( pol funkcije), horizontalna ili kosa.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "( pol funkcije), horizontalna ili kosa."

Transcript

1 4. ANALIZA TOKA FUNKCIJE, EKSTREMI 4. Opci pojmovi Nultocke funkcije - su tocke u kojima je funkcija jednak nula. Za razlomljenu racionalnu funkciju, je kada je brojnik nula. Polovi funkcije - su tocke u kojima je nazivnik razlomljene funkcije jednak nula. U tim tockama funkcija ima vertikalne pravce, okomite na os i dodiruju krivuju funkcije u beskonacnosti. Asimptota - je prvac koji se u beskonacnosti priblizava krivulji a moze biti vertikalna ( pol funkcije), horizontalna ili kosa. Horizontalna asimptota je pravac koji ima jednadzbu a: za f a lim. Vertikalna asimptota je pravac koji ima jednadzbu b: za funkciju f odnosno u inverznom obliku za g b b lim lim g Kosa asimptota je pravac koji ima jednadzbu k+ l : za f : k lim l lim f k Tocka infleksije - je tocka u kojoj funkcija mijenja zakrivljenost iz konkavnosti u konveksnost (ili obratno) ( ) Ako je f Nije definirano sto se f ( ) Kriticni broj - je broj, koji pripada domeni funkcije i za koji je f ili je nedefinirana. Uz predpostavku da f postoji, i da postoji i f tada: Ako je Funkcija ima relativni maimum u tocki. Ako je Funkcija ima relativni minimum u tocki. Funkcija ima apsolutni maimum u tocki zbiva sa funkcijom u tocki. f < f > f f. ako za sve vrijednosti od u intervalu I vrijedi: Funkcija ima apsolutni minimum u tocki ako za sve vrijednosti od u intervalu I vrijedi: f f. Ako funkcija ima, potrebno je definirati sto se desava u tocki : izracunamo :ako je funkcija ima tocku infleksije u izracunamo IV ako je racunamo derivaciju i uvrstimo. ( IV ) ( IV ) : ako je funkcija ima u toj tocki ekstrem. ( IV ) ( IV ) za <, maksimum, za >, minimum. ( IV ) ( V ) ako je moramo nastaviti derivirati i naci. Analiza toka kunkcije

2 ( III ) ( V ) ( VII ) U tocki za koju su derivcije neparnog reda,, razlicite od nule, funkcoija ima tocku infleksije. Tok funkcije i njene derivacije: Ako funkcija ima pozitivnu prvu derivaciju u, funkcija prolazi tom tockom rastuci. Ako funkcija ima negativnu prvu derivaciju u, funkcija prolazi tom padajuci. Ako funkcija ima prvu derivaciju u, u toj tocki je tangenta paralelna sa osi. U toj tocki funkcija ima ili ekstrem ili tocku infleksije. Ako je funkcija u nekom intervalu konveksna (oblik gljive), njena druga derivacija u negativna. Ako je funkcija u nekom intervalu konkavna (oblik slova U), njena druga derivacija u pozitivna. Funkcija ima u tocku infleksije, ako je u toj tocki druga derivacija nula. je je 4. Asimptote i polovi funkcije. Odredi asimptote zadane funkcije:. Jednadzba horizontalne asimptote, paralelne sa osi : a a lim a asimptota je os Jednadzba vertikalne asimptote, paralelne sa osi : b b lim izrazimo funkciju po : lim lim b asimptota je os. Odredi asimptote zadane razlomljene racionalne funkcije:. ( )( + ) ( ) Funkcija ima polove-vertikalne asimptote, u tockama za koje je nazivnik nula: + Funkcija ima nultocke za f, kada je brojnik nula: Analiza toka kunkcije

3 . Funkcija ima horizntalne asimptote, u tockama za koje vrijedi: a lim lim lim horizontalna asimptota je os Odredi asimptote razlomljene racionalne funkcije: +. Funkcija ima polove-vertikalne asimptote, u tockama za koje je nazivnik nula: ( ).Funkcija ima nultocke za f, kada je brojnik nula: Funkcija ima horizontalne asimptote, u tockama za koje vrijedi: a lim lim lim lim Horizontalna asimptota je pravac paralelan sa osi na. 4. Izracunaj jednadzbe kosih asimptota za funkciju: + + Koristeci gornja tumacenja imamo: F + + f + + : Analiza toka kunkcije

4 odnosno: f + Jednadzba kose asimptote je jednadzba pravca: k+ l Koeficijent smjera: k lim lim k Odsjecak na osi : l lim f k + l lim + + lim + Trazena asimptota ima jednadzbu: + 5. Izracunaj kose asimptote funkcije U funkciji se zamijeni sa k+ l i prva dva clana, sa najvisom potencijom se izjednace sa nulom: k+ l k+ l + k+ l k l k kl l k + k + kl + l + l ( k + k) k( k + ) k k kl+ l kl + l kl+ l l l+ l l Trazene jednadzbe jesu: k+ l k + l + k + l + Analiza toka kunkcije 4

5 4. Ekstremi i graficki prikaz toka funkcije U nastavku je dan postupak za graficko prikazivanje toka funkcije: Izracunaj i ako treba i. Koristi za ispitivanje kriticnih brojeva, kada je ili nedefiniran. Ispitaj moguce relativ ekstreme. Koristi za ispitivanje intervala u kojem funkcija raste ili pada. > < Koristi za ispitivanje da li je funkcija konkavna > ili konveksna <. Ispitaj za tocke infleksije, kada je. Izracunaj vertikalne asimptote. Za razlomljenu funkciju, to je, kada je nazivnik nula. Izracunaj horizontalne asimptote. Za lim f, je asimptota. Ispitaj limes za ±. + Ispitaj ponasanje funkcije u beskonacnosti: lim f i lim f +. Izracunaj nul tocke i polove funkcije, presjecista sa osi,. Ispitaj ponasanje funkcije ako se priblizava nekoj tocki sad s lijeva sad s desna, primjer je. Ispitaj ponasanje prve derivacije, njeno priblizavanje ka + ili, sa obje strane, primjer. Ispitaj i izracunaj kose asimptote k+ l tako da je lim f k+ l. Limes je za ±. ne 4 6. Ispitaj tok funkcije + 7 Izracunajmo derivacije: 4 + ; Izjednacimo i ispitajmo za moguce tocke infleksije: Za < smatramo pozitivnim krivulja je konkavna, gleda za gore, (oblik slova U) Za < < ( ) 6( ) 6( ) 4 4,negativna, krivulja je konveksna, gleda za dolje, (oblik gljive). Za > 6 6 4, pozitivna, krivulja je konkavna, gleda za gore, (oblik slova U). Analiza toka kunkcije 5

6 Tocke infleksije su za. Uvrstimo te vrijednosti u funkciju: 4 f + 7 f 7 4 Prva tocka infleksije: A(, ) f Druga tocka infleksije: B(, 6) +. Ispitaj funkciju 5 Izracunajmo derivacije: Izjednacimo : Funkcija ima ekstreme u ;. Izracunajmo : 4 < maksimum ( ) 4 > minimum Izracunajmo koordinate ekstrema: uvrstimo vrijednosti za u funkciju: f ma, 6.67 f min, 4 Za < < Funkcija raste do maksimuma. Krivulja prve derivacije je pozitivna, parabola. Za Funkcija ima maksimum.. < Za Funkcija pada do tocke infleksije, kada mijenja smjer iz konveksnog u konkavni oblik. Za Funkcija ima minimum,, >. Za < < + Funkcija raste >. Izracunajmo tocku infleksije i njene koordinate: ( ) Za U toj tocki je tocka infleksije: neparna derivacija je razlicita od nule. Uvrstimo u funkciju i dobiti cemo koordinatu, tocke infleksije: Analiza toka kunkcije 6

7 () () () Analiziraj funkciju Izracunajmo derivacije: ( ) 4 4 ( ) ( ) ( ) ( ) ( 4) ( 4) ( ) 4 ( ) ( ) ( ) ( )( + 4) ( 4) ( ) ( ) ( ) Izracunajmo ekstreme: kada je brojnik jednak nula: Ispitajmo : Za < relativni maksimum u ( ) 8 Za > relativni minimum u 4 4 ( 4 ) 4 Tocke ekstrema: f ( ) ; A(, ) f ( 4) 8; B 4,8 4 Funkcija nema tocke infleksije, jer je uvijek. Ispitajmo asimptote: Verikalna asimptota ili pol funkcije: Kosa asimptota: k+ l k+ l k k l l k + l k l k k + l k l k Jednadzba kose asimptote: + Analiza toka kunkcije 7

8 9. Analiziraj funkciju e sin Izracunajmo derivacije: sin e cos ( sin ) cos cos ( cos sin ) sin sin sin e e e sin Izracunajmo ekstreme: e cos e sin + sin e je uvijek pozitivna, nema nul tocke. cos π + kπ π, π tocke ekstrema funkcije Uvrstimo to u drugu derivaciju: π sin π π π e cos sin e e < za, maksimum π sin π π π e cos sin e + > za, minimum e π π sin sin Koordinate ekstrema: π e e.78.. π e e.7. e. Analiziraj funkciju ( )( 6) Analiza toka kunkcije 8 Polovi funkcije su za: ; 6 ; 6

9 Izracunajmo derivacije: ( ) ( 6) ( 4) 4 8 ( ) ( 6) ( ) ( 6) 4 8 ( ) ( 6) ( ) ( 6) Izracunajmo ekstreme: ( ) 6 ( ) ( 6) ( )( 6) ekstrem je u tocki A,, B, Ispitajmo vrijednost druge derivacije: ( ) > za imamominimum < za imamo maksimum ( ) ( 6) ( ) ( 6) Realno rjesenje kubne jednadzbe je za Pogledajmo za tocke infleksije: Funkcija ima tada vrijedost f To su ujedno koordinate tocke infleksije Pogledajmo za horizontalne asimptote: a lim lim lim lim ( )( 6) Jednadzba horizontalne asimptote: Prikaz funkcije je na donjoj slici u nastavku Analiza toka kunkcije 9

10 5. Izracunaj ekstreme funkcije Izracunajmo derivacije: 5 6,, 4 Ekstrem je za: 5 Vrsta ekstrema: 6 4,,,4 Funkcija ima ekstrem samo za. Ispitajmo sa trecom derivacijom: ( V) ( V) ( V) ( IV ) ( IV ) 8 8 nastavimo: 6 6 nastavimo: 6 6 imamo ekstrem: Derivacija koja je razlicita od nule, je neparna i funkcija ima tocku infleksije za. Funkcijska vrijednost je: f A, 5. Izracunaj koja je naj veca duzina grede, koja se moze prenijeti kroz uski hodnik, uz uvjet, da je kretanje grede paralelno sa podom (vidi sliku). Trazena duzina je minimum funkcije kojoj je izrazena duzina: secα AB BC a secα cscα AB bcscα b dd D BC + AB a secα + bcscα odredimo minimum funkcije dα dd ( a secα + bcscα) asecαtanα bcscαcotα dα Analiza toka kunkcije BC a

11 dd sinα cosα sinα cosα sinα cosα a b a b a b d α cosα cosα sinα sinα cos α sin α cos α sin α dd b b b asin α bcos α tan α tan α α tan dα a a a Minimum funkcije dobijemo iz druge derivacije : d D asin α ( bcos α ) asin αcosα + ccos αsinα dα asin αcosα + bcos αsinα b α α α α α a > jer su vrijednosto za i konacne i realne (dimenzije hodnika) i nas minimum asin cos bcos sin tan α b a je dokazan. Izracinajmo duzinu grede: D a secα + bcscα b a a + b + a + tan α a a a + b csc α... tanα b b b b a + b secα + tan α +.. a a >. a + b a + b a + b ab + ba D a secα + bcscα a + b D a + b a a + b a b a b Analiza toka kunkcije

12 . Izracunaj dimenzije drvene grede pravokutnog presjeka, koja se moze isjeci iz balvana promjera 6 cm tako, da njena cvrstoca bude najveca. Cvrstoca grede C jednaka je produktu sirine s i kvadrata visine v C ksv dijagonala grede jednaka je promjeru balvana: d 6 s + v d 6 56 s + v v 56 s ( 56 ) ( 56 ) ( 56 ) C ksv C ks s k s s f C s k s s dc Izracunajmo derivaciju: k 56s s k 56 s ds dc ds k 56 ( 56 s ) s 56 za k : s 9.4cm d 6 56 s + v v cm Trazena greda ima dimenzije 9.4cm.cm 4. Potrebno je napraviti reklamu povrsine 8 m. Rubovi na vrhu i dnu trebaju biti siroki.75 m a rubovi sa lijeva i desna,.5 m. Izracunaj dimenzije plakata tako, da povrsina korisnog dijela (unutar okvira) bude maksimalna. 8 Oznacimo jednu dimenziju sa mjerenu u m. Druga dimenzija je. 8 Korisna povrsina iznosi: P ( ) dp Derivacija ( ) ( ) d + ( ) dp dp d P d d d < funkcija ima maksimum za. 8 Korisna povrsina ima dimenzije: Analiza toka kunkcije

13 5. U kompaniji je utvrdjeno, da mogu prodati komada svojih proizvoda na mjesec ako bi cijena bila 5 kn po komadu. Isto tako, ako smanje cijenu za. kn, za tih komada, prodati ce komada vise. Izracunaj uz te uvjete, najveci dohodak i jedinicnu cijenu proizvoda koji stvara taj dohodak. Broj proizvoda preko oznacimo sa. Ukupno je prodano + komada. Cijena proizvoda za broj prodanih komada preko, tj., sa snizenom cijenom od. kn izrazimo kao: JC Dohodak D, dobijemo mnozenjem broja prodanih proizvoda i jedinicne cijene: D sada racunamo ekstrem: dd d izjednacili smo Za < > Za > < Za imamo maksimum funkcije. To znaci, da najveci dohodak ce se ostvariti ako se proda komada proizvoda preko, tj. komada. D kn ukupni dohodak ( ) JC 5. 5 kn jedinicna cijena proizvoda 6. Brod A, plovi brzinom cvorova (milja/sat) na istok i u 9: sati udaljen je od broda B, 65 milja. Brod B, plovi na jug, brzinom 5 cvorova. Izracunaj njihovu najkracu medjusobnu udaljenost vrijeme, (sati) kada ce se to desiti. Oznacimo pocetne polozaje brodova sa A i B, u 9: sati. ( ) Nakon t sati, brod B, proci ce 5 t milja a brod A, 65 t milja. ( t) +( t ) Razraljina izmedju brodova iznosi: R 5 65 dr Derivacija: Dt R() t R 5t 5 + ( )( 65 t) dt dr 5t 65 + t 5t 65 izjednacimo sa nulom: dt R ( 5t) + ( 65 t) Analiza toka kunkcije

14 dr 5t 65 t minimum funkcije dt ( 5t) + ( 65 t) D ( t ) D milja t trazeno vrijeme je sata nakon 9: sati, tj. u : sati. 7. Jakost svjetlosti je obrnuto proporcionalna kvadratu udaljenosti promatrane tocke od izvora svjetlosti. Promatrajmo dva izvora javne rasvjete udaljenih m, i sa ugradjenim izvorima svjetlosti od 8 odnosno jedinice jakosti svjetlosti. Izracunaj na kojoj udaljenosti je tocka, sa naj manjom osvjetljenoscu. Osvjetljenost svake tocke jednak je zbroju osvjetljenosti koja daju oba izvora. Oznacimo jakost svjetlosti sa I a sa, udaljenost od izvora sa armaturom od 8 svjetlosnih 8 jedinica. Postavimo jednadzbu: I + Trazimo minimum funkcije I. ( ) ( ) di d ( ) ( ) ( ) 6 + ( ) 4 di 6 + di izjednacimo sa nulom: d d odnosno: 6 8 ili: m Tocka sa naj manjom osvjetljeno 7. Izracunaj visinu stosca, koji ima maksimalni volumen a upisan je u kugli radijusa 8cm. Oznacimo radijus stosca sa r a visinu sa h. Iz slike izvodimo: r + h 8 8 r + h 6h r 6h h Analiza toka kunkcije 4

15 Volumen stosca : V ( 6h h ) h ( 6h h ) πh ( 6h h ) r π h derivirajmo: dv π π dv ( h h ) nadjimo ekstrem: dh dh π π ( h h ) h( h) h ; h dv π Ispitajmo vrstu ekstrema: ( 6h) dh dv π π 6 ( 96) < daje maksimum funkcije. dh Stozac visine h cm, ce imati naj veci volumen. π 8. Potrebno je izgraditi cjevovod od pumpne stanice do potrosaca na drugoj strani rijeke. Troskovi izgradnje cjevovoda polaganjem u zemlju iznose 5, kn/m a polaganje na dnu rijeke, 8 kn/m. Izracunaj na kojoj udaljenosti od pumpne stanice treba skrenuti trasu cjevovoda u rijeku, u smjeru potrosaca tako, da troskovi budu minimalni. Sirina rijeke je.5 km a vertikalna udaljenost stanice i potrosaca je km. Duzina trase u vodi: l +.5 l +.5 Troskovi iznose: Kopneni dio: T 5 ; Dio kroz rijeku: T 8l dt d ( ) 5 + k Ukupni troskovi: T Tk + Tr dt d 4 4 ( ) ( ) ( + 6.5) 4 r ( ) 8 ( + 6.5) Analiza toka kunkcije 5

16 dt d 5 ( ) sredimo i potom ( ) dt 4 Nadjimo ekstrem: 5 ( ) d odnosno : T 65.6 Na ~8 km od pumpne stanice, trasu treba skrenuti u rijeku u smjeru potrosaca Analiza toka kunkcije 6

17 9. Troskovi dnevne proizvodnje radio aparata jedne firme, dana je jednadzbom Cijena jednog radio aparata je 5 kn. Izracunaj: 4 a) Dnevnu proizodnju radio aparata, koja ce donijeti najveci dohodak. b) Dokazi da su troskovi proizvodnje jednog aparata, jednaki minimumu funkcije. a) Dnevni dohodak jednak je ukupnoj proizvodnji minus troskovi proizvodnje. D nadjimo ekstrem: 4 dd d 4 4 dd 5 kriticni broj je. d d D Ispitajmo vrstu ekstrema: 5 maksimum <. d To je ujedno i apsolutni maksimum, jer je jedini kriticni broj. Potrebno je proizvesti komada radio aparata za postici naj veci prihod. b) Cijena proizvodnje jednog radio aparata : C ra f f 5 C ra izracunajmo ekstrem: 4 dcra 5 dc 5 d 4 d 4 4 ra Cra d Cra d > za, minimum funkcije. d 4 d. Izracunaj dimenzije pravokutnika za maksimalnom povrsinom, koji se moze upisati u dio omedjenim sa parabolom 4 p i vertikalnim pravcem a. Vrh pravokutnika ima kordinate V,. Povrsina pravokutnika je: 4p 4p p 4p P ( a ) a a dp dp Trazimo ekstrem: a a odnosno: a d p p d p 4ap 4 Dimenzije pravokutnika su: ap Analiza toka kunkcije 7

18 4ap 4ap ap 4 4 ap a a a 4p p 4ap a a a a Potvrda, da imamo maksimum funkcije: p d P 6 a d maksimum p < p p Analiza toka kunkcije 8

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y . ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. TRIGONOMETRIJA 5. Definicija trigonometrijskih funkcija Naj jednostavnija definicija trigonometrijskih funkcija dobije se promatranjem pravokutnog ( ) ( r) ( ) trokuta. Svaki takav trokut, za promatrani

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela.

Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela. S. Varošanec, Nacrtna geometrija, 4. Mongeovo projiciranje 90 Primjer 4.56. Osnovka ABCD uspravne četverostrane prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora Matematika I Elvis Baraković, Edis Mekić 4. studenog 2011. 1 Analitička geometrija 1.1 Pojam vektora. Sabiranje i oduzimanje vektora Skalarnom veličinom ili skalarom nazivamo onu veličinu koja je potpuno

Διαβάστε περισσότερα

Pitanja za usmeni dio ispita iz matematike

Pitanja za usmeni dio ispita iz matematike PITANJA ZA MATURALNI ISPIT Pitanja za usmeni dio ispita iz matematike. Dokazati da je zbroj unutarnjih kutova u trokutu 80 0,a spoljnjih 60 0.. Dokazati da je spoljnji kut trokuta jednak zbroju dva nesusjedna

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

TEOREME O SREDNJOJ VRIJEDNOSTI

TEOREME O SREDNJOJ VRIJEDNOSTI TEOREME O SREDNJOJ VRIJEDNOSTI Rolova teorema: Ako je y f(x) fnkcija neprekidna na interval [a,b] i diferencijabilna na interval (a,b) i ako je f(a) f(b) 0, onda postoji bar jedna tačka c (a,b) takva da

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

5. Aproksimacija i interpolacija

5. Aproksimacija i interpolacija APROKSIMACIJA I INTERPOLACIJA 56 5. Aproksimacija i interpolacija 5.. Opći problem aproksimacije Što je problem aproksimacije? Ako su poznate neke informacije o funkciji f, definiranoj na nekom skupu X

Διαβάστε περισσότερα

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= *

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= * POPIS ZADATAKA:.Odredi modul IZI iz kompleksnog broja Z=+i i i.riješi zadatak:izi= * i i.izračunaj:(8+6i)(8-6i)=.odredi realne brojeve i y za koje vrijedi:(-i)+(+i)y=i.riješi kvadratnu jednadžbu :9²-=0

Διαβάστε περισσότερα

f[n] = f[n]z n = F (z). (9.2) n=0

f[n] = f[n]z n = F (z). (9.2) n=0 9. Z transformacija 9.. Z transformacija Z transformacija nia brojeva {f[n]} a koje vrijedi je Z [ f[n] ] = f[n] = 0, n < 0 9.) f[n] n = F ). 9.) Ovom transformacijom niu brojeva {f[n]} pridružuje se funkcija

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Vjeºbe iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.

Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto zapne odnosno za kontrolu rezultata koristite ove upute. 1 OE 11/12 Zadaci za pripremu III. ciklusa laboratorijskih vjezbi PTA ZA RJESAVANJE Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

Obi ne diferencijalne jednadºbe

Obi ne diferencijalne jednadºbe VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Lekcija 1 Obične diferencijalne jednadžbe 1. reda Obi ne diferencijalne jednadºbe Uvodni pojmovi Diferencijalne jednadºbe su jednadºbe oblika: f(,

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima.

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Sažetak vjerojatnost Skup ishoda U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Jednostavne događaje u nekom pokusu zvat

Διαβάστε περισσότερα

Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet

Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet X. GIMNAZIJA Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet Pripremila Vesna Skočir PREDGOVOR Zbirka sadrži zadatke koji su se zadnjih nekoliko godina pojavljivali na

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα