δια της f ορίζεται να είναι το σύνολο f(a) = {b Y /b = f(a), για κάποιο a A} = {f(a)/a A}. Η αντίστροφη εικόνα του συνόλου B δια της f ορίζεται να είναι το σύνολο f 1 (B) = {a X/f(a) B}. Όπως βλέπουμε, η εικόνα ενός συνόλου A περιέχει τις επιμέρους εικόνες των στοιχείων του A, και είναι υποσύνολο του πεδίου τιμών της συνάρτησης. Η αντίστροφη εικόνα ενός συνόλου B περιέχει εκείνα τα στοιχεία του πεδίου ορισμού της συνάρτησης, των οποίων οι εικόνες ανήκουν στο σύνολο B, και φυσικά είναι υποσύνολο του πεδίου ορισμού της συνάρτησης. Π α ρ ά δ ε ι γ μ α Ας πάρουμε τη συνάρτηση φ 1 : R R, που είδαμε στο Παράδειγμα 1.1.5, και ορίζεται με τη σχέση φ 1 (x) = x 2, για κάθε x R. Προφανώς, τα σύνολα A = ( 2, 3) και B = ( 3, 1) είναι υποσύνολα του πεδίου ορισμού και του πεδίου τιμών αντίστοιχα. Η εικόνα του συνόλου A δια της φ 1 θα είναι φ 1 (A) = {φ 1 (a)/a A} = {a 2 /a A} = [0, 9). Η αντίστροφη εικόνα του B δια της φ 1 θα είναι φ 1 1 (B) = {x R/φ 1(x) B} = {x R/x 2 ( 3, 1)} = ( 1, 1). Στο σημείο αυτό πρέπει να τονίσουμε ότι ο συμβολισμός f 1 (B) παριστά ένα συγκεκριμένο υποσύνολο του πεδίου ορισμού της συνάρτησης f, το οποίο ονομάσαμε αντίστροφη εικόνα του συνόλου B. Δεν σημαίνει ότι υπάρχει η αντίστροφη συνάρτηση της f, την οποία άλλωστε δεν έχουμε ορίσει ακόμη. Επιπλέον, η συνάρτηση φ 1, που χρησιμοποιήσαμε προηγουμένως, δεν μπορεί να αντιστραφεί, εφόσον φ 1 1 ({2}) = { 2, 2}, το γεγονός όμως αυτό δεν μας εμπόδισε να βρούμε την αντίστροφη εικόνα του συνόλου B. Π α ρ ά δ ε ι γ μ α Θεωρούμε τη συνάρτηση g : Z R, που ορίζεται με τη σχέση g(n) = 2n, για κάθε n Z. Είναι προφανές ότι το σύνολο A = { 3, 0, 2, 6, 7}

7 12 Εισαγωγικές έννοιες είναι υποσύνολο του Z, ενώ το σύνολο B = ( 2, 2) είναι υποσύνολο του πεδίου τιμών της συνάρτησης g. Η εικόνα του A θα είναι g(a) = {g(a)/a A} = {g( 3), g(0), g(2), g(6), g(7)} = = { 6, 0, 4, 12, 14}, και φυσικά είναι υποσύνολο του R. Η αντίστροφη εικόνα του B είναι g 1 (B) = {n Z/g(n) B} = {0}. Θεωρούμε μια συνάρτηση f : X Y, και ένα υποσύνολο A του X. Από τον ορισμό της εικόνας του A προκύπτει ότι το σύνολο B = f(a) είναι υποσύνολο του Y. Αυτό σημαίνει ότι μπορούμε να μιλάμε για την αντίστροφη εικόνα του B, δηλαδή το σύνολο f 1 (B) = f 1 (f(a)). Έτσι, ξεκινώντας από ένα υποσύνολο A του X, βρίσκουμε ένα άλλο υποσύνολο f 1 (f(a)) του X. Το ερώτημα, βέβαια, είναι η σχέση που συνδέει τα δύο αυτά σύνολα. Θ ε ώ ρ η μ α Για κάθε συνάρτηση f : X Y, και κάθε υποσύνολο A του X ισχύει A f 1 (f(a)). Α π ό δ ε ι ξ η. Από τη συνεπαγωγή a A f(a) f(a) a f 1 (f(a)), προκύπτει η ζητούμενη σχέση A f 1 (f(a)). Το παράδειγμα που ακολουθεί δείχνει ότι γενικά δεν ισχύει η ισότητα A = f 1 (f(a)). Π α ρ ά δ ε ι γ μ α Θεωρούμε τη συνάρτηση φ 1 : R R, που ορίζεται με τη σχέση φ 1 (α) = α 2, για κάθε α R. Το σύνολο A = (0, 1) είναι φυσικά υποσύνολο του πεδίου ορισμού της συνάρτησης. Εύκολα υπολογίζεται η εικόνα του συνόλου Α φ 1 (A) = {φ 1 (α)/α A} = {α 2 /α A} = (0, 1).

8 1.1 Συμβολισμοί και συναρτήσεις 13 Η αντίστροφη εικόνα του φ 1 (A) θα είναι φ 1 1 (φ 1(A)) = φ 1 1 (0, 1) = {α R/φ 1(α) (0, 1)} = = {α R/α 2 (0, 1)} = ( 1, 1). Βλέπουμε, δηλαδή, ότι ισχύει A = (0, 1) ( 1, 1) = φ 1 1 (φ 1(A)). Όσον αφορά την αντίστροφη εικόνα, μπορούμε να κάνουμε ανάλογες σκέψεις. Ας θεωρήσουμε πάλι μια συνάρτηση f : X Y, και ένα υποσύνολο B του πεδίου τιμών Y της συνάρτησης. Από τον ορισμό της αντίστροφης εικόνας προκύπτει ότι το σύνολο A = f 1 (B) είναι υποσύνολο του X. Επομένως, μπορούμε να βρούμε την εικόνα του A, δηλαδή το υποσύνολο f(a) = f(f 1 (B)) του Y. Ξαναγυρίζουμε, δηλαδή, πίσω στο πεδίο τιμών της συνάρτησης, από όπου ξεκινήσαμε. Το ερώτημα είναι και πάλι η σχέση που συνδέει τα σύνολα B και f(f 1 (B)). Θ ε ώ ρ η μ α Για κάθε συνάρτηση f : X Y, και κάθε υποσύνολο B του Y ισχύει f(f 1 (B)) B. Α π ό δ ε ι ξ η. Θεωρούμε ένα στοιχείο α του συνόλου f(f 1 (B)). Από τον ορισμό της εικόνας ενός συνόλου προκύπτει ότι θα είναι α = f(β), για κάποιο στοιχείο β f 1 (B). Τότε, όμως, από τον ορισμό της αντίστροφης εικόνας θα έχουμε f(β) B. Δηλαδή θα ισχύει α = f(β), όπου f(β) B, οπότε προκύπτει α B. Στην προηγούμενη σχέση, η ισότητα και πάλι δεν ισχύει γενικά. Η συνάρτηση φ 1 που χρησιμοποιήσαμε προηγουμένως μπορεί να μας δώσει ένα παράδειγμα. Π α ρ ά δ ε ι γ μ α Θεωρούμε τη συνάρτηση φ 1 : R R, που ορίζεται με τη σχέση φ 1 (a) = a 2, και το υποσύνολο B = ( 1, 1) του πεδίου τιμών της συνάρτησης. Η αντίστροφη εικόνα του B είναι φ 1 1 (B) = {a R/φ 1(a) B} = {a R/a 2 ( 1, 1)} = ( 1, 1). Η εικόνα του συνόλου φ 1 1 (B) θα είναι φ 1 (φ 1 1 (B)) = φ 1( 1, 1) = {φ 1 (a)/a ( 1, 1)} = Επομένως, θα ισχύει φ 1 (φ 1 1 (B)) B. = {a 2 /a ( 1, 1)} = [0, 1).

9 14 Εισαγωγικές έννοιες Οι σχέσεις που είδαμε στα δύο παραπάνω θεωρήματα και ισχύουν για κάθε συνάρτηση, μπορούν να γίνουν ισότητες μόνον όταν οι συναρτήσεις έχουν επιπλέον ιδιότητες. Πιο συγκεκριμένα έχουμε το εξής. Θ ε ώ ρ η μ α Μια συνάρτηση f : X Y είναι αμφιμονότιμη αν και μόνον αν ισχύει A = f 1 (f(a)), για κάθε υποσύνολο A του X. Μια συνάρτηση f : X Y είναι επί αν και μόνον αν ισχύει f(f 1 (B)) = B, για κάθε υποσύνολο B του Y. Α π ό δ ε ι ξ η. Υποθέτουμε ότι η συνάρτηση f είναι αμφιμονότιμη, και θα δείξουμε ότι ισχύει A = f 1 (f(a)), για κάθε υποσύνολο A του X. Επειδή για κάθε συνάρτηση ισχύει η σχέση A f 1 (f(a)), είναι αρκετό να δείξουμε ότι ισχύει και η σχέση f 1 (f(a)) A. Αν a f 1 (f(a)), τότε προφανώς θα έχουμε f(a) f(a). Δηλαδή πρέπει να ισχύει f(a) = f(a ), για κάποιο a A. Από την υπόθεση η συνάρτηση f είναι αμφιμονότιμη, άρα προκύπτει a = a, όπου a A. Αντίστροφα, υποθέτουμε ότι ισχύει η σχέση A = f 1 (f(a)), για κάθε υποσύνολο A του X. Θέλουμε να δείξουμε ότι η συνάρτηση f είναι αμφιμονότιμη. Έστω ότι είναι f(a 1 ) = f(a 2 ). Τότε θα έχουμε f(a 1 ) f({a 2 }) a 1 f 1 (f({a 2 })). Από την υπόθεση ισχύει f 1 (f({a 2 })) = {a 2 }, οπότε θα πρέπει a 1 {a 2 }, δηλαδή θα είναι a 1 = a 2. Υποθέτουμε, τώρα, ότι η συνάρτηση f είναι επί, και θα δείξουμε ότι ισχύει f(f 1 (B)) = B, για κάθε υποσύνολο B του Y. Επειδή για κάθε συνάρτηση ισχύει η σχέση f(f 1 (B)) B, είναι αρκετό να δείξουμε ότι ισχύει και η σχέση B f(f 1 (B)). Αν b B, τότε θα υπάρχει κάποιο στοιχείο a X τέτοιο, ώστε να έχουμε f(a) = b, εφόσον η συνάρτηση είναι επί. Άρα προκύπτει b = f(a) B a f 1 (B) f(a) f(f 1 (B)) b f(f 1 (B)), δηλαδή θα έχουμε B f(f 1 (B)). Αντίστροφα, υποθέτουμε ότι ισχύει f(f 1 (B)) = B, για κάθε υποσύνολο B του Y. Αν b είναι τυχόν στοιχείο του Y, τότε για το μονοσύνολο {b} θα έχουμε

10 1.1 Συμβολισμοί και συναρτήσεις 15 f(f 1 ({b})) = {b}. Επομένως, b f(f 1 ({b})), δηλαδή θα πρέπει να είναι b = f(a), για κάποιο στοιχείο a f 1 ({b}) X. Επομένως για κάθε στοιχείο b Y υπάρχει κάποιο στοιχείο a X τέτοιο, ώστε να ισχύει f(a) = b, οπότε η συνάρτηση f είναι επί. Θεωρούμε, τώρα, δύο συναρτήσεις f : X Y, και g : Y Z. Είναι προφανές ότι αν a είναι ένα στοιχείο του X, τότε το f(a) είναι ένα στοιχείο του Y, οπότε με τη συνάρτηση g το στοιχείο f(a) θα απεικονιστεί στο στοιχείο g(f(a)) του Z. f g X Y Z a f(a) g(f(a)) φ=g f Η διαδικασία αυτή ορίζει ασφαλώς μια νέα συνάρτηση φ : X Z, που ορίζεται με τη σχέση φ(a) = g(f(a)), για κάθε a X. Η συνάρτηση αυτή λέγεται σύνθεση των συναρτήσεων f, g, και συμβολίζεται με g f. Θ ε ώ ρ η μ α Αν f : X Y, g : Y Z, και h : Z W είναι τυχούσες συναρτήσεις, τότε θα ισχύει h (g f) = (h g) f. Δηλαδή ισχύει η προσεταιριστική ιδιότητα στη σύνθεση συναρτήσεων. Α π ό δ ε ι ξ η. Επειδή, για κάθε στοιχείο a του X ισχύει [h (g f)](a) = [h(g f)](a) = h(g(f(a))), και [(h g) f](a) = (h g)(f(a)) = h(g(f(a))), προκύπτει αμέσως η ισότητα h (g f) = (h g) f. Το παράδειγμα που ακολουθεί δείχνει ότι η σύνθεση συναρτήσεων δεν έχει την αντιμεταθετική ιδιότητα, ούτε μπορούν να εφαρμοστούν οι νόμοι της απλοποίησης.

11 16 Εισαγωγικές έννοιες Π α ρ ά δ ε ι γ μ α Έστω f, g και h oι συναρτήσεις με πεδίο ορισμού και τιμών τo σύνολο των πραγματικών αριθμών R, πoυ ορίζονται με τις σχέσεις: f(x) = x, g(x) = x, και h(x) = x 2 αντίστοιχα. Τότε για κάθε x R θα έχουμε: (h g)(x) = h(g(x)) = h( x ) = x 2 = x 2, και (h f)(x) = h(f(x)) = h( x) = ( x) 2 = x 2. Δηλαδή ισχύει (h g)(x) = (h f)(x), για κάθε x R. Παρατηρούμε λοιπόν ότι ενώ ισχύει h g = h f, έχουμε g f. Άρα oι κανόνες απαλοιφής για τη σύνθεση συναρτήσεων δεν ισχύουν. Επίσης, για κάθε x R έχουμε (g f)(x) = g(f(x)) = g( x) = x = x, και (f g)(x) = f(g(x)) = f( x ) = x. Αυτό σημαίνει ότι f g g f, δηλαδή η αντιμεταθετική ιδιότητα για τη σύνθεση συναρτήσεων δεν ισχύει γενικά. Έστω f : X Y τυχούσα συνάρτηση, και I X : X X η ταυτοτική συνάρτηση του X. Από τη σχέση (f I X )(x) = f(i X (x)) = f(x), για κάθε x X, προκύπτει ότι οι συναρτήσεις f I X και f έχουν τον ίδιο κανόνα αντιστοιχίας. Επειδή προφανώς έχουν το ίδιο πεδίο ορισμού και το ίδιο πεδίο τιμών, συμπεραίνουμε ότι οι δύο αυτές συναρτήσεις είναι ίσες, δηλαδή f I X = f. Ασφαλώς ανάλογη ισότητα ισχύει και για την ταυτοτική συνάρτηση του Y. Συγκεκριμένα θα έχουμε I Y f = f, όπου I Y η ταυτοτική συνάρτηση του Y. Έτσι, θα έχουμε την ισότητα f I X = f = I Y f. Θ ε ώ ρ η μ α Αν f : X Y και g : Y Z είναι δύο αμφιμονότιμες συναρτήσεις, τότε και η σύνθεση g f : X Z, είναι επίσης αμφιμονότιμη συνάρτηση.

12 1.1 Συμβολισμοί και συναρτήσεις 17 Α π ό δ ε ι ξ η. Έστω x 1 και x 2 τυχόντα στοιχεία του X. Υποθέτουμε ότι ισχύει (g f)(x 1 ) = (g f)(x 2 ). Τότε θα έχουμε g(f(x 1 )) = g(f(x 2 )), και επειδή η g είναι αμφιμονότιμη προκύπτει f(x 1 ) = f(x 2 ). Όμως, η συνάρτηση f είναι επίσης αμφιμονότιμη, οπότε θα είναι x 1 = x 2. Δηλαδή η σύνθεση g f είναι μια αμφιμονότιμη συνάρτηση. Θ ε ώ ρ η μ α Αν f : X Y και g : Y Z είναι δύο επί συναρτήσεις, τότε και η σύνθεση των συναρτήσεων g f : X Z είναι επίσης επί συνάρτηση. Α π ό δ ε ι ξ η. Επειδή η συνάρτηση g είναι επί, για κάθε z Z θα υπάρχει κάποιο στοιχείο y Y τέτοιο, ώστε να ισχύει g(y) = z. Όμως, και η συνάρτηση f είναι επί, άρα για το στοιχείο y του Y θα υπάρχει κάποιο στοιχείο x του X τέτοιο, ώστε να ισχύει f(x) = y. Επομένως, για κάθε στοιχείο z του Z υπάρχει ένα στοιχείο x X τέτοιο, ώστε να ισχύει (g f)(x) = g(f(x)) = g(y) = z. Αυτό σημαίνει ότι η σύνθεση των συναρτήσεων είναι μια επί συνάρτηση. Θεωρούμε, τώρα, μια αμφιμονότιμη και επί συνάρτηση f : X Y. Εφόσον η συνάρτηση είναι επί, για κάθε στοιχείο y Y θα υπάρχει κάποιο στοιχείο x X τέτοιο, ώστε να ισχύει f(x) = y. Το στοιχείο αυτό x είναι μοναδικό. Πράγματι, αν x είναι ένα άλλο στοιχείο του X για το οποίο ισχύει f(x ) = y, τότε από την ισότητα f(x) = y = f(x ) και το γεγονός ότι η συνάρτηση f είναι αμφιμονότιμη, προκύπτει ότι θα είναι x = x. Επομένως, σε κάθε στοιχείο y Y αντιστοιχεί ένα μοναδικό στοιχείο x X τέτοιο, ώστε να ισχύει f(x) = y. Η διαδικασία αυτή ορίζει μια νέα συνάρτηση από το σύνολο Y στο σύνολο X. Η συνάρτηση αυτή λέγεται αντίστροφη της f, και συμβολίζεται με f 1. Άρα μπορούμε να πούμε ότι: Θ ε ώ ρ η μ α Σε κάθε συνάρτηση f : X Y που είναι αμφιμονότιμη και επί αντιστοιχεί η αντίστροφη συνάρτηση f 1 : Y X, η οποία ορίζεται με τη σχέση f 1 (y) = x f(x) = y.

13 18 Εισαγωγικές έννοιες Παρατηρούμε, λοιπόν, ότι για να υπάρχει η αντίστροφη μιας συνάρτησης πρέπει η συνάρτηση αυτή να είναι αμφιμονότιμη και επί. Εύκολα μπορούμε να δείξουμε ότι: Θ ε ώ ρ η μ α Αν f : X Y είναι μια αμφιμονότιμη και επί συνάρτηση, τότε η αντίστροφη συνάρτηση f 1 : Y X είναι και αυτή αμφιμονότιμη και επί, και επιπλέον ισχύουν f f 1 = I Y και f 1 f = I X. Α π ό δ ε ι ξ η. Αν x είναι τυχόν στοιχείο του X, τότε το στοιχείο y = f(x) ανήκει στο Y. Από τον ορισμό της αντίστροφης συνάρτησης προκύπτει ότι θα είναι f 1 (y) = x. Άρα για κάθε x X υπάρχει κάποιο στοιχείο y Y τέτοιο, ώστε να ισχύει f 1 (y) = x, δηλαδή η αντίστροφη συνάρτηση είναι επί. Υποθέτουμε, τώρα, ότι ισχύει f 1 (y 1 ) = f 1 (y 2 ), και θα δείξουμε ότι y 1 = y 2. Αν ισχύει f 1 (y 1 ) = f 1 (y 2 ) = a, από τον ορισμό της αντίστροφης συνάρτησης προκύπτει ότι θα έχουμε y 1 = f(a) = y 2, δηλαδή η συνάρτηση f 1 είναι αμφιμονότιμη. Τέλος, από τις σχέσεις (f f 1 )(y) = f(f 1 (y)) = f(x) = y = I Y (y), για κάθε y Y, και (f 1 f)(x) = f 1 (f(x)) = f 1 (y) = x = I X (x), για κάθε x X, προκύπτουν οι ισότητες f f 1 = I Y και f 1 f = I X. Θ ε ώ ρ η μ α Aν για τη συνάρτηση f : A B υπάρχει συνάρτηση g : B A τέτοια, ώστε f g = I B και g f = I A, τότε η συνάρτηση f είναι αμφιμονότιμη και επί, και ισχύει g = f 1. Α π ό δ ε ι ξ η. Αν a, a A, τότε θα έχουμε f(a) = f(a ) g(f(a)) = g(f(a ) (g f)(a) = (g f)(a ) I A (a) = I A (a ) a = a. Δηλαδή η συνάρτηση f είναι αμφιμονότιμη. Επιπλέον, για κάθε στοιχείο b του B, υπάρχει στοιχείo a = g(b) A, τέτοιο ώστε να ισχύει η σχέση f(a) = f(g(b)) = (f g)(b) = I B (b) = b.

14 1.1 Συμβολισμοί και συναρτήσεις 19 Άρα η f είναι και συνάρτηση επί, οπότε ορίζεται η αντίστροφη συνάρτηση f 1 της f, και ισχύει g = I A g = (f 1 f) g = f 1 (f g) = f 1 I B = f 1, δηλαδή έχουμε g = f 1. Θεωρούμε, τώρα, μια αμφιμονότιμη και επί συνάρτηση f : X Y. Όπως είδαμε, για τη συνάρτηση αυτή θα υπάρχει η αντίστροφη f 1 : Y X. Επειδή η συνάρτηση g = f 1 είναι επίσης αμφιμονότιμη και επί, θα υπάρχει και η αντίστροφή της g 1 : X Y, η οποία θα ορίζεται με τη σχέση g 1 (x) = y g(y) = x. Δηλαδή θα έχουμε g 1 (x) = y g(y) = x f 1 (y) = x f(x) = y, οπότε οι συναρτήσεις g 1 και f έχουν το ίδιο πεδίο ορισμού και τιμών, και τον ίδιο κανόνα αντιστοιχίας. Άρα θα είναι ίσες, δηλαδή θα έχουμε (f 1 ) 1 = g 1 = f. Θ ε ώ ρ η μ α Αν f : X Y και g : Y X είναι δύο αμφιμονότιμες και επί συναρτήσεις, τότε και η σύνθεση g f : X Z είναι μια αμφιμονότιμη και επί συνάρτηση, και επιπλέον ισχύει (g f) 1 = f 1 g 1. Α π ό δ ε ι ξ η. Αρχικά παρατηρούμε ότι, σύμφωνα με τα Θεωρήματα και η σύνθεση g f είναι μια αμφιμονότιμη και επί συνάρτηση, εφόσον οι επιμέρους συναρτήσεις είναι αμφιμονότιμες και επί. Άρα η αντίστροφη συνάρτηση (g f) 1 : Z X ορίζεται. Επίσης, παρατηρούμε ότι ισχύουν και (g f) (f 1 g 1 ) = g (f f 1 ) g 1 = g (I Y g 1 ) = g g 1 = I Z, (f 1 g 1 ) (g f) = f 1 (g 1 g) f = f 1 (I Y f) = f 1 f = I X. Επομένως θα έχουμε (g f) 1 = f 1 g 1.

15 20 Εισαγωγικές έννοιες 1.2 Ασκήσεις Ά σ κ η σ η Δίνονται οι συναρτήσεις φ : R R, και ψ : R R, που ορίζονται με τις σχέσεις φ(x) =ημx, και ψ(x) = 2x + 1, για κάθε x R. Να βρεθεί η σύνθεση φ ψ, όπως επίσης και η σύνθεση ψ φ. Ά σ κ η σ η Δίνεται η συνάρτηση f : R R, που ορίζεται με τη σχέση f(x) = x, για κάθε x R, και τα υποσύνολα A = ( 4, 7), και B = ( 10, 5). Να βρεθεί η εικόνα f(a), καθώς και η αντίστροφη εικόνα f 1 (B) των συνόλων A και B αντίστοιχα. Ά σ κ η σ η Θεωρούμε το σύνολο A = {1, 2, 3, 4}, και τις συναρτήσεις f : A A και g : A A που ορίζονται με τις σχέσεις f(1) = 3, f(2) = 2, f(3) = 1, f(4) = 4, και g(1) = 4, g(2) = 1, g(3) = 2, g(4) = 3. Να βρεθούν οι συναρτήσεις f g και g f. Ά σ κ η σ η Δίνεται μια συνάρτηση f : X Y, και τα υποσύνολα A και B του πεδίου ορισμού X της f. Δείξτε ότι ισχύουν οι σχέσεις (α) f(a B) f(a) f(b), και (β) f(a B) = f(a) f(b). Δείξτε με ένα παράδειγμα ότι η ισότητα δεν ισχύει γενικά στη σχέση (α). Ά σ κ η σ η Δίνεται μια συνάρτηση f : X Y, και τα υποσύνολα A και B του πεδίου τιμών Y της f. Δείξτε ότι ισχύουν οι σχέσεις (α) f 1 (A B) = f 1 (A) f 1 (B), και (β) f 1 (A B) = f 1 (A) f 1 (B). Ά σ κ η σ η Έστω f : A B και g : B C τυχούσες συναρτήσεις. Δείξτε ότι (i) (ii) αν η συνάρτηση g f είναι αμφιμονότιμη, τότε η f είναι αμφιμονότιμη, αν η συνάρτηση g f είναι επί, τότε η g είναι επί.

16 1.3 Νόμοι σύνθεσης ή πράξεις 21 Ά σ κ η σ η Δίνονται oι συναρτήσεις h 1 : A B, h 2 : A B, f : B Γ, g 1 : Γ, και g 2 : Γ. (i) (ii) Αν ισχύει g 1 f = g 2 f και η συνάρτηση f είναι επί, δείξτε ότι θα πρέπει να ισχύει g 1 = g 2. Αν ισχύει f h 1 = f h 2 και η συνάρτηση f είναι αμφιμονότιμη, δείξτε ότι θα πρέπει να ισχύει h 1 = h 2. Ά σ κ η σ η Έστω X και Y δύο πεπερασμένα σύνολα με m και n στοιχεία αντίστοιχα. Να υπολογιστεί ο αριθμός όλων των διαφορετικών συναρτήσεων φ : X Y. Ά σ κ η σ η Έστω X και Y δύο πεπερασμένα σύνολα με m και n στοιχεία αντίστοιχα. Αν m < n, να υπολογιστεί ο αριθμός όλων των διαφορετικών αμφιμονότιμων συναρτήσεων φ : X Y. Ά σ κ η σ η Έστω X και Y δύο πεπερασμένα σύνολα με m και n στοιχεία αντίστοιχα. Αν υπάρχει μια αμφιμονότιμη συνάρτηση φ : X Y, δείξτε ότι ισχύει m < n. Αν υπάρχει μια επί συνάρτηση ψ : X Y, δείξτε ότι πρέπει να ισχύει m > n. 1.3 Νόμοι σύνθεσης ή πράξεις Θεωρούμε ένα μη κενό σύνολο A, και το καρτεσιανό γινόμενο A A = {(a 1, a 2 )/a 1, a 2 A}, το οποίο αποτελείται από όλα τα διατεταγμένα ζεύγη (a 1, a 2 ), καθώς τα στοιχεία a 1, a 2 διατρέχουν το σύνολο A. Κάθε συνάρτηση f : A A A λέγεται εσωτερικός νόμος σύνθεσης ή πράξη του A. Ο όρος πράξη του συνόλου A προκύπτει από το γεγονός ότι η συνάρτηση f αντιστοιχεί κάθε διατεταγμένο ζεύγος στοιχείων του A σε ένα στοιχείο του συνόλου A. Δηλαδή η f χρησιμοποιεί δύο στοιχεία του A και αποδίδει ένα άλλο. Το ίδιο ακριβώς κάνει και η πρόσθεση πραγματικών αριθμών. Σε κάθε ζεύγος πραγματικών αριθμών αντιστοιχεί ένας άλλος πραγματικός αριθμός, που είναι το άθροισμα των δύο πρώτων.

17 22 Εισαγωγικές έννοιες Ένα μη κενό σύνολο A εφοδιασμένο με μια τουλάχιστον πράξη λέγεται αλγεβρική δομή ή αλγεβρικό σύστημα. Συνήθως, αν έχουμε μια πράξη πάνω σε ένα σύνολο A, δηλαδή μια συνάρτηση : A A A, αντί τoυ συμβολισμού (a, b), χρησιμοποιούμε τo συμβολισμό a b, για να συμβολίσουμε την εικόνα τoυ (a, b) A A δια της συνάρτησης. Φυσικά, η εικόνα a b είναι ένα στοιχείo τoυ A και λέγεται αποτέλεσμα της πράξης στο ζεύγος (a, b). Ας δούμε κάποιους γνωστούς ορισμούς που αφορούν γενικά τις πράξεις. Θεωρούμε μια πράξη σε ένα μη κενό σύνολο A. H πράξη θα λέγεται αντιμεταθετική, όταν ισχύει a b = b a, για όλα τα στοιχεία a, b A. H πράξη θα λέγεται προσεταιριστική, όταν ισχύει a (b c) = (a b) c, για όλα τα στοιχεία a, b, c του A. Aν υπάρχει κάποιο στοιχείο e στο σύνολο A τέτοιο, ώστε να ισχύει e a = a = a e, για κάθε στοιχείο a A, τότε το στοιχείο e θα λέγεται ουδέτερο στοιχείο της πράξης αυτής. Ένα στοιχείο a του A θα λέγεται συμμετρικό του a A, όταν ισχύει η σχέση a a = e = a a. Π α ρ ά δ ε ι γ μ α Έστω A τυχόν σύνολο με περισσότερα από ένα στοιχεία. Στο σύνολο αυτό ορίζουμε την πράξη με τη σχέση a b = a, για κάθε a, b A. Αν a, b, c είναι τυχόντα στοιχεία του A, από τις σχέσεις a (b c) = a b = a και (a b) c = a c = a, προκύπτει ότι η πράξη αυτή είναι προσεταιριστική. Επειδή το σύνολο A έχει περισσότερα από ένα στοιχεία, θα υπάρχουν τουλάχιστον δύο διαφορετικά στοιχεία a 1 και a 2 του A. Τότε θα ισχύει a 1 a 2 = a 1 a 2 = a 2 a 1. Αυτό σημαίνει ότι η πράξη δεν είναι αντιμεταθετική. Η πράξη αυτή δεν έχει ουδέτερο στοιχείο, εφόσον δεν υπάρχει κανένα στοιχείο e του A τέτοιο, ώστε να ισχύει e a = a, για κάθε a A. Φυσικά, η απουσία ουδετέρου στοιχείου δείχνει ότι δεν μπορούμε να περιμένουμε ούτε συμμετρικό στοιχείο ως προς την πράξη αυτή. Το επόμενο παράδειγμα δίνει μια νέα πράξη στο σύνολο Z + των θετικών ακεραίων.

18 1.3 Νόμοι σύνθεσης ή πράξεις 23 Π α ρ ά δ ε ι γ μ α Στο σύνολο Z + όλων των θετικών ακεραίων ορίζουμε την πράξη με τον εξής τρόπο: m n = m n, για κάθε m, n Z +. Είναι προφανές ότι η είναι μια πράξη στο σύνολο Z + = {0, 1, 2,...}, εφόσον συνδυάζει δύο θετικούς ακεραίους, και αποδίδει ένα άλλο. Όμως, η πράξη αυτή δεν είναι ούτε προσεταιριστική, ούτε αντιμεταθετική. Είναι πολύ εύκολο να διαπιστωθεί το γεγονός αυτό. Για παράδειγμα οι σχέσεις (2 1) 3 = = 2 3 = 2 3 = 8, και 2 (1 3) = = 2 1 = 2 1 = 2, δείχνουν ότι δεν ισχύει η προσεταιριστική ιδιότητα, ενώ η σχέση 4 1 = 4 1 = 4 1 = 1 4 = 1 4, αποδεικνύει ότι δεν ισχύει ούτε η αντιμεταθετική ιδιότητα. Με ανάλογο τρόπο μπορούμε να αποδείξουμε ότι η πράξη αυτή δεν έχει ούτε ουδέτερο στοιχείο. Θεωρούμε, τώρα, ένα μη κενό σύνολο A, και μια πράξη πάνω σ αυτό. Η πράξη αυτή θεωρείται γνωστή, οπότε μπορεί να χρησιμοποιηθεί, μόνον όταν είναι γνωστό το αποτέλεσμα a b, για όλα τα στοιχεία a, b A. Αυτό μπορεί να γίνει με δύο τρόπους: είτε να ορίσουμε το αποτέλεσμα a b, για όλα τα ζεύγη στοιχείων a, b του A, είτε να είναι γνωστός ένας «κανόνας» με βάση τον οποίο μπορεί να βρεθεί το αποτέλεσμα που μας ενδιαφέρει. Όταν το σύνολο A είναι πεπερασμένο, μπορούμε σχετικά εύκολα να ορίσουμε το αποτέλεσμα για κάθε ένα ζεύγος στοιχείων του συνόλου αυτού. Για το σκοπό αυτό σχηματίζουμε ένα πίνακα, στην πρώτη γραμμή και πρώτη στήλη του οποίου αναγράφουμε όλα τα στοιχεία του συνόλου A με την ίδια σειρά. Στη διασταύρωση της γραμμής, που ορίζεται από ένα στοιχείο a, και της στήλης, που ορίζεται από ένα στοιχείο

19 24 Εισαγωγικές έννοιες b, τοποθετούμε το αποτέλεσμα a b. Στον παρακάτω πίνακα x y... x w... y z... βλέπουμε τον πίνακα της πράξης πάνω σε κάποιο σύνολο, το οποίο περιέχει, μεταξύ άλλων, και τα στοιχεία x και y. Από τον πίνακα αυτό προκύπτει ότι ισχύει x y = w και y x = z. Με τον τρόπο αυτό μπορούμε να ορίσουμε οποιαδήποτε πράξη σ ένα πεπερασμένο σύνολο. Το μόνο που χρειάζεται να κάνουμε είναι να συμπληρώσουμε όλες τις θέσεις του πίνακα με στοιχεία του συνόλου αυτού. Π α ρ ά δ ε ι γ μ α Θεωρούμε το σύνολο X = {e, a, b, c, d}, το οποίο αποτελείται από πέντε διαφορετικά τυχαία στοιχεία. Στο σύνολο αυτό ορίζουμε την πράξη με τον παρακάτω πίνακα e a b c d e e a b c d a a b c d e b b c d e a c c d e a b d d e a b c Παρατηρούμε ότι το στοιχείο e είναι ένα ουδέτερο στοιχείο της πράξης αυτής, εφόσον αφήνει αμετάβλητα όλα τα στοιχεία του X. Για παράδειγμα, έχουμε e b = b = b e. Επίσης, η πράξη είναι αντιμεταθετική, δηλαδή ισχύει x y = y x για όλα τα στοιχεία x, y X. Το γεγονός αυτό ελέγχεται εύκολα με τη βοήθεια του παραπάνω πίνακα. Το ίδιο εύκολα μπορούμε να ελέγξουμε και την προσεταιριστική ιδιότητα, η οποία επίσης ισχύει. Τέλος, κάθε στοιχείο του συνόλου X έχει συμμετρικό ως προς την πράξη αυτή. Για παράδειγμα, το συμμετρικό του a είναι το στοιχείο d, εφόσον ισχύει a d = e = d a, ενώ το συμμετρικό του στοιχείο b είναι το c, διότι b c = e = c b.

20 1.3 Νόμοι σύνθεσης ή πράξεις 25 Συνήθως, όταν σε ένα σύνολο έχουμε κάποια πράξη, δίνουμε σ αυτή συγκεκριμένο όνομα για λόγους ευκολίας. Αυτό είναι περισσότερο κατανοητό όταν στο ίδιο σύνολο έχουμε δύο πράξεις. Έτσι, θα χρησιμοποιούμε το όνομα της πρόσθεσης ή του πολλαπλασιασμού, χωρίς αυτό να σημαίνει ότι πρόκειται για τις συνήθεις πράξεις της πρόσθεσης και του πολλαπλασιασμού αριθμών. Ασφαλώς μαζί με το όνομα θα χρησιμοποιούμε τους συμβολισμούς και την αντίστοιχη ορολογία. Aν μια πράξη την ονομάσουμε πρόσθεση, τότε θα χρησιμοποιούμε τους εξής συμβολισμούς: (i) a + b για να συμβολίζουμε το αποτέλεσμα (άθροισμα) της πράξης, (ii) a για να συμβολίζουμε το συμμετρικό στοιχείο του a, το οποίο θα ονομάζουμε αντίθετο του a, και (iii) 0 για να συμβολίζουμε το ουδέτερο στοιχείο, το οποίο θα ονομάζουμε μηδενικό στοιχείο ή μηδέν. Aν μια πράξη την ονομάσουμε πολλαπλασιασμό, τότε θα χρησιμοποιούμε τους εξής συμβολισμούς: (i) ab ή a b για να συμβολίζουμε το αποτέλεσμα (γινόμενο) της πράξης, (ii) a 1 για να συμβολίζουμε το συμμετρικό στοιχείο του a, το οποίο θα ονομάζουμε αντίστροφο του a, και (iii) 1 για να συμβολίζουμε το ουδέτερο στοιχείο, το οποίο θα ονομάζουμε μοναδιαίο στοιχείο. Π α ρ ά δ ε ι γ μ α Θεωρούμε το σύνολο Y = {0, 1, 2, 3, 4}. Στο σύνολο αυτό ορίζουμε μια πράξη, την οποία ονομάζουμε πρόσθεση, με τη βοήθεια του παρακάτω πίνακα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ A.0. Σύνολα Μια οποιαδήποτε συλλογή αντικειμένων λέγεται * ότι είναι ένα σύνολο και τα αντικείμενα λέγονται στοιχεία του συνόλου. Αν με Α συμβολίσουμε ένα σύνολο και α είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 4ο Συνδυασμοί 2 2.3 ΣΥΝΔΥΑΣΜΟΙ Έστω Χ= {x 1, x 2,..., x ν } ένα πεπερασμένο σύνολο με ν στοιχεία x 1, x 2,...,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Σημειώσεις Σταύρος Τουμπής ΟΠΑ, 24 i Οδηγίες Χρήσης Το παρόν ΔΕΝ είναι διδακτικό βιβλίο. Είναι οι σημειώσεις του μαθήματος «Μαθηματικά Ι», όπως το διδάσκω στο πρώτο εξάμηνο του Τμήματος Πληροφορικής

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ. Ορισµός της συνάρτησης Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται µια διαδικασία (κανόνας τρόπος ), µε την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ

II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Δημήτρης Μπουνάκης Σχ. Σύμβουλος Μαθηματικών dimitrmp@sch.gr Ηράκλειο, Οκτώβριος 010 ΘΕΜΑ: «ΔΙΔΑΚΤΙΚΟ

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 13 1.2 ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων

ΜΑΘΗΜΑ 13 1.2 ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων ΜΑΘΗΜΑ 3. ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Έστω οι συναρτήσεις : A R, :Β R Το τυχαίο A, µε την A. αντιστοιχίζεται στην τιµή Αν η τιµή αυτή ( ) B θα αντιστοιχίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ.

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. Μια συνοπτική παρουσίαση της Άλγεβρας, για όσους θέλουν να προετοιμαστούν για τις Πανελλαδικές Εξετάσεις των ΕΠΑ.Λ. Για απορίες στο www.commonmaths.weebly.com

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ θεματα Α-Β-Γ-Δ Βαγγέλης Α Νικολακάκης Μαθηματικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ 0 ΣΥΝΟΠΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ 3-4 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΘΕΜΑ Α) 5-7 ΑΣΚΗΣΕΙΣ (ΘΕΜΑ Β)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα Αλγεβρικες οµες Ι Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 4 εκεµβρίου 2012

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. H Εννοια του διανυσματος. Σ υ ν ο λ α - Ο ρ ι σ μ ο ι

ΣΥΝΑΡΤΗΣΕΙΣ. H Εννοια του διανυσματος. Σ υ ν ο λ α - Ο ρ ι σ μ ο ι ΣΥΝΑΡΤΗΣΕΙΣ Σ υ ν ο λ α - Ο ρ ι σ μ ο ι Συνολο λεγεται καθε συλλογη 3. Να δειχτει αντικειμενων, οτι α + 0 που προερχονται 0α. Ποτε ισχυει απ την το εμπειρια ισον; μας η τη διανοηση 3 3. μας, Aν α, ειναι

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήσ τος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014

Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήσ τος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Εισαγωγή Θα συμπληρωθεί 1 Κεφάλαιο 1 Γεωμετρικά διανύσματα στο επίπεδο Ενα γεωμετρικό διάνυσμα

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα