Εισαγωγή στις Συναρτήσεις Πλοήγησης (Navigation Functions - NF)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στις Συναρτήσεις Πλοήγησης (Navigation Functions - NF)"

Transcript

1 Εισαωή στις Συναρτήσεις Πλοήησης (Navigation Functions - NF) Οι συναρτήσεις πλοήησης είναι μια μεθοδολοία που εισήααν οι Rimon και Koditschek ια τον προραμματισμό κίνησης (motion planning) ενός ρομπότ, με άση τη μέθοδο των Τεχνητών Δυναμικών Πεδίων (ΤΠΔ). Το κύριο χαρακτηριστικό των NF έναντι των ΤΠΔ είναι ότι δεν παρουσιάζουν τοπικά ελάχιστα αλλά ένα μοναδικό ολικό ελάχιστο, που συμπίπτει με τον επιθυμητό προορισμό του ρομπότ. Θεωρούμε ότι ρομπότ ρίσκεται μέσα σε έναν επίπεδο χώρο που περιλαμάνει εμπόδια. Ως configuration q του ρομπότ ορίζουμε το διάνυσμα q = [ x y] T όπου x, y οι συντεταμένες της θέσης του ρομπότ ως προς ένα καρτεσιανό αδρανειακό σ.σ. σε κάποιο σημείο του χώρου. Ένα μοντέλο κίνησης του ρομπότ δίνεται από τη σχέση q = u T όπου u = ux u y η είσοδος του συστήματος. Το ζητούμενο είναι να κινηθεί το ρομπότ από ένα αρχικό configuration qi σε ένα τελικό configuration, αποφεύοντας τα εμπόδια του χώρου. Τι είναι η συνάρτηση πλοήησης; Η NF ϕ q είναι μια ειδική μορφή συνάρτησης δυναμικού, η οποία έχει ένα μοναδικό ελάχιστο, το ( ) τελικό configuration τότε q q. t του ρομπότ. Δηλαδή αν το ρομπότ κινηθεί με το νόμο ελέχου u = ϕ Προφανώς, ως συνάρτηση δυναμικού, η συνάρτηση πλοήησης χαρακτηρίζεται από μια συνάρτηση «ελκτικού» δυναμικού, που έλκει το ρομπότ προς το τελικό configuration q, και από μια συνάρτηση «απωστικού» δυναμικού, που ορίζεται ύρω από τα εμπόδια του χώρου και ωθεί το ρομπότ μακριά από αυτά Η NF ϕ ορίζεται ια χώρους που περιλαμάνουν εμπόδια νωστής εωμετρίας και ρίσκονται σε νωστές, σταθερές θέσεις. Η απλούστερη μορφή χώρου ια τον οποίο εξετάζουμε τη NF στα πλαίσια αυτού του εισαωικού κειμένου, είναι ένας σφαιρικός χώρος, αποτελούμενος από μια μεάλη σφαίρα που περιέχει μικρότερες σφαίρες στο εσωτερικό της, οι οποίες αναπαριστούν τα φυσικά εμπόδια (Σχ. ). D (,ρ ) ρ ρ Ο χώρος ερασίας D (q,ρ ) Σχήμα : Σφαιρικός χώρος: Η πιο απλή περίπτωση περιάλλοντος W (workspace) του ρομπότ οριοθετείται από τον κυκλικό δίσκο οποίο περιέχονται M (μικροί) κυκλικοί δίσκοι ( ) (, ) D ρ στον D q, ρ, =,, M, που οριοθετούν τα εμπόδια. Τα κέντρα και οι ακτίνες των δίσκων είναι νωστά. Οι μικροί δίσκοι δεν τέμνονται μεταξύ τους και ρίσκονται εξολοκλήρου μέσα στο μεαλύτερο δίσκο.

2 Προφανώς, ο ελεύθερος χώρος W free (free space), στον οποίο μπορεί να κινηθεί το ρομπότ αποφεύοντας τη σύκρουση με τα εμπόδια, προκύπτει αν από το χώρο ερασίας W αφαιρεθεί ο συνολικός χώρος των εμποδίων. Οι Rimon και Koditschek απέδειξαν ότι η NF ϕ πρέπει να πληροί συκεκριμένες μαθηματικές ιδιότητες, ώστε να ευάται τη σύκλιση του ρομπότ στο επιθυμητό configuration, με ταυτόχρονη αποφυή των εμποδίων του χώρου. Η NF ϕ πρέπει να είναι: ) αναλυτική (analytic) στο πεδίο ορισμού της, δηλαδή να είναι τουλάχιστον δύο φορές παραωίσιμη & η δεύτερη παράωός της να είναι συνεχής, και να μπορεί να ραφεί ως σειρά Taylor ια κάθε σημείο του πεδίο ορισμού της ) πολική (polar) στο πεδίο ορισμού της, δηλαδή να έχει ένα μοναδικό ελάχιστο, το οποίο είναι το τελικό configuration q 3) admissible στο πεδίο ορισμού της, δηλαδή να παίρνει ομοιόμορφα τη μέιστη τιμή της στα όρια του πεδίου ορισμού της (δηλαδή στα όρια των εμποδίων) 4) μια συνάρτηση Morse, δηλαδή ο πίνακας των μερικών παραώων ης τάξης της συνάρτησης, στα κρίσιμα σημεία της (στα σημεία που η πρώτη μερική παράωος της συνάρτησης είναι ίση με μηδέν) να είναι μη ιδιάζων Η συνάρτηση πρέπει να περιλαμάνει ένα ελκτικό δυναμικό, που θα έλκει το ρομπότ στο μοναδικό ελάχιστο της συνάρτησης (το τελικό configuration ), και ένα απωστικό δυναμικό, που θα ωθεί το ρομπότ μακριά από τα όρια των εμποδίων. Για τη δημιουρία των δυναμικών αυτών, ορίζονται κατάλληλες συναρτήσεις, ως εξής: Ελκτικό Δυναμικό: Συνάρτηση απόστασης από το τελικό σημείο = όπου. η ευκλείδεια νόρμα, και κ > μια παράμετρος. Η συνάρτηση αυτή παίρνει τιμές μεαλύτερες του μηδενός, ενώ ίνεται ίση με μηδέν στο σημείο ταυτιστεί με το επιθυμητό configuration. q q - κ q =, δηλαδή όταν το configuration του ρομπότ Απωστικό Δυναμικό: Συνάρτηση εμποδίων Η συνάρτηση των εμποδίων περιράφει την απόσταση του ρομπότ από τα εμπόδια του χώρου, τα οποία είναι νωστής εωμετρίας (δηλαδή τα κέντρα q και οι ακτίνες ρ, =,, M των σφαιρών είναι νωστά). Η συνάρτηση αυτή ορίζεται έτσι ώστε να παίρνει τιμές μικρότερες του μηδενός, όταν το ρομπότ ρεθεί στο εσωτερικό του εμποδίου, ενώ ίνεται μηδέν όταν το ρομπότ ρεθεί στο σύνορο του εμποδίου. Έτσι, ια τη σφαίρα, η οποία ορίζει το workspace του ρομπότ, ορίζεται η συνάρτηση: D ( ) q = q- q + ρ η οποία είναι μικρότερη του μηδενός στο εξωτερικό της σφαίρας (αφού το ρομπότ δεν επιτρέπεται να κινηθεί έξω από το χώρο ερασίας του) και ίνεται ίση με το μηδέν στο όριο του workspace ενώ ια τις σφαίρες D, =,, M (τα εμπόδια του χώρου) ορίζονται οι σχέσεις = q- q ρ οι οποίες είναι ίσες με το μηδέν στα όρια των εμποδίων και μικρότερες του μηδενός στο εσωτερικό των σφαιρών, δηλαδή στο εσωτερικό των εμποδίων. D Τελικά, η απόσταση του ρομπότ από όλα τα εμπόδια του χώρου δίνεται από τη συνάρτηση των εμποδίων, που ορίζεται ως το ινόμενο των συναρτήσεων και, =,, M M = i i= D

3 Αναλυτική μορφή της συνάρτησης πλοήησης : free Για την κατασκευή της συνάρτησης πλοήησης ϕ W [ ], θεωρούμε αρχικά τη συνάρτηση ˆ ϕ = που περιλαμάνει το «ελκτικό δυναμικό» και το «απωστικό δυναμικό» των εμποδίων. Η συνάρτηση ˆϕ είναι ίση με μηδέν στο q, το οποίο αποτελεί το μοναδικό ελάχιστο της συνάρτησης τείνει στο άπειρο όταν η τιμή της συνάρτησης των εμποδίων τείνει στο μηδέν, δηλαδή στα όρια των εμποδίων Ωστόσο, το πεδίο τιμών της συνάρτησης δυναμικού πρέπει να είναι το [, ]. Έτσι, θεωρούμε τη συνάρτηση σ ( x) [ ],. H σύνθεση της συνάρτησης ( ) ως πεδίο τιμών το [, ]. Αναλυτικά: x + x, η οποία έχει πεδίο ορισμού το [, ) και πεδίο τιμών το x σ ˆ ϕ = σ ˆ ϕ έχει σ με τη συνάρτηση ˆϕ, δηλαδή η συνάρτηση ( ) ' ˆ ( ˆ ϕ = σ ϕ = σ ϕ) = = + + Η συνάρτηση ϕ ' παίρνει τη μικρότερη τιμή της (ίση με το μηδέν) ια =, δηλαδή στο τελικό configuration q (μοναδικό ελάχιστο της συνάρτησης) ίνεται ίση με όταν =, δηλαδή στα όρια των εμποδίων (στα όρια του πεδίου ορισμού της) είναι αναλυτική στο πεδίο ορισμού της Η συνάρτηση ϕ ' πληρoί τις τρεις από τις τέσσερις ιδιότητες ια να είναι συνάρτηση πλοήησης. Επιπλέον, πρέπει να είναι συνάρτηση Morse. Αποδεικνύεται ότι η συνάρτηση ϕ που προκύπτει από τη σύνθεση της ϕ ' με τη συνάρτηση σ d ( x) x κ, δηλαδή η ϕ = σd ϕ', είναι μία συνάρτηση Morse. Η αναλυτική μορφή της φ είναι ϕ = σd ϕ' = σd( ϕ' ) = + και πληροί όλες τις ιδιότητες -4 που δόθηκαν προηουμένως. Αποδεικνύεται ότι υπάρχει ακέραιος N ώστε, η συνάρτηση ϕ = σ ˆ d σ ϕ = + αποτελεί (ια κάθε κ > N ) μια συνάρτηση πλοήησης. Έτσι, όταν η είσοδος στο σύστημα είναι u = ϕ το ρομπότ συκλίνει στο τελικό configuration, δηλαδή q t q, ξεκινώντας σχεδόν από οποιαδήποτε αρχική συνθήκη, με ταυτόχρονη αποφυή των εμποδίων. Στο σημείο αυτό πρέπει να αναφέρουμε ότι μιλάμε ια σύκλιση στο τελικό configuration από «σχεδόν όλες» τις αρχικές συνθήκες. Αυτό συμαίνει ιατί κάθε εμπόδιο του χώρου εισάει τουλάχιστον ένα ϕ q, που είναι όμως σημείο ασταθούς ισορροπίας. Επομένως, σημείο σάματος (saddle point) στη NF ( ) κ κ

4 υπάρχει ένα σύνολο μηδενικού μέτρου, με πεπερασμένο αριθμό αρχικών συνθηκών, από τις οποίες αν ξεκινήσει το ρομπότ, θα οδηηθεί και θα εκλωιστεί σε κάποιο σημείο σάματος της NF. Η μεθοδολοία των συναρτήσεων πλοήησης επεκτείνεται και εφαρμόζεται σε χώρους που περιέχουν εμπόδια (ή σύνολα επικαλυπτόμενων εμποδίων) με εωμετρία αστεροειδούς. Ένα αστεροειδές χαρακτηρίζεται από ένα «κεντρικό» σημείο Α, από το οποίο όλες οι ακτίνες του σχήματος το τέμνουν μία μόνο φορά. Με χρήση κατάλληλων συμμόρφων μετασχηματισμών, ένας τέτοιος μη σφαιρικός χώρος μετασχηματίζεται σε σφαιρικό και, αντίστοιχα, η συνάρτηση πλοήησης ϕ ενός σφαιρικού κόσμου μετασχηματίζεται κατάλληλα σε συνάρτηση πλοήησης ϕ r του πραματικού κόσμου. Έτσι, οι συναρτήσεις πλοήησης εφαρμόζονται επιτυχώς στον προραμματισμό της πορείας ενός ρομπότ σε έναν πραματικό κόσμο που περιλαμάνει εμπόδια αρκετά πολύπλοκης εωμετρίας. Το πλεονέκτημα των συναρτήσεων πλοήησης έναντι των κλασικών συναρτήσεων δυναμικού καταδεικνύεται στο παράδειμα που ακολουθεί. Θεωρούμε ότι το ρομπότ ρίσκεται σε έναν επίπεδο χώρο, ο οποίος περιλαμάνει ένα εμπόδιο σε σχήμα «Π». Το αρχικό και το τελικό configuration του ρομπότ είναι το q και το q, αντίστοιχα. Το ρομπότ κινείται από το αρχικό στο τελικό configuration, I αρχικά με την εφαρμοή μιας κλασικής συνάρτησης δυναμικού, και στη συνέχεια με την εφαρμοή μιας συνάρτησης πλοήησης. Η πορεία που προκύπτει φαίνεται στα ακόλουθα σχήματα. 3 Α q I = Σχήμα : Ισοδυναμικές ραμμές του ΤΠΔ (αριστερά) & η τιμή της συνάρτησης U σε κάθε σημείο του χώρου (δεξιά) Στο σχ. απεικονίζονται οι ισοδυναμικές ραμμές του πεδίου που ορίζεται από μια κλασική συνάρτηση δυναμικού U (αριστερά) και η τιμή της συνάρτησης δυναμικού σε κάθε σημείο του ελεύθερου χώρου (δεξιά). Η συνάρτηση ίνεται ίση με μηδέν στο τελικό configuration, ενώ στα σημεία ύρω από το εμπόδιο παίρνει μεάλες τιμές, εξαιτίας του απωστικού δυναμικού. Επιπλέον σημειώνεται ένα σημείο Α, στο οποίο η μερική παράωος της συνάρτησης δυναμικού είναι ίση με το μηδέν: =. Το σημείο Α αποτελεί ένα κρίσιμο σημείο της συνάρτησης. Το ρομπότ κινείται από το αρχικό configuration δηλαδή προς το τελικό configuration ρυθμό μείωσης του συνολικού δυναμικού. qi με είσοδο u = - K U, K > οδηείται, κινούμενο προς την κατεύθυνση που εμφανίζει το μέιστο Η πορεία που ακολουθεί το ρομπότ σημειώνεται με την έντονη ραμμή στα σχήματα. Ωστόσο, το ρομπότ οδηείται στο κρίσιμο σημείο Α (τοπικό ελάχιστο της συνάρτησης δυναμικού), στο οποίο ισχύει / q=, που συνεπάεται ότι η είσοδος ίνεται ίση με μηδέν, δηλαδή u =. Κατά συνέπεια, το ρομπότ εκλωίζεται στο σημείο Α και δεν οδηείται ποτέ στο τελικό configuration.

5 Έτσι, η μέθοδος των Τεχνητών Δυναμικών Πεδίων δε δίνει πάντοτε λύση στο πρόλημα του προραμματισμού της πορείας ενός ρομπότ. Στη συνέχεια, το ίδιο πρόλημα αντιμετωπίζεται με χρήση συναρτήσεων πλοήησης. Στο σχ. 3 απεικονίζονται οι ισοδυναμικές ραμμές του πεδίου που προκύπτει από τη συνάρτηση πλοήησης. Στο σημείο αυτό πρέπει να σημειώσουμε ότι προφανώς το εμπόδιο δεν είναι σφαιρικό, αλλά ένα σύνολο ελλειπτικών, επικαλυπτόμενων μεταξύ τους, σχημάτων. Ωστόσο, όπως αναφέρθηκε παραπάνω, μπορούμε να ορίσουμε μια συνάρτηση πλοήησης και σε χώρους που περιέχουν εμπόδια τέτοιας εωμετρίας. 4 3 q Ι Σχήμα 3: Ισοδυναμικές ραμμές του πεδίου που ορίζεται από τη συνάρτηση πλοήησης Όπως φαίνεται στο σχ. 4, η συνάρτηση πλοήησης έχει ένα μοναδικό ελάχιστο, το οποίο συμπίπτει με το τελικό configuration, και στο οποίο η τιμή της είναι ίση με μηδέν. Επιπλέον, η τιμή της συνάρτησης ίνεται μέιστη, ίση με, στα όρια των εμποδίων, δηλαδή στο όριο του εσωτερικού εμποδίου και στο όριο του χώρου ερασίας του ρομπότ. Η πορεία που ακολουθεί το ρομπότ με είσοδο ελέχου u = ϕ( ) σχ. 4. Το ρομπότ συκλίνει στο τελικό configuration q φαίνεται με την έντονη ραμμή στο αποφεύοντας τα εμπόδια του χώρου. Έτσι, η χρήση των συναρτήσεων πλοήησης επιλύει το πρόλημα του εκλωισμού του ρομπότ στα τοπικά ελάχιστα των κλασικών συναρτήσεων δυναμικού. Σχήμα 4: H τιμή της συνάρτησης πλοήησης σε κάθε σημείο του ελεύθερου χώρου και η αντίστοιχη τροχιά προς το ολικό ελάχιστο από μία τυχαία αρχική θέση.

Σχεδίαση Σ.Α.Ε: Σύγχρονες Μέθοδοι Σχεδίασης Σ.Α.Ε

Σχεδίαση Σ.Α.Ε: Σύγχρονες Μέθοδοι Σχεδίασης Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεχος ΚΕΣ Αυτόµατος Έλεχος Σχεδίαση Σ.Α.Ε: Σύχρονες Μέθοδοι Σχεδίασης Σ.Α.Ε 6 Niol Tpouli ΚΕΣ : Αυτόµατος Έλεχος Βιβλιοραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο : Ενότητες.-.3 Παρασκευόπουλος

Διαβάστε περισσότερα

ΣΧΟΛΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΙΣΩΣΕΙΣ MAXWELL (N. FARADAY, N. AMPERE MAXWELL)

ΣΧΟΛΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΙΣΩΣΕΙΣ MAXWELL (N. FARADAY, N. AMPERE MAXWELL) ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ ΘΕΩΡΗΤΙΚΟΣ και ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΣΧΟΛΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΙΣΩΣΕΙΣ MAXWELL (N. FARADAY, N. AMPERE MAXWELL) ρ. Α. Μαουλάς Νοέµβριος 2016 1 α) Νόµος Faaay O Michae

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα Μιγαδική Ανάλυση Ι. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο

Σημειώσεις για το μάθημα Μιγαδική Ανάλυση Ι. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Σημειώσεις ια το μάθημα Μιαδική Ανάλυση Ι Θέμης Μήτσης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Στις σημειώσεις αυτές, αν η απόδειξη κάποιου θεωρήματος δεν δίνεται, τότε είτε είναι σχεδόν αυτολεξεί

Διαβάστε περισσότερα

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι: Όριο συνάρτησης στο Στα παρακάτω θα προσεγγίσουμε την διαισθητικά με τη βοήθεια γραφικών παραστάσεων και πινάκων τιμών. 4 4 Έστω η συνάρτηση f με τύπο f ) = και πεδίο ορισμού το σύνολο ) ) η οποία μπορεί

Διαβάστε περισσότερα

Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα

Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα Οικονομικές εφαρμοές υπολοιστικών πακέτων Στοχαστικά υποδείματα Στοχαστική διαδικασία Στοχαστικά υποδείματα: κάθε χρονολοική σειρά δημιουρείται μέσα από ένα μηχανισμό παραωής δεδομένων που αποτελεί μια

Διαβάστε περισσότερα

ΚEΦΑΛΑΙΟ 1 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 1.1. ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ.

ΚEΦΑΛΑΙΟ 1 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 1.1. ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ. ΚEΦΑΛΑΙΟ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Ορισµός Μια πραµατική συνάρτηση f πολλών µεταβλητών (ή αλλιώς βαθµωτό ή αριθµητικό πεδίο) αποτελείται από το πεδίο ορισµού

Διαβάστε περισσότερα

w = f(z) = z + i C(0,4) 2πi z 2 (z 2) 3 dz = 1 8. f(z) = (z 2 + 1)(z + i). e z 1 e z 1 = 3 cos 2θ

w = f(z) = z + i C(0,4) 2πi z 2 (z 2) 3 dz = 1 8. f(z) = (z 2 + 1)(z + i). e z 1 e z 1 = 3 cos 2θ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιαδική Ανάλυση ΟΜΑΔΑ: Β Θ. (αʹ) Εστω ο μετασχηματισμός w f() + i i, C, i. 6 Μαρτίου, 25 Δείξτε ότι η w f() απεικονίζει

Διαβάστε περισσότερα

Στροφορµή στερεού στην επίπεδη κίνηση. u r G. r f ι. r i. ω r. r P G. r G/P r. r r r r α α β = α β ( )

Στροφορµή στερεού στην επίπεδη κίνηση. u r G. r f ι. r i. ω r. r P G. r G/P r. r r r r α α β = α β ( ) Στροφορµή στερεού στην επίπεδη κίνηση u α u i/ u i/ / i/ i/ u i m i F ι α ι f ι α m i ι u u / ω i α I α Mα O Χρήσιµες σχέσεις α β β α α β ( ) ( ) ( ) m 0 i i/ i( i ) m 0 α α β α β ( ) α β α α β ( ) Το

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Εξίσωση Laplace Θεωρήματα Μοναδικότητας

Εξίσωση Laplace Θεωρήματα Μοναδικότητας Εξίσωση Laplace Θεωρήματα Μοναδικότητας Δομή Διάλεξης Εξίσωση Laplace πλεονεκτήματα μεθόδου επίλυσης της για εύρεση ηλεκτρικού δυναμικού Ιδιότητες λύσεων εξίσωσης Laplace σε 1, 2 και 3 διαστάσεις Θεώρημα

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 1 ΚΕΦΑΛΑΙΟ 1 : ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 11 ΕΙΣΑΓΩΓΗ Σε ότι ακολουθεί συμβολίζουμε με το σύνολο των φυσικών αριθμών και με και R τα σύνολα των ακεραίων των ρητών και των πραγματικών αριθμών

Διαβάστε περισσότερα

H ΧΡΗΣΙΜΟΤΗΤΑ ΕΝΟΣ ΥΝΑΜΙΚΟΥ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΤΟΧΑΣΤΙΚΩΝ

H ΧΡΗΣΙΜΟΤΗΤΑ ΕΝΟΣ ΥΝΑΜΙΚΟΥ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΤΟΧΑΣΤΙΚΩΝ H ΧΡΗΣΙΜΟΤΗΤΑ ΕΝΟΣ ΥΝΑΜΙΚΟΥ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΤΟΧΑΣΤΙΚΩΝ ΕΞΙΣΩΣΕΩΝ. ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΒΑΣΗ ΤΑ ΥΝΑΜΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΠΡΟΒΛΕΨΕΙΣ. Μία από τις χρησιµότερες εφαρµοές της χρήσης ενός οικονοµετρικού

Διαβάστε περισσότερα

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z 7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Ένα σημείο λέγεται ανώμαλο σημείο της συνάρτησης f( ) αν η f( ) δεν είναι αναλυτική στο και σε κάθε γειτονιά του υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mail:

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (/7/ 203) ΘΕΜΑ. (α) Δίνεται η συνάρτηση f : R 2 R με f(x, y) = xy x + y, αν (x, y) (0, 0) και f(0, 0) = 0. Δείξτε ότι η f είναι συνεχής στο (0, 0). (β) Εξετάστε αν

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Όπως είδαμε στο Κεφάλαιο 1 κάθε συνεχής απεικόνιση

KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Όπως είδαμε στο Κεφάλαιο 1 κάθε συνεχής απεικόνιση KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Όπως είδαμε στο Κεφάλαιο κάθε συνεχής απεικόνιση i r :, : r t f t,, f t, f :, καλείται καμπύλη του χώρου r = r τότε η καμπύλη σε παραμετρική μορφή Αν καλείται κλειστή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων 1. Να βρεθεί το δυναµικό που οφείλεται σε δύο ακίνητα ελκτικά κέντρα µε µάζες 1 και. Γράψτε την εξίσωση της κίνησης ενός υλικού σηµείου µάζας στο παραπάνω δυναµικό.

Διαβάστε περισσότερα

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4 Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε

Διαβάστε περισσότερα

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Κανονικ εξέταση στο µάθηµα ΕΙ ΙΚΗ

Διαβάστε περισσότερα

ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499

ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499 ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499 ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ρ Ανδρέας Σταύρου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα Θέµατα Γραµµές

Διαβάστε περισσότερα

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a) Κεφάλαιο 11 Συνεχείς κατανομές και ο Ν.Μ.Α. Στο προηγούμενο κεφάλαιο ορίσαμε την έννοια της συνεχούς τυχαίας μεταβλητής, και είδαμε τις βασικές της ιδιότητες. Εδώ θα περιγράψουμε κάποιους ιδιαίτερους τύπους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα

Διαβάστε περισσότερα

Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1

Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1 Ηλεκτρική Δυναμική Ενέργεια Ένα ζεύγος παράλληλων φορτισμένων μεταλλικών πλακών παράγει ομογενές ηλεκτρικό πεδίο Ε. Το έργο που παράγεται πάνω σε θετικό δοκιμαστικό φορτίο είναι: W W Fl q y q l q y Ορίζοντας

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΥΧΡΟΝΕΣ ΕΦΑΡΜΟΕΣ -άμμα και -Βήτα συναρτήσεις ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΑΣΙΑ Σούρλα Δ. Βασιλική Επιλέπουσα : Κοκολοιαννάκη. Χρυσή Αν. Καθηήτρια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16 ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16 Θέμα Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

Ο µετασχηµατισµός της ορµής και της ενέργειας. x y z x y z

Ο µετασχηµατισµός της ορµής και της ενέργειας. x y z x y z Ο µετασχηµατισµός της ορµής και της ενέρειας Ορµή p Ολική ενέρεια ( p, p, p, ) ( p, p, p, ) S S V p p Ο µετασχηµατισµός της ορµής και της ενέρειας Για σωµατίδιο: ορµή p= m υ ολική ενέρεια = m σ = 1 1 υ

Διαβάστε περισσότερα

Κεφάλαιο 5 Η στροφορμή στις ρευστοδυναμικές μηχανές

Κεφάλαιο 5 Η στροφορμή στις ρευστοδυναμικές μηχανές Κεφάλαιο 5 Η στροφορμή στις ρευστοδυναμικές μηχανές Σύνοψη Απόδοση του νόμου της στροφορμής σε ροϊκά συστήματα Αξονοσυμμετρικοί όκοι ελέχου Αντλίες, Στρόβιλοι Θεωρία πτερυώσεων (τρίωνα ταχυτήτων Θεωρητική

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

4. Μιγαδική Ολοκλήρωση. Το Θεώρηµα Cauchy και εφαρµογές. ( ) ( ) ( )

4. Μιγαδική Ολοκλήρωση. Το Θεώρηµα Cauchy και εφαρµογές. ( ) ( ) ( ) 4 Μιαδική Ολοκλήρωση Το Θεώρηµα Cauchy και εφαρµοές Καµπύλες στο Μιαδικό επίπεδο Oρισµός 4 Αν, :[, ] xy a είναι συνεχείς πραµατικές συναρτήσεις τότε κάθε απεικόνιση :[ a, ] : t = x t + iy t, καλείται (προσανατολισµένη)

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

Μελέτη στροφικής κίνησης µε στιγµιαίο άξονα

Μελέτη στροφικής κίνησης µε στιγµιαίο άξονα Παναιώτης Μόρφης Μελέτη στροφικής κίνησης µε στιµιαίο άξονα Ο θεµελιώδης νόµος της στροφικής κίνησης: Στ ( ) Σ ( Σ ) α ή Στ ( ) Σ ( Σ ) α ισχύει ια κάθε άξονα περιστροφής, ο οποίος περνά από το τυχαίο

Διαβάστε περισσότερα

Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x).

Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x). Κεφάλαιο 2, άσκηση 1: Δίνονται οι συναρτήσεις: α) 2, β), Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x). Λύση : Για να είναι

Διαβάστε περισσότερα

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1)

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1) ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1. Γενικά Επειδή οι επιφάνειες δευτέρου βαθµού συναντώνται συχνά στη µελέτη των συναρτήσεων πολλών µεταβλητών θεωρούµε σκόπιµο να τις περιγράψουµε στην αρχή του βιβλίου

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος

Διαβάστε περισσότερα

1.2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ

1.2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 17 12 ΠΡΟΣΘΕΣΗ ΚΙ ΦΙΡΕΣΗ ΔΙΝΥΣΜΤΩΝ Πρόσθεση Διανυσμάτων Έστω δύο διανύσματα και Με αρχή ένα σημείο Ο παίρνουμε διάνυσμα OA = α και στη συνέχεια με αρχή το παίρνουμε διάνυσμα AM = Το διάνυσμα OM λέεται

Διαβάστε περισσότερα

Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας»

Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» Εραστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος 07-8) «Εισαωή στο Γήινο Πεδίο Βαρύτητας» ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ηµεροµηνία Παράδοσης : 8//09 ΑΣΚΗΣΗ 5 Σκοπός: Η παρούσα πρακτική εξάσκηση

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS 1 1. ΗΛΕΚΤΡΙΚΗ ΡΟΗ O νόμος του Gauss και o νόμος του Coulomb είναι δύο εναλλακτικές διατυπώσεις της ίδιας βασικής σχέσης μεταξύ μιας κατανομής φορτίου και του

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων

Διαβάστε περισσότερα

ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1 Γενικά Επειδή οι επιφάνειε δευτέρου βαθμού συναντώνται συχνά στη μελέτη των συναρτήσεων πολλών μεταβλητών θεωρούμε σκόπιμο να τι περιγράψουμε στην αρχή του βιβλίου

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-04 ΜΑΘΗΜΑ /ΤΑΞΗ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΣΕΙΡΑ: ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει.

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει. ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: Ν : = + + + Ν : = + + + Ν : = ma 3 για κάθε = ( ) Να αποδείξετε ότι για κάθε = ( ) ισχύει: Ν ( ) Ν ( ) Ν ( ) Ν (

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί με τρόπους το ολοκλήρωμα I d d 0 Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω στο ορθογώνιο χωρίο R 0,,

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018 Καλή σας επιτυχία. Σύνολο πόντων 130. Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Πρόβλημα Α 1. Να γραφεί το διάνυσμα της έντασης του βαρυτικού πεδίου

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα

E(G) 2(k 1) = 2k 3.

E(G) 2(k 1) = 2k 3. Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

ΦΡΟΝΟ «ΚΑΣΑΡΡΕΤΗ» ΣΟΤ «ΚΛΑΙΚΟΤ» ΑΣΟΜΟΤ

ΦΡΟΝΟ «ΚΑΣΑΡΡΕΤΗ» ΣΟΤ «ΚΛΑΙΚΟΤ» ΑΣΟΜΟΤ ΦΡΟΝΟ «ΚΑΣΑΡΡΕΤΗ» ΣΟΤ «ΚΛΑΙΚΟΤ» ΑΣΟΜΟΤ ΥΙΟΡΕΝΣΙΝΟ ΓΙΑΝΝΗ Αθήνα, Νοέμβρης 2011 James Clerk Maxwell (1831-1879) 2 Από την ηλεκτρομαγνητική θεωρία του Maxwell γνωρίζουμε ότι : α) Ένα ακίνητο ηλεκτρικό φορτίο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...5 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ... ΚΕΦΑΛΑΙΟ ΕΥΘΕΙΕΣ... ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...4 ΚΕΦΑΛΑΙΟ 5 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΙ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ 1 1. ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ Οι αρχαίοι Έλληνες ανακάλυψαν από το 600 π.χ. ότι, το κεχριμπάρι μπορεί να έλκει άλλα αντικείμενα όταν το τρίψουμε με μαλλί.

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα:

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα: Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα: Κοντογιάννη Αριστούλα Σύνολα Σύνολο: Μία συλλογή διακριτών αντικειμένων

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

Κεφάλαιο 3 Ηλεκτρικά Μοντέλα Γραµµών Μεταφοράς

Κεφάλαιο 3 Ηλεκτρικά Μοντέλα Γραµµών Μεταφοράς Κεφάλαιο 3 Ηλεκτρικά Μοντέλα Γραµµών Μεταφοράς Σύνοψη Το κεφάλαιο αυτό καλύπτει τις εξισώσεις και τα ισοδύναµα κυκλώµατα των ραµµών µεταφοράς. Η ανάπτυξη των µοντέλων των ραµµών µεταφοράς και η σύνδεση

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3.3 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Οι μαγνητικοί πόλοι υπάρχουν πάντοτε σε ζευγάρια. ΔΕΝ ΥΠΑΡΧΟΥΝ ΜΑΓΝΗΤΙΚΑ ΜΟΝΟΠΟΛΑ. Οι ομώνυμοι πόλοι απωθούνται, ενώ οι

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 3 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α) Σ 5. Σ. Σ β) Σ 6.

Διαβάστε περισσότερα

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Αποκλειστικά μόνο για Καθηγητές.

Αποκλειστικά μόνο για Καθηγητές. Παίζοντας με το ο νόμο για την περιστροφική κίνηση Αποκλειστικά μόνο για Καθηγητές Κάθε χρόνο επανέρχεται στο προσκήνιο το θέμα εφαρμογής του ου νόμου για την στροφική κίνηση και η αποφυγή χρήσης του,

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012 ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F! Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται

Διαβάστε περισσότερα

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2 Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση 44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια

Διαβάστε περισσότερα

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Δεσμευτικοί περιορισμοί Πρόβλημα Βιομηχανική επιχείρηση γαλακτοκομικών προϊόντων Συνολικό μοντέλο Maximize z = 150x 1 + 200x 2 (αντικειμενική

Διαβάστε περισσότερα

ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. n S f x, y,z ΔV (1) n i i i i i 1

ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. n S f x, y,z ΔV (1) n i i i i i 1 ΚΕΦΑΛΑΙΟ 5 ο ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Τα τριπλά ολοκληρώματα ορίζονται με τρόπο ανάλογο με τα διπλά ολοκληρώματα. Ισχύουν ανάλογα θεωρήματα ολοκληρωσιμότητας και ανάλογες ιδιότητες. Θεωρούμε μια συνάρτηση f,,

Διαβάστε περισσότερα

Θέση-Μετατόπιση -ταχύτητα

Θέση-Μετατόπιση -ταχύτητα Φυσική έννοια Φυσική έννοια Φαινόμενα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Θέση-Μετατόπιση -ταχύτητα Ένα τρένο που ταξιδεύει αλλάζει διαρκώς θέση, το ίδιο ένα αυτοκίνητο και ένα πλοίο ή αεροπλάνο

Διαβάστε περισσότερα

Η επιτάχυνση και ο ρόλος της.

Η επιτάχυνση και ο ρόλος της. Η επιτάχυνση και ο ρόλος της. Το μέγεθος «επιτάχυνση» το συναντήσαμε κατά τη διδασκαλία στην Α Λυκείου, όπου και ορίσθηκε με βάση την εξίσωση: t Όπου η παραπάνω μαθηματική εξίσωση μας λέει ότι η επιτάχυνση:

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Προσεγγίστε τo ολοκλήρωμα ( + ) I d d με αθροίσματα iemann χωρίζοντας το πεδίο ολοκλήρωσης σε ίσα ορθογώνια.

Διαβάστε περισσότερα