ii) η δύναµη που ασκεί το έδαφος στο πυροβόλο κατά τον χρόνο Δt. Δί νεται η επιτάχυνση! g της βαρύτητας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ii) η δύναµη που ασκεί το έδαφος στο πυροβόλο κατά τον χρόνο Δt. Δί νεται η επιτάχυνση! g της βαρύτητας"

Transcript

1 Σε λείο κεκλιµένο έδαφος, γωνίας κλίσεως φ ως προς τον ορίζοντα, έχει τοποθετηθεί πυροβόλο µάζας M, του οποίου η ολίσθη ση προς τα κάτω αποφεύγεται µε την βοήθεια εµποδίου. Tο πυροβόλο εκτοξεύει οριζόντια ένα βλήµα µάζας m, µε ταχύτητα v. Eάν ο χρόνος κίνησης του βλήµατος στην κάνη του πυροβόλου είναι Δt, να βρεθούν: i) η προς τα πάνω µετατόπιση του πυροβόλου και ii) η δύναµη που ασκεί το έδαφος στο πυροβόλο κατά τον χρόνο Δt. Δί νεται η επιτάχυνση g της βαρύτητας ΛYΣH: i) Στην διάρκεια της κίνησης του βλήµατος µέσα στην κάνη του πυροβό λου, το πυροβόλο δέχεται το βάρος του w, την αντίδραση A του λείου κεκλι µένου εδάφους και την δύναµη F από τα αέρια που δηµιουργούνται από την έκρη Σχήµα 8 ξη της πυρίτιδας. H δύναµη F είναι αντίθετη εκείνης που δέχεται το βλήµα από τα αέρια και το µέτρο της υπολογίζεται µε εφαρµογή του θεωρήµατος ωθησηςορµής για το βλήµα, οπότε θα έχουµε: FΔt = mv F = mv/δt () Eξάλλου, εφαρµόζοντας για το πυροβόλο το θεώρηµα ωθησης-ορµής κατά την διεύ θυνση του κεκλιµένου επιπέδου και για τον χρόνο Δt, παίρνουµε την σχέση: () F Δt - w Δt = MV - 0 (Fσυνφ - Mgηµφ)Δt = MV ' ) ( mv"#$ %t * - Mg&µ$,%t = MV V = + mv"#$ - Mg%t&µ$ M όπου F η συνιστώσα της F κατά την διεύθυνση του κεκλιµένου επιπέδου, w η αντίστοιχη συνιστώσα του βάρους w του πυροβόλου και V η ταχύτητα του πυρο ()

2 βόλου αµέσως µετά την εκτόξευση του βλήµατος, που θα παίξει ρόλο αρχικής ταχύτητας για την παραπέρα επιβραδυνόµενη κίνησή του. Έτσι αν smax είναι η προς τα πάνω µετατόπιση του πυροβόλου, σύµφωνα µε το θεώρηµα κινητικής ενέργειας-έργου θα έχουµε: 0 - MV / = -w s max MV = Mgs max ηµφ () s max = (mv"#$ - M%tg&µ$) M g&µ$ (3) ii) Εφαρµόζοντας για το πυροβόλο το θεώρηµα ώθησης-ορµής κατά την κάθετη προς το κεκλιµένο επίπεδο διεύθυνση, παίρνουµε την σχέση: AΔt - w Δt - F Δt = ΔP y (A wσυνφ - Fηµφ)Δt = 0 () A = wσυνφ + Fηµφ A = Mg"#$ + mv%µ$ /&t όπου F, w οι συνιστώσες της F και του βάρους w του πυροβόλου αντιστοίχως κατά την κάθετη προς το κεκλιµένο επιπέδο διεύθυνση. P.M. fysikos Mια ευκίνητη τροχαλία αµελητέας µάζας είναι στερε ωµένη, όπως φαίνεται στο σχήµα (9) και από τον λαιµό της διέρχεται λεπτό και µη εκτατό νήµα επαρκούς αντοχής, στο ένα άκρο του οποίου έχει δεθεί σώµα µάζας m και στο άλλο άκρο σώµα µάζας m >m. Tο πρώτο σώµα ισορροπεί πάνω σε οριζόντιο έδαφος, ενώ το άλλο σώµα κρατείται, ώστε το νήµα να είναι χαλαρό και κάποια στιγµή αφήνεται ελεύθερο να κινηθεί. Yστερα από κατακόρυφη διαδροµή h του σώµατος το νήµα τεντώνεται και το σώµα µάζας m αρχίζει να ανυψώνεται. i) Nα βρεθεί η ώθηση της τάσεως του νήµατος κατά τον χρόνο που αυτό τεντώνεται. ii) Nα βρεθεί η µέγιστη αποµάκρυνση της µάζας m από το οριζόντιο έδα φος, µε την προϋπόθεση ότι η απόσταση της τροχαλίας από αυτό είναι αρκετά µεγάλη. Δίνεται η επιτάχυνση g της βαρύτητας. ΛYΣH: i) Tο σώµα µάζας m, µέχρις ότου τεντωθεί το νήµα δέχεται µόνο το βάρος του, οπότε η ταχύτητά του v λίγο πριν τεντωθεί το νήµα θα έχει µέτρο που δίνεται από την σχέση: v = gh ()

3 Kατά το πολύ µικρό χρονικό διάστηµα Δt (Δt 0) που διαρκεί το τέντωµα του νή µατος το σώµα µάζας m δέχεται την τάση T του νήµατος και το βάρος του m g, οπότε εφαρµόζοντας για το σώµα αυτό κατά τον χρόνο Δt, το θεώρηµα ώθησηςορµής παίρνουµε την σχέση: m V = m v + " T + m g #t ("t#0) m V = m v + " T () όπου V η ταχύτητα του σώµατος αµέσως µετά το τέντωµα του νήµατος και T η ώθηση* της τάσεως του νήµατος για τον χρόνο Δt. Mε θετική φορά στην κατακό ρυφη διεύθυνση την προς τα πάνω, η διανυσµατική σχέση () µετατρέπεται σε σχέση αλγεβρικών τιµών, η οποία έχει την µορφή: -m V = -m v + " T T = m v - m V " (3) Σχήµα 9 Eξάλλου, το σώµα µάζας m στην διάρκεια του χρόνου Δt δέχεται το βάρος του m g, την τάση T του νήµατος και την αντίδραση A του οριζοντίου επιπέδου, της οποίας το µέτρο ελαττώνεται από την τιµή m g στην τιµή µηδέν, οπότε αρχίζει και η ανύψωσή του. Eφαρµόζοντας για το σώµα αυτό, κατά τον χρόνο Δt, το θεώρηµα ώθησης-ορµής παίρνουµε την σχέση: m (- V ) = 0 + " T + m g #t + " A -m V " # T m V " # T (4) διότι m g t"0 και "0. Συνδυάζοντας τις (3) και (4) παίρνουµε την σχέση: A * H ωθηση της τάσεως του νήµατος δεν είναι αµελητέα, διότι στην διάρκεια του χρόνου Δt η τάση αυτή αποτελεί κρουστική δύναµη.

4 m v - m V = m V m v = (m + m )V V = () m v m + m V = m gh m + m οπότε η (4) γράφεται: = m m gh T m + m (5) Παρατήρηση η: Tο φυσικό φαινόµενο που συνοδεύει το τέντωµα ενός νήµατος είναι ΥΠΕΡΣΤΑ ΤΙΚΟ, διότι κατά το τέντωµα προκύπτει εφελκυσµός του νήµατος, ο οποίος καθο ρίζεται ποσοτικά από τον νόµο του HOOKE, ο οποίος εισάγει το λεγόµενο µέτρο του YOUNG. Aν λάβουµε υπ όψη µας τον εφελκυσµό, τότε όλοι οι υπολογισµοί κατά το τέντωµα του νήµατος γίνονται πολύπλοκοι, διότι µεταβάλλεται το µήκος του νήµατος και πλέον η παραµόρφωσή του ενδέχεται να µην είναι ελαστική µε αποτέλεσµα να εµπλέκεται η ενέργεια παραµορφώσεως του νήµατος. Κατά την γνώµη µου πρέπει το τέντωµα ενός νήµατος να το έξεταζουµε χωρίς εφελκυσµό, χρησιµοποιώντας ΠΑΡΑΔΟΧΕΣ που ποικίλουν, ανάλογα µε την ελαστικότητα που παρουσιάζει το νήµα. Στην περίπτωσή µας το νήµα θεωρήθηκε µη εκτατό, δη λαδή µε µηδενική ελαστικότητα µε αποτέλεσµα να δεχθούµε ότι κατά το τέντωµά του η τάση σε κάθε σηµείο του αποκαθίσταται στην τελική της τιµή σε πολύ µικρό (απειροστό) χρόνο και ότι αποτελεί κρουστική δύναµη. Παρατήρηση η: Μπορούµε να υπολογίσουµε το κοινό µέτρο των ταχυτήτων V και - V χρησιµοποι ώντας το θεώρηµα ώθησης-στροφορµής για το σύστηµα της τροχαλίας και των δύο σω µάτων, λαµβάνοντας τις στροφορµές περί το κέντρο O της τροχαλίας και θεωρώντας την στροφορµή της τροχαλίας µηδενική λόγω της ασήµαντης µάζας της. Έτσι θα έχουµε: L (o) "# = L (o) $%& + ' (o) m vr+0=m V R+m V R+(m gr+m gr)"t m v=m V +m V +(m +m )g"t Όµως η ποσότητα (m g+m g)δt τείνει στο µηδέν, διότι ο χρόνος Δt είναι πολύ µικρός, οπότε η προηγούµενη σχέση καταλήγει µε καλή προσέγγιση στην µορφή: m v=m V +m V V =m v/(m +m ) ii) Έστω ότι το σώµα µάζας m, µετά το τέντωµα του νήµατος ανέρχεται κατά H, σε σχέση µε το οριζόντιο επίπεδο, οπότε το σώµα µάζας m θα µετατοπιστεί προς

5 τα κάτω κατά H. Eπειδή η κινητική ενέργεια της τροχαλίας είναι περίπου µηδε νική, µπορούµε να δεχθούµε ότι η µηχανική ενέργεια του συστήµατος των µαζών m και m διατηρείται σταθερή στην διάρκεια της κίνησής του. Έτσι θα έχουµε την σχέση: E + E = 0 K + U + K + U = 0 (0 - m V / )+ m gh + (0 - m V / ) - m gh = 0 V (m + m )= gh(m - m ) H = V (m + m ) g(m - m ) (5) H = ghm (m + m ) g(m + m ) (m - m ) = m h m - m P.M. fysikos Tα σφαιρίδια A, B του σχήµατος (0) έχουν την ίδια µάζα m και συνδέονται µε αβαρή νήµατα µε τρίτο σφαιρίδιο Γ, µάζας m. Aρχικά το σύστηµα ηρεµεί πάνω σε λείο οριζόντιο επίπεδο, ώστε τα τρία σφαιρίδια να βρίσκονται στις κορυφές ενός ισοπλεύρου τριγώνου. Kάποια στιγµή επί του σφαιριδίου Γ ενεργεί επί βραχύ χρονικό διάστη µα µια δύναµη, της οποίας η ώθηση έχει µέτρο Ω και ο φορέας της διχο τοµεί την γωνία των δύο νηµάτων. i) Nα βρεθεί η σχετική ταχύτητα του σφαιριδίου A ως προς το B αµέ σως µετά την δράση της δύναµης. ii) Nα δείξετε ότι τα σφαιρίδια A και B κάποια στιγµή θα συγκρουσ θούν και να βρείτε τα µέτρα των ταχυτήτων τους λίγο πριν την σύγκ ρουσή τους. ΛYΣH: i) Aµέσως µετά την δράση της δύναµης επί του σφαιριδίου Γ, αυτό θα αποκτήσει ταχύτητα v 3 που έχει την διεύθυνση και την φορά της ώθησης. Tα δύο άλλα σφαιρίδια A και B θ αποκτήσουν αντίστοιχες ταχύτητες v και v οι οποίες έχουν την διεύθυνση* των νηµάτων AΓ και BΓ. Eφαρµόζοντας για το σύσ τηµα των τριών σφαιριδίων το θεώρηµα ώθησης-ορµής κατά τον άξονα Γx έχουµε: * Για λόγους συµµετρίας οι τάσεις των νηµάτων που δέχεται το σφαιρίδιο Γ έχουν κάθε στιγµή συνισταµένη κατά την διεύθυνση της διχοτόµου της γωνίας των νηµάτων, δηλαδή η συνισταµένη αυτή θα είναι αντίρροπή της, οπότε το σφαιρίδιο θα κινείται επί της διχοτόµου.

6 P "# (x) = P $%& (x) + ' x mv x - mv x = v x = v x v συνφ = v συνφ v = v () Σχήµα 0 Eφαρµόζοντας για το σύστηµα το ίδιο θεώρηµα, κατά τον άξονα Γψ έχουµε: P "# ($ ) = P %&' ($ ) + ( $ mv 3 + mv ψ + mv ψ = 0 + Ω () Ω = mv 3 + mv ηµφ + mv ηµφ = mv 3 + mv 3 / / m = v 3 + v 3 / () Όµως, αµέσως µετά την δράση της δύναµης επί του σφαιριδίου Γ τα νήµατα είναι τεντωµένα, οπότε η συνιστώσα της ταχύτητας v 3 κατά την διεύθυνση του νήµα τος AΓ θα είναι ίση µε v, δηλαδή θα ισχύει η σχέση: v = v 3 "#($ /) = v 3 3 / v 3 = v / 3 = 3v / 3 (3) Συνδυάζοντας τις σχέσεις () και (3) παίρνουµε την σχέση: / m = 3v /3 + v 3 / / m = 7 3v /6 v = 6 /4 3m = 3 / 7m (4)

7 H σχετική ταχύτητα v (A) " του σφαιριδίου A, ως προς το σφαιρίδιο B, αµέσως µετά την δράση της δύναµης, υπολογίζεται µέσω της διανυσµατικής σχέσεως: v (A) " = v + (- v ) Eπειδή τα διανύσµατα v και - v έχουν το ίδιο µέτρο, η συνισταµένη τους v (A) " θα έχει φορέα την διχοτόµο της γωνίας των διανυσµάτων αυτών, δηλαδή θα βρίσκε ται πάνω στην ευθεία AB, το δε µέτρο της θα είναι: Σχήµα (4) v (A) " = v + v + v v #$% = v - v / = v v (A) " = # 3 / 7m ii) Eπειδή κάθε στιγµή οι µεταξύ των σφαιριδίων A και B σχετικές τους ταχύ τητες έχουν φορέα την ευθεία που τα συνδέει, κάποια στιγµή αυτά θα συγκ ρουσθούν. Λίγο πριν την κρούση τους τα δύο νήµατα θα είναι σχεδόν παράλληλα µεταξύ τους και θα έχουν την διεύθυνση της ταχύτητας V 3 του σφαιριδίου Γ. Aυτό σηµαίνει ότι, οι συνιστώσες V, V των ταχυτήτων V, V των σφαιριδίων A και B αντιστοίχως, λίγο πριν την κρούση τους, θα είναι ίσες µε την ταχύτητα V 3, αφού εκείνη την στιγµή τα νήµατα είναι τεντωµένα (σχ ). Έτσι θα έχουµε την σχέση: V ψ = V ψ = V 3 (5) Όµως, µετά την δράση της δύναµης επί του σφαιριδίου Γ, η ορµή του συστήµατος κατά τους άξονες Γx και Γψ διατηρείται σταθερή διότι το σύστηµα είναι πλέον µηχανικά µονωµένο. Έτσι θα έχουµε τις σχέσεις: και mv x - mv x = 0 V x = V x (6)

8 (6) Ω = mv 3 + mv ψ + mv ψ Ω = mv ψ + mv ψ V ψ = V ψ = Ω/4m (7) όπου V x, V x οι συνιστώσες των V και V αντιστοίχως κατά τον άξονα Γx. Eξάλλου και η κινητική ενέργεια του συστήµατος διατηρείται σταθερή στο χρονι κό διάστηµα αµέσως µετά την δράση της δύναµης επί του σφαιριδίου Γ και λίγο πριν την κρούση των σφαιριδίων A και B, οπότε θα ισχύει η σχέση: mv +mv +mv 3 = mv 3 + m (V x+v )+ m (V x +V ) v +v +v 3 =V 3 +V x +V + V x +V (8) H σχέση (8) µε βάση τις σχέσεις (3), (5) και (6) γράφεται: v +( 3/3) v = V x +V +V v +4v / 3 = V x +V 7v /3 = V + V x V x = 7v / 3 - V (4),(8) V x = m - 6m V x = 7 " 3 % 3 $ # 7m ' & " - % $ ' # 4m& Άρα τα µέτρα των V, V είναι: = 7m - 8m = 56m (9) V = V = V x + V (7),(9) V = V = 56m + 6m = 3 m P.M. fysikos Ένας πύραυλος κινείται κατακόρυφα προς τα πάνω στο βαρυτικό πεδίο της Γης, που το θεωρούµε οµογενές. Την χρονική στιγµή t=0 ο πύραυλος βρίσκεται στην επιφάνεια της Γης, έχει µηδενική ταχύτητα και µάζα m 0. Εάν τα καυσαέρια του πυραύλου εκτοξεύονται µε σταθερό ρυθµό dm/dt=µ και µε σταθερή σχετική ταχύτητα v " ως προς τον πύραυλο, να εκφράσετε την ταχύτητα του πυραύλου σε συνάρ τηση µε τον χρόνο. Εάν η µάζα του καυσίµου του πυραύλου είναι m 0 /,

9 να βρείτε την ταχύτητά του την στιγµή που εξαντλούνται τα καύσιµά του. Δίνεται η επιτάχυνση g της βαρύτητας. ΛYΣH: Eπειδή ο πύραύλος αποτελεί σώµα που εκτοξεύει µάζα, η κίνησή του περιγράφεται µε την σχέση: m d v dt = m g + dm v " d v dt dt = g - µ όπου m η µάζα του πυραύλου και v η ταχύτητά του ως προς το ακίνητο έδαφος την χρονική στιγµή t που τον εξετάζουµε. Η διανυσµατική σχέση () µετατρέπεται σε σχέση αλγεβρικών τιµών, η οποία µε θετική φορά την κατεύθυνση κίνησης του πυραύλου έχει την µορφή: dv dt = -g - µ (-v ) " m d v dt = g - µ v " m v " m dv dt = -g + µ v " m 0 - µt dv = -gdt + µ v " dt m 0 - µt () dv = -gdt - v " d(m 0 - µt) m 0 - µt () Ολοκληρώνοντας την σχέση (4) παίρνουµε: v = - gt - v " ln(m 0 - µt) + C (3) Η σταθερά ολοκλήρωσης C θα προκύψει από την αρχική συνθήκη, ότι για t=0 είναι v=0, οπότε η (3) δίνει: 0 = -v " ln m 0 + C C = v " ln m 0 (4) Συνδυάζοντας τις σχέσεις (3) και (4) παίρνουµε: v = - gt - v " ln(m 0 - µt) + v " ln m 0 v = - gt - v " [ ln m 0 - ln(m 0 - µt) ] # m & v = - gt + v " ln% 0 ( (5) $ m 0 - µt' Τα καύσιµα του πυραύλου εξαντλούνται την χρονική στιγµή t * για την οποία ισχύει:

10 m 0 / = m 0 - µt * t * = m 0 /µ οπότε τη στιγµή αυτή η ταχύτητα του πυραύλου είναι: v * = - gm 0 µ t * + v ln # m & 0 " % ( v * = v " ln - gm 0 $ m 0 /' µ (6) Όµως απαραίτητη προυπόθεση για την εκκίνηση του πυραύλου είναι η σχέση m 0 g<µv σχ, από την οποία προκύπτει: gm 0 µ < v " gm ln 0 µ < v " ln Επειδή ln>/ από την παραπάνω σχέση προκύπτει: (6) gm 0 / µ < v " ln v * > 0 P.M. fysikos Ένα ταχύπλοο σκάφος (jet-ski) προωθείται µε αναρ ρόφηση και εκτόξευση θαλασσίου ύδατος σε αντίθετη κατεύθυνση προς την κίνησή του. Το ταχύπλοο ξεκινάει από την ηρεµία και στην διάρ κεια της ευθύγραµµής κίνησής του δέχεται από το θαλάσσιο νερό αντί σταση A, που δίνεται από την σχέση: A = -k v όπου v η ταχύτητα του σκάφους ως προς την ακίνητη θάλασσα και k θετική σταθερή ποσότητα. Εάν το νερό εκτοξεύεται µε σταθερό ρυθµό dm/dt=k και µε σταθερή σχετική ταχύτητα v " ως προς το σκάφος, να εκφράσετε την ταχύτητα του σκάφους σε συνάρτηση µε τον χρόνο και να σχεδιάσετε την γραφική παράσταση της σχέσεως που θα βρείτε. ΛYΣH: Eάν dm είναι η µάζα του νερού που εκτοξεύεται από το ταχύπλοο σκάφος µεταξύ των χρονικών στιγµών t και t+dt και v ' η ταχύτητα εκτόξευσης της µάζας ως προς την ακίνητη θάλασσα, τότε η µεταβολή d P ' της ορµής της µάζας αυτής στον χρόνο dt θα είναι: d P '= dm v '- 0 = dm( v + v " ) () Η µάζα dm δέχεται στην διάρκεια του χρόνου dt από τον µηχανισµό εκτόξευσής της δύναµη F για την οποία ισχύει:

11 F '= d () P ' dt F '= dm dt ( v + v " ) = k( v + v " ) () Σύµφωνα µε το αξίωµα της ισότητας µεταξύ δράσης-αντίδρασης, η µάζα dm εξασ κεί στο ταχύπλοο δύναµη F αντίθετη της F ', δηλαδή ισχύει: F = - F () ' F = -k( v + v " ) (3) Εφαρµόζοντας την χρονική στιγµή t για το ταχύπλοο τον δεύτερο νόµο κίνησης του Νευτωνα παίρνουµε την σχέση: M d v dt = A + F M d v dt = -k v - k( v + v " ) M d v dt = -k v - k v " (4) Όµως τα διανύσµατα v και v " έχουν την διεύθυνση κίνησης του ταχύπλοου, οπό τε η διανυσµατική σχέση (4) µετατρέπεται σε σχέση αλγεβρικών τιµών της µορ φής: M dv dt = -kv + kv dv " v " - v = k M dt d(v " - v) v " - v = - k M dt (5) Ολοκληρώνοντας την σχέση (5) παίρνουµε: n(v " - v) = -kt/m + C (6) Η σταθερά ολοκλήρωσης C θα προκύψει από την αρχική συνθήκη κίνησης του ταχύπλοου, συµφωνα µε την οποία για t=0 είναι v=0, οπότε η (6) δίνει lnv σχ =C, µε αποτέλεσµα η σχέση αυτή να παίρνει την τελική της µορφή: # ln(v " - v) = -kt/m + lnv " ln v - v & " % $ v ( = - kt " ' M v " - v v " = e -kt/m v " - v = v " e -kt/m v = v " ( - e -kt/m ) v = v " ( - e-kt/m ) (7)

12 Από την (7) προκύπτει ότι η ταχύτητα του σκάφους αυξάνεται εκθετικά µε τον χρόνο, από την τιµή µηδέν σε µια οριακή τιµή v ορ =v σχ /, την οποία θεωρητικά Σχήµα λαµβάνει σε άπειρο χρόνο. Η γραφική παράσταση της (7) είναι µια ανερχόµενη εκθετική καµπύλη γραµµή, η οποία διέρχεται από την αρχή των αξόνων και τείνει ασυµτωτικά στην τιµή v σχ /. (σχ. ) P.M. fysikos Μια σφαιρική σταγόνα από χαλάζι πέφτει κατακό ρυφα λόγω της βαρύτητας, χωρίς να δέχεται αντίσταση από τον ατµοσ φαιρικό αέρα. Επί της σταγόνας στερεοποιούνται υδρατµοί της ατµόσ φαιρας, µε αποτέλεσµα η ακτίνα της r ν αυξάνεται µε ρυθµό που ικανο ποιεί τη σχέση: dr/dt = kr όπου k θετική και σταθερή ποσότητα. Εάν τη χρονική στιγµή t=0 η τα χύτητα της σταγόνας είναι µηδενική, η µάζα της m 0 και η ακτίνα της r 0, να βρείτε: i) την ταχύτητα της σταγόνας σε συνάρτηση µε τον χρόνο και να σχεδιά σετε την γραφική της παράσταση και ii) την µάζα της σταγόνας σε συνάρτηση µε τον χρόνο. ΛΥΣΗ: Η σταγόνα από χαλάζι αποτελεί ένα σώµα που η µάζα του αυξάνεται στην διάρκεια της πτώσης της στο βαρυτικό πεδίο της Γης. Έτσι, εάν m είναι η µάζα της σταγόνας κατά την χρονική στιγµή t και v η αντίστοιχη ταχύτητά της, θα ισχύει η σχέση: m d v dt = m g + dm v " m d v dt dt = m g + dm dt (- v ) () διότι η σχετική ταχύτητα v " της προστιθέµενης στην σταγόνα µάζας υδρατµών κατά την θεωρούµενη χρονική στιγµή είναι ίση µε - v, αφού οι υδρατµοί προσκο

13 λώνται εκ της ηρεµίας. Η διανυσµατική σχέση () µετατρέπεται σε σχέση αλγεβρι κών τιµών, η οποία µε θετική φορά την κατεύθυνση κίνησης της σταγόνας έχει την µορφή: m dv dt dm = mg - dt v dv dt = g - dm dt v m () Εξάλλου έαν ρ είναι η πυκνότητα του νερού και r η ακτίνα της σταγόνας κατά την χρονική στιγµή t, θα ισχύει: m = 4r 3 " /3 dm = 4"r dr dm/dt = 4"r dr/dt dm/dt = 4"r kr = 4"kr 3 (3) Συνδυάζοντας τις σχέσεις () και (3) παίρνουµε: dv dt = g - 4"kr3 v 4"r 3 /3 = g - 3kv dv g - 3kv = dt d(g - 3kv) g - 3kv = -3kdt (4) Ολοκληρώνοντας την εξίσωση (4) παίρνουµε: ln(g - 3kv) = -3kt + C (5) όπου η σταθερά ολοκλήρωσης C θα προκύψει από την αρχική συνθήκη ότι, για t=0 είναι v=0. Έτσι η σχέση (4) δίνει lng=c, µε αποτέλεσµα αυτή να γράφεται: ln(g - 3kv) = -3kt + lng ln ((g - 3kv)/g) = -3kt g - 3kv g = e -3kt g - 3kv = ge -3kt v = g ( 3k - ) e-3kt (6) Η σχέση (6) εκφράζει ότι, κατά την κίνηση της σταγόνας η ταχύτητά της αυξάνε ται εκθετικά µε τον χρόνο από την τιµή µηδέν σε µια οριακή τιµή v ορ =g/3k την οποία λαµβάνει θεωρητικά σε άπειρο χρόνο. ii) Παραγωγίζοντας την σχέση (5) ως προς τον χρόνο t παίρνουµε: dv dt = g 3k e-3kt = ge -3kt (7) Η () λόγω των (6) και (7) γράφεται:

14 mge -3kt = mg - dm g ( dt 3k - $ # ) " e-3kt & % mg ( - e -3kt ) = g dm ( 3k dt - ) e-3kt dm dt = 3km dm m = 3kdt (8) Ολοκληρώνοντας την εξίσωση (8) παίρνουµε: lnm= 3kt + C' (9) όπου η σταθερά ολοκλήρωσης C θα προκύψει από την αρχική συνθήκη ότι, για t=0 είναι m=m 0. Έτσι η (9) δίνει lnm 0 =C, οπότε παίρνει την τελική της µορφή: lnm= 3kt + lnm 0 ln( m / m 0 ) = 3kt m = m 0 e 3kt (0) Aπό την (0) προκύπτει ότι η µάζα της σταγόνας αυξάνεται εκθετικά µε τον χρόνο. P.M. fysikos

) ω ω. L λίγο πριν. . Nα βρεθούν:

) ω ω. L λίγο πριν. . Nα βρεθούν: Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α

Διαβάστε περισσότερα

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R.

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R. Το σώµα Σ του σχήµατος (α) έχει µάζα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο έδαφος. Ένα µικρό σφαιρίδιο µάζας m κινείται αρχικά πάνω στο οριζόντιο τµήµα του σώµατος µε ταχύτητα v 0 και όταν φθάσει

Διαβάστε περισσότερα

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα

Διαβάστε περισσότερα

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v.

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v. Το καρούλι του σχήµατος κυλίεται χωρίς ολίσ θηση πάνω σε οριζόντιο δοκάρι, που ολισθαίνει επί οριζοντίου έδα φους µε ταχύτητα v η οποία έχει την κατεύθυνση του δοκαριού. Η κύλιση του καρουλιού επιτυγχάνεται

Διαβάστε περισσότερα

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m

Διαβάστε περισσότερα

# $ + L " = ml " ml! = ML " $ + ml " $ L " = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του

# $ + L  = ml  ml! = ML  $ + ml  $ L  = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του Mία σανίδα, µήκους L καί µάζας M, βρίσκεται πάνω σε λείο οριζόντιο επίπεδο. Στο ένα άκρο της σανίδας πατάει άνθ ρωπος µάζας m και αρχίζει να κινείται προς το άλλο άκρο της. Kατά πόσο θα µετατοπιστεί η

Διαβάστε περισσότερα

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L! Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της

Διαβάστε περισσότερα

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες. Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

i) Nα εκφράσετε την ταχύτητα της αλυσίδας σε συνάρτηση µε το µή κος x του τµήµατος, που έχει εγκαταλείψει την πλάκα.

i) Nα εκφράσετε την ταχύτητα της αλυσίδας σε συνάρτηση µε το µή κος x του τµήµατος, που έχει εγκαταλείψει την πλάκα. Mια οµογενής αλυσίδα, γραµµικής πυκνότητας µ και µήκους L, είναι σωριασµένη πάνω σε οριζόντια πλάκα, η οποία φέρει µια οπή. Πλησιάζουµε το ένα άκρο της αλυσίδας στην οπή και φροντίζουµε να περάσει µέσα

Διαβάστε περισσότερα

=-v και dm=µdx, όπου dx η αυξηση του µήκους x του αιωρούµενου τµήµατος µεταξύ των χρονικών στιγµών t και t+dt, οπότε η σχέση (1) γράφεται:

=-v και dm=µdx, όπου dx η αυξηση του µήκους x του αιωρούµενου τµήµατος µεταξύ των χρονικών στιγµών t και t+dt, οπότε η σχέση (1) γράφεται: Mια οµογενής αλυσίδα, γραµµικής πυκνότητας µ και µήκους L, είναι σωριασµένη πάνω σε οριζόντια πλάκα, η οποία φέρει µια οπή. Πλησιάζουµε το ένα άκρο της αλυσίδας στην οπή και φροντίζουµε να περάσει µέσα

Διαβάστε περισσότερα

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T! Επί της κεκλιµένης έδρας µιας ορθογώνιας και ισοσκελούς σφήνας µάζας m, η οποία ισορροπεί πάνω σε οριζόντιο έδαφος, αφήνεται µικρός κύβος µάζας m. Μεταξύ του κύβου και της σφήνας δεν υπάρχει τριβή, ενώ

Διαβάστε περισσότερα

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!! Οµογενής σφαίρα µάζας και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση βραχείας διάρκειας, της οποίας ο φορέας βρίσκε ται άνωθεν του κέντρου της

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση: Σώµα µάζας m σχήµατος ορθογώνιου κιβωτίου, ισορροπεί πάνω σε τραχύ οριζόντιο επίπεδο και στην άνω επιφάνειά του έχει τοποθετηθεί σώµα µάζας m/. Κάποια στιγµή που λαµβάνε ται ως αρχή µέτρησης του χρόνου

Διαβάστε περισσότερα

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Όταν εξετάζουµε ένα υλικό σύστηµα µεταβλητής µάζας, δηλαδή ένα σύστη µα που ανταλλάσσει µάζα µε το περιβάλλον του, τότε πρέπει να είµαστε πολύ

Διαβάστε περισσότερα

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας. Δύο σώµατα Σ και Σ µε αντίστοιχες µάζες m και m, είναι στερεωµένα στις άκρες ενός κατακόρυφου αβαρούς ελατηρίου, όπως φαίνεται στο σχήµα. Εξασκούµε στο σώµα Σ κατακόρυφη δύναµη µε φορά προς τα κάτω, της

Διαβάστε περισσότερα

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο, Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο

Διαβάστε περισσότερα

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας. Mια κυκλική στεφάνη ακτίνας R, της οποίας η µάζα θεωρείται συγκεντρωµένη στην περιφέρεια της, κυλίεται ισοταχώς πάνω σε οριζόντιο επίπεδο το δε κέντρο της έχει ταχύτητα v. Kάποια στιγµή η στε φάνη προσκρούει

Διαβάστε περισσότερα

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F Ένα ιδανικό ελατήριο σταθεράς k κόβεται σε δύο τµήµατα µε µήκη L και L. Η µία άκρη κάθε τµήµατος συνδέεται στέρεα µε µικρό σφαιρίδιο µάζας m και οι ελέυθερες άκρες τους στερεώνονται σε ακλόνητα σηµεία

Διαβάστε περισσότερα

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας

Διαβάστε περισσότερα

που περιγράφεται από την σχέση:! R = -mk! v

που περιγράφεται από την σχέση:! R = -mk! v Mικρό σώµα µάζας m βάλλεται από σηµείο Ο του οριζόντιου εδάφους κατακόρυφα προς τα άνω, µε ταχύτητα µέτρου v. Στην διάρκεια της κίνησής του το σώµα δέχεται από τον ατµοσφαιρι κό αέρα αντίσταση R, που περιγράφεται

Διαβάστε περισσότερα

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος. H τροχαλία του σχήµατος () µάζας m και ακτίνας R, ισορροπεί εξαρτηµένη από τα νήµατα ΑΒ και ΓΔ τα οποία είναι ισο κεκλιµένα ως προς την οριζόντια διεύθυνση κατα γωνία φ. Κάποια στιγµή κόβουµε το νήµα ΑΒ

Διαβάστε περισσότερα

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας. Στην διάταξη του σχήµατος () η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µπορεί να στρέφεται περί οριζόντιο άξο να, που διέρχεται από σηµείο Ο ευρισκόµενο σε απόσταση 3L/4 από το άκρο της Α. Η τροχαλία

Διαβάστε περισσότερα

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ.

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ. Μικρό σφαιρίδιο µάζας m, προσπίπτει σε σηµεί ο Α της περιφέρειας ενός δακτυλιδιού ακτίνας R, το οποίο µπορεί να περιστρέφεται περί οριζόντιο άξονα που διέρχεται από ένα σηµείο του Ο. Η ταχύτητα πρόσπτωσης

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

(ΘΕΜΑ 17ο)

(ΘΕΜΑ 17ο) Εισαγωγικά: Με το πρόβληµα της αλληλεπίδρασης δύο µαζών, µέσω αβαρούς και µη εκτατού νήµατος παρουσία οµογενούς βαρυτικού πεδίου, είχα ασχοληθεί και στο παρελθόν παρουσιάζοντάς το στην ιστοσελίδα µου µε

Διαβάστε περισσότερα

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4. Οριζόντιος δίσκος µάζας Μ ισορροπεί στηριζόµε νος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο στηρίζεται στο έδαφος (σχήµα 1). Ένα µικρό σφαιρίδιο µάζας m, προσκρούει

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F! Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται

Διαβάστε περισσότερα

Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση

Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση 2.2. Ασκήσεις Έργου-Ενέργειας. 2.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T!

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T! Tο ένα άκρο A οµογενούς ράβδου AB αρθρώνεται σε οριζόντιο επίπεδο, ενώ το άλλο της άκρο Β εφάπτεται κατακόρυ φου τοίχου, µε τον οποίο η ράβδος παρουσιάζει συντελεστή οριακής τριβής µ. H άρθρωση της ράβδου

Διαβάστε περισσότερα

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται

Διαβάστε περισσότερα

υ r 1 F r 60 F r A 1

υ r 1 F r 60 F r A  1 2.2. Ασκήσεις Έργου-Ενέργειας. 4.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

Eάν L 1, L 2 είναι τα αντίστοιχα φυσικά µήκη των ελατηρίων ε 1 και ε 2 τότε για την απόσταση ΑΒ των σηµείων στήριξης των ελατηρίων θα έχουµε:

Eάν L 1, L 2 είναι τα αντίστοιχα φυσικά µήκη των ελατηρίων ε 1 και ε 2 τότε για την απόσταση ΑΒ των σηµείων στήριξης των ελατηρίων θα έχουµε: Tο µικρό σώµα του σχήµατος (1) έχει µάζα m και συγκρατείται στο λείο οριζόντιο έδαφος σε τέτοια θέση, ώστε τα ελατήρια ε 1 και ε να είναι τεντωµένα κατά α απο την φυσική τους κατάσταση. i) Eάν k, k είναι

Διαβάστε περισσότερα

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου. i) Να βρεθεί η απόσταση x, ώστε την στιγµή που η ράβδος αφήνεται

Διαβάστε περισσότερα

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων ΜΕΡΟΣ Γ η οµάδα λυµένων παραδειγµάτων Στις άκρες αβαρούς και λεπτής ράβδου µηκούς L, έχουν στερεωθεί δύο όµοιες σφαίρες, µάζας m και ακτίνας R, το δε σύστηµα στρέφεται µε σταθερή γωνιακή ταχύτητα περί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. A.1 Μια διαφορά

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

Δυναµική της κίνησης συστήµατος δύο σωµατιδίων

Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Δυναµική της κίνησης συστήµατος δύο σωµατιδίων Θεωρούµε δύο σωµατίδια Σ και Σ µε αντίστοιχες µάζες m και m, των οποίων τα διανύσµατα θέσεως ως προς την αρχή Ο ενός αδρανειακού συστή µατος αναφοράς Oxyz

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 17 Ε_3.ΦλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 17 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη.

Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R<D), η οποία είναι προσγειωµένη. Θετικό σηµειακό φορτίο q βρισκεται σε απόσταση D από το κέντρο µιας κοίλης µεταλλικής σφαίρας ακτίνας R (R

Διαβάστε περισσότερα

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A!

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A! Η οµογενής ράβδος ΑΒ του σχήµατος έχει βά ρος w και στηρίζεται διά του άκρου της Α σε τραχύ κεκλιµένο επί πεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, ενώ το άλλο της άκρο Β ακουµπάει σε λείο κατακόρυφο

Διαβάστε περισσότερα

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T!

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T! Ένα στερεό σώµα εκτελεί επίπεδη κίνηση και δύο σηµεία αυτού βρίσκονται κάποια στιγµή t στις θέσεις Α(,) και Β(,α) του επιπέδου κίνησής του (x,y) Εάν οι ταχύτητες των σηµείων αυτών έχουν το ίδιο µέτρο v

Διαβάστε περισσότερα

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v! Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής

Διαβάστε περισσότερα

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου.

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου. Oµογενής ράβδος Γ, βάρους w και µήκους L, είναι αρθρωµένη στο ένα άκρο της όπως φαίνεται στο σχήµα (), ενώ το άλλο άκρο της είναι δεµένο σε νήµα που διέρχεται από µικρή ακίνητη τροχαλία O, η οποία βρίσκεται

Διαβάστε περισσότερα

Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις. Θέµα Α

Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις. Θέµα Α Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή Μάη 24 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις Θέµα Α Στις ερωτήσεις Α. Α.4 επιλέξτε την σωστή απάντηση (4 5 = 2 µονάδες ) Α.. Ενα αυτοκίνητο κινείται µε σταθερή

Διαβάστε περισσότερα

i) Nα δείξετε ότι αν το σύστηµα αφεθεί ελεύθερο η τροχαλία τ 1 δεν µπορεί να κυλίεται, άλλά µόνο να ισσρροπεί ή να ολισθαίνει.

i) Nα δείξετε ότι αν το σύστηµα αφεθεί ελεύθερο η τροχαλία τ 1 δεν µπορεί να κυλίεται, άλλά µόνο να ισσρροπεί ή να ολισθαίνει. Στην διάταξη του σχήµατος η τροχαλία τ 1 έχει µάζα m 1 και ακτίνα R και στο αυλάκι της έχει περιτυλιχθεί αβαρές νήµα, το οποίο διέρ χεται από τον λαιµό της µικρής τροχαλίας τ στο δε άκρο του έχει δε θεί

Διαβάστε περισσότερα

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12 Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

2ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 3 Απρίλη 2016 Βαρύτητα - υναµική Υλικού Σηµείου

2ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 3 Απρίλη 2016 Βαρύτητα - υναµική Υλικού Σηµείου 2ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή Απρίλη 2016 Βαρύτητα - υναµική Υλικού Σηµείου Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 2,5 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα

γραπτή εξέταση στο μάθημα 3η εξεταστική περίοδος από 9/03/5 έως 9/04/5 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Kινηµατική άποψη της επίπεδης κίνησης

Kινηµατική άποψη της επίπεδης κίνησης Kινηµατική άποψη της επίπεδης κίνησης Θα λέµε ότι ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε), παραµέ νουν αµετάβλητες µε το

Διαβάστε περισσότερα

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του.

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του. Ένα διαστηµόπλοιο αιωρείται στον αέρα σε στα θερό ύψος από την επιφάνεια της Γης, εκτοξεύοντας καυσαέρια µε σταθερή ταχύτητα v. Η αρχική µάζα του διαστηµόπλοιου µαζί µε τα καύσιµά του είναι m, η δε µάζα

Διαβάστε περισσότερα

GI_V_FYSP_4_ m/s, ξεκινώντας από το σημείο Κ. Στο σημείο Λ (αντιδιαμετρικό του Κ) βρίσκεται ακίνητο σώμα Σ 2 μάζας m2 1 kg.

GI_V_FYSP_4_ m/s, ξεκινώντας από το σημείο Κ. Στο σημείο Λ (αντιδιαμετρικό του Κ) βρίσκεται ακίνητο σώμα Σ 2 μάζας m2 1 kg. Μια ράβδος μήκους R m και αμελητέας μάζας βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και μπορεί να περιστρέφεται γύρω από το σημείο Ο. Στο άλλο άκρο της είναι στερεωμένο σώμα Σ, μάζας m kg το οποίο εκτελεί

Διαβάστε περισσότερα

! =A'B=C!! C! = R" (1)

! =A'B=C!! C! = R (1) Οµογενής κύβος ακµής α ισορροπεί επί ακλό νητης σφαιρικής επιφάνειας ακτίνας R, µε το κέντρο µάζας του ακριβώς πάνω από την κορυφή Α της επιφάνειας. Εάν µεταξύ του κύβου και της σφαιρικής επιφάνειας υπάρχει

Διαβάστε περισσότερα

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α 6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό

Διαβάστε περισσότερα

που δέχεται από την παράπλευρη επιφάνεια του κώνου, της οποίας ο φορέας είναι κάθετος στην επιφάνεια αυτή, αφού θεωρείται λεία και των δυνάµεων T

που δέχεται από την παράπλευρη επιφάνεια του κώνου, της οποίας ο φορέας είναι κάθετος στην επιφάνεια αυτή, αφού θεωρείται λεία και των δυνάµεων T Mιά κυκλική σπείρα εύκαµπτης αλυσίδας βάρους w, είναι τοποθετηµένη πάνω σε λείο ορθό κώνο ύψους h, του οποίου η βάση έχει ακτίνα R (σχ. 9). O κατακόρυφος άξονας του κώνου διέρ χεται από το κέντρο της αλυσίδας

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος (σχ. 13).

Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος (σχ. 13). Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος σχ. 3). i) Εάν στο κέντρο Ο µιας έδρας του δοχείου ανοίξουµε µικρή κυκλική οπή εµβαδού S, ποιο πρέπει να είναι το

Διαβάστε περισσότερα

ΘΕΜΑ Α: ΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ

ΘΕΜΑ Α: ΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 8min ONOM/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ:. ΘΕΜΑ ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ ΘΕΜΑ Α:. Σφαίρα μάζας m = m κινείται με ταχύτητα αλγεβρικής τιμής +υ και συγκρούεται

Διαβάστε περισσότερα

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις.

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. Θεωρούµε σύστηµα δύο σωµατιδίων Σ και Σ µε αντίστοιχες µάζες m και m, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. i) Nα δείξετε ότι η σχετική ορµή P του ενός, λογουχάρη του Σ ως

Διαβάστε περισσότερα

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L! Στο ένα άκρο ράβδου µήκους L και αµελητέας µά ζας, έχει στερεωθεί σφαιρίδιο µάζας m. Η ράβδος είναι ακίνητη πάνω σε λείο οριζόντιο επίπεδο Οxy, µε το σφαιρίδιο στο σηµείο, και το άλλο της άκρο στο σηµείο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ ο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή Απριλίου 0 ΑΠΑΝΤΗΣΕΙΣ. β. δ 3. α 4. α Λ, β Σ, γ Λ, δ Λ, ε Λ 5. α Λ, β Λ, γ Λ, δ Σ, ε Σ ΘΕΜΑ ο. α) x β) x γ) υ δ)

Διαβάστε περισσότερα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.

Διαβάστε περισσότερα

ως προς τον ατµολέβητα. Εάν η µάζα M του ατµού µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση:

ως προς τον ατµολέβητα. Εάν η µάζα M του ατµού µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση: Ένας κυλινδρικός ατµολέβητας αµελητέας µάζας χωρίς τον υδρατµό και ακτίνας R, θερµαίνεται και ο παραγόµενος υδρατµός διαφεύγει από δύο αντιδιαµετρικά ακροφύσια της εξωτε ρικής του επιφάνειας, ώστε η ταχύτητα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ 1. Ένα σώμα μάζας 2kg ηρεμεί σε λείο οριζόντιο επίπεδο. Σε μια στιγμή ασκούνται πάνω του οι οριζόντιες δυνάμεις που εμφανίζονται στο σχήμα. Δίνονται F 1 =8 3N, F 2 =14N, F 3

Διαβάστε περισσότερα

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V!

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V! Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V 0. O πιλότος του θέλει ν αλλάξει τη διεύθυνση κίνησης του διαστηµόπλοιου, ώστε η νέα διεύθυνση να γίνει κάθετη προς την αρχική. Για

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Μ. Τετάρτη Απριλίου 07 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α - Α4 να γράψετε να γράψετε

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

Τυπολόγιο Κινήσεων 1. Πίνακας 1 - Τυπολόγιο Κινήσεων Τύπος Μας δίνει Παρατηρήσεις Ορισμοί βασικών μεγεθών. Ορισμός Μετατόπισης

Τυπολόγιο Κινήσεων 1. Πίνακας 1 - Τυπολόγιο Κινήσεων Τύπος Μας δίνει Παρατηρήσεις Ορισμοί βασικών μεγεθών. Ορισμός Μετατόπισης Τυπολόγιο Κινήσεων 1 1 Τυπολόγιο Κινήσεων Πίνακας 1 - Τυπολόγιο Κινήσεων Ορισμοί βασικών μεγεθών = 2 1 Ορισμός Μετατόπισης Αλγεβρικά, κανονικά είναι = 2 1 =, = Ορισμός ταχύτητας Διανυσματικά, αλγεβρικά

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

από τα σύρµατα λόγω της συµµετρίας τους ως προς την µεσοκάθετο θα δίνουν συνι σταµένη δύναµη F µε κατεύθυνση προς το Ο, που σηµαίνει ότι το σφαιρίδιο

από τα σύρµατα λόγω της συµµετρίας τους ως προς την µεσοκάθετο θα δίνουν συνι σταµένη δύναµη F µε κατεύθυνση προς το Ο, που σηµαίνει ότι το σφαιρίδιο Mικρό σφαιρίδιο µάζας m, είναι στερεωµένο στην µια άκρη δύο ακριβώς όµοιων λεπτών συρµάτων, των οποίων οι άλλες άκρες συνδέονται προς δύο σταθερά σηµεία Α και Β λείου ορι ζόντιου δαπέδου που βρίσκονται

Διαβάστε περισσότερα

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε: ΘΕΜΑ 6o Η κυκλική τροχαλία του σχήµατος (1) έχει µάζα Μ και ακτίνα R, είναι σε επαφή µε οριζόντιο δάπεδο (ε), ενώ στον άξονά της έχει πακτωθεί αβαρής ράβδος µήκους L, στο ελεύθερο ακρο της οποίας έχει

Διαβάστε περισσότερα

της µορφής:! F = -mk! r

της µορφής:! F = -mk! r Ένα µικρό σώµα µάζας m, κινείται επί κυκλικής τροχιάς ακτίνας α µέσα σε δυναµικό πεδίο, ελκόµενο από σταθερό ση µείο Ο που αποτελεί το κέντρο της τροχιάς, µε δύναµη F της µορφής: F -mk όπου το διάνυσµα

Διαβάστε περισσότερα

i) την µέγιστη ροπή του ζεύγους δυνάµεων που επιτρέπεται να ενερ γήσει επί του κυλίνδρου, ώστε αυτός να ισορροπεί και

i) την µέγιστη ροπή του ζεύγους δυνάµεων που επιτρέπεται να ενερ γήσει επί του κυλίνδρου, ώστε αυτός να ισορροπεί και Oµογενής κύλινδρος µάζας m και ακτίνας R εφάπ τεται στα τοιχώµατα ενός αυλακιού, τα οποία είναι επίπεδες σταθερές επιφάνειες που η τοµή τους είναι οριζόντια. Τα τοιχώµατα είναι ισο κεκλιµένα ως προς τον

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Ζήτηµα ο Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένας ανεµιστήρας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ορμή

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ορμή ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. B Λυκείου Ύλη: Ορμή 13-11-2016 Θέμα 1 ο : 1) Κατά την πλαστική κρούση δύο σωμάτων: α) η κινητική ενέργεια και η ορμή του συστήματος των σωμάτων παραμένουν σταθερές β) η κινητική

Διαβάστε περισσότερα

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης 2013 ΘΕΜΑ Α Για τις ερωτήσεις 1 έως 4 γράψτε τον αριθμό τις ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για ένα

Διαβάστε περισσότερα

Περι-Φυσικής. Θέµα Α. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική. Ονοµατεπώνυµο: Βαθµολογία % (α) µόνο από το µέτρο της δύναµης.

Περι-Φυσικής. Θέµα Α. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική. Ονοµατεπώνυµο: Βαθµολογία % (α) µόνο από το µέτρο της δύναµης. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική Ηµεροµηνία : 31 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση (4 5 = 20 µονάδες ) Α.1.

Διαβάστε περισσότερα

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική 1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης

Διαβάστε περισσότερα

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και Οµογενής σφαίρα µάζας m και ακτίνας R είναι ακίνητη πάνω σε οριζόντιο δοκάρι µάζας Μ και µήκους L, που µπορεί να ολισθαίνει χωρίς τριβή επί οριζοντίου δαπέδου. Η σφαίρα εφάπτεται στο δεξιό άκρο Β του δοκαριού

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ. Μάζα που κινείται οριζόντια µε ορµή µέτρου 0 Kg m/s προσπίπτει σε κατακόρυφο τοίχο και ανακλάται οριζόντια µε ορµή ίδιου µέτρου. Το

Διαβάστε περισσότερα

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ 1. Στο σώμα του σχήματος έχει βάρος Β = 20Ν είναι ακίνητο και του ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς

Διαβάστε περισσότερα