x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku."

Transcript

1 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, koji na realnoj osi imaju oznaceno mjesto odgovarajucom tockom. Za svaki broj, za koji vrijedi a b, a i b su granice intervala i u ovom slucaju je to [ ab] a< < b ( ab) zatvoren interval,. Ako vrijedi, tada je, otvoreni interval. Interval moze biti otvoren ili zatvoren, zatvoren samo sa lijeve ili samo sa desne strane. Slijed je brojiv, ako se svakom clanu slijeda moze pridruziti odgovarajuci realni broj u obliku Slijed neparnih brojeva jedan prema jedan: Pridruzimo realne brojeve Broj clanova slijeda moze biti konacan ili beskonacan. Slijed racionalnih brojeva je konacno brojiv a slijed na pr. iracionalnoh brojeva ili realnih brojeva je konacno nebrojiv. Broj clanova se oznacava sa ℵ kardinalni broj C. elphi nula i naziva se i Slijed brojeva za koje vrijedi da je a < δ gdje je δ >, naziva se δ okolis tocke a. Kada je < a < δ a, δ je brisani okolis broja a. Tocka gomilanja, granicna tocka slijeda, je broj A za koji vrijedi da svaki brisani δ okolis tocke A sadrzi clanove slijeda. Znaci, da za svaki po volji mali δ > moze se naci clan slijeda, broj, koji nije jednak A ali vrijedi A < δ. Za vrlo mali δ mora biti konacni broj clanova sa vrijednosti. Slijed koji sadrzi sve svoje granicne tocke, zovemo zatvorenim slijedom. Ako za sve brojeve, slijeda, postoji broj M gdje vrijedi M, slijed je ogranicen sa gornje strane a M je gornja granica. Slicno, za m, broj m je donja granica. Za sve za koje vrijedi m M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. Imamo slijed koji je nastao od dva slijeda: A i B, oba slijeda su brojiva. Dokazi da je novonastali slijed brojeva takodjer brojiv. a a a... b b b Za lijed A vrijedi: Za lijed B vrijedi: Za novonastali slijed mozemo sada imati dva slucaja: Funkcije 1

2 Clanovi A i B a b a b a a) Elementi u A i B su rasliciti: slijed je brojiv. Prirodni brojevi b) Neki clanovi su jednak a neki se razlikuju. Isti postupak mozemo primijeniti na clanove koji se razlikuju. Zakljucujemo, slijed je brojiv. Slijed sastavljen od svih clanova A ili B ili oba, naziva se unija od A i B i oznacava se sa A B ili A+ B. Slijed sastavljen od jednakih clanova u A ili B slijeda, naziva se presjek A i B i oznacava se sa A B ili A B. Slijed sastavljen od clanova u A ali ne od clanova u B, naziva se razlika A i B i oznacava se sa A B = AB.. Dokazi da je slijed racionalnih brojeva izmedju i ukljucivsi 1, brojiv. Predstavimo brojeve slijeda u obliku razlomaka i pridruzimo jedan prema jedan, prirodne brojeve: Racionalni brojevi: Prirodnibrojevi : Vidimo da je slijed brojiv izmedju i ukljucivsi jedan jer mozemo pridruziti prorodne brojeve [ ] [ ] aaa Dokazi da slijed realnih brojeva u zatvorenom intervalu,1 nije brojiv. Svaki realni broj u,1 moze se prikazati sa decimalnim znamenkama oblika.... gdje je sa a osnacena bilo koja znamenka,1,,3,...9. Na primjer broj.653 mozemo [ ] napisati kao i to je isto kao i Ako su realni brojevi u,1 brojevi, mozemo napisati znani odnos: [ ]. a a a. a a a. a a a Napravimo novi broj. bbb tako da vrijedi b a, b a, b a. Taj novi broj u ,1 je razlicit i ne mozemo pridruziti prirodne brojeve kao gore. Znaci da je slijed nebrojiv Dokazi da slijed brojeva 1,,,,... ima granicu. Utvrdi koja je najniza gornja granica i 3 4 najvisa donja granica. Dokazi da je granica (limes) slijeda. Utvrdi da li je slijed zatvoren. Funkcije

3 3 Slijed ima granicu, jer je svaki clan manji od na pr. i veci od na pr. 1. Slijed je orgranicen. Slijed nema veceg clana od 1 i ima barem jedan clan koji je veci od 1 ε, za svaki pozitivni broj ε. Znaci da je 1 najniza gornja granicna vrijednost slijeda. Slicno, nema manjeg broja od i ima barem jedan clan koji ima vrijednost + ε, za svaki pozitivn Znaci da je najvisa donja granicna vrijednost slijeda. Uzmemo bilo koji clan slijeda. Moze se uvijek naci takav da vrijedi < < δ za svaki pozitivni broj δ, a to snaci da je granica odnosno limes zadanog slijeda. Slijed nije zatvoren jer nije clan slijeda. 1. Pojam funkcije, graf funkcije, vrste funkcija Funkcija je pojam kojim je definiran odnos dva slijeda brojeva ili opcenito odnos dviju velicina. Ako svakoj vrijednosti jedne velicine, zvane nezavisna promjenjiva, druga velicina poprima jednu ili vise vrijednosti, tada je odnos funkcionalni i ta druga velicina je funkcija ili zavisna = = promjenjiva obicno oznacena sa y ili f. Odnos se pise u obliku y f, y G, F, y i tome slicno. Vrijednosti koje nezavisna promjenjiva ili argument moze poprimiti naziva se podrucje [ ] definiranosti ili domena funkcije. Oznacava se sa na pr. a,b zatvoreni interval ili a,b otvoreni interval. Graf funkcije je slikoviti prikaz odnosa y = f u obliku krivulje koja spaja parove tocaka i f. u obicno, pravokutnom koordinatnom sustavu Jednoznacna funkcija je ona funkcija, koja za jednu vrijednost argumenta poprima samo jednu vrijednost y. Viseznacna funkcija je ona funkcija, koja za jednu vrijednost argumenta poprima vise vrijednosti za y. Monotono rastuca funkcija u nekom intervalu, je ona funkcija koja za dvije vrijednosti i unutar intervala i ima f ( ) f ( ). Za f ( ) < f ( ), funkcija je strikno 1 rastuca Monotono padajuca funkcija u nekom intervalu, je ona funkcija koja za dvije vrijednosti i unutar intervala i padajuca. ( ) ( ) f ( ) > f ( ) ima f f. Za, funkcija je strikno 1 1 Ako postoji takav broj M da je f M za svako unutar intervala, tada je slijed brojeva ogranicen sa gornje strane i tocka M je gornja granica funkcije. Ako postoji takav broj m da je f m za svako unutar intervala, tada je slijed brojeva Funkcije 3

4 ogranicen sa donje strane i tocka m je donja granica funkcije. 5. Primjer jednoznacne funkcije y = f = u intervalu 1 1: () () Domena je u intervalu 1 1 y = f = f = 1 = 1, f = 1 = 1 Svakoj vrijednosti za imamo jednu vrijednost za y. [ ] 6. Primjer dvoznacne funkcije y = f = ± 1 u intervalu 1,1 : () () ( ) y = f = ± 1 f = ± 1 1 =, f == ± 1 1 = Dalje imamo: y =± 1 =± 1 Svakoj vrijednosti za imamo dvije vrijednost za y. Zadani primjer je kruznica sa sredistem u ishodistu radijusa 1: + y = 1 y = ± 1 7. Primjer granice funkcije: Funkcija y = + 3 u intervalu 1 1 ima slijedece vrijednosti: y = + 3 y = = y = = 4 ( 1) () 1 () Funkcija ima gornju granicu 4 i donju granicu Primjer granice funkcije: Funkcija y = u intervalu < < 4 ima slijedece vrijednosti: 1 1 y = y( ) = Za dovoljno mali funkcija porima veliku vrijednost, nije ogranicena. 1 1 y( 4) = Za = 4 funkcija ima donju granicu m =. 4 4 f ( ) = ( )( ) ( ) ( ) ( 9. Zadana je funkcija 8 u intervalu 8. a)izracunaj f 6 i f 1. b)koje je podrucje definiranosti funkcije? c)izracunaj f 1 t i definiraj domenu. d)izracunaj f f 3, f f 5 e)nacrtaj graf f. a) f f 6 = = 4 = 8 1 funkcija nije definirana jer 1 je van zadanog intervala. { }{ } [ ] b)podrucje definiranosti su svi brojevi unutar zatvorenog intervala,8 c) f 1 t = 8 1 t 1 t = 7 + t 1 t i mora zadovoljavati uvjete ( 1 t) 8 1 t t 1 t 8 t t d) f 3 = = 5 f f 3 = f 5 = = 9 odnosno ) Funkcije 4

5 = f f 5 f 9 nije definirano ( ) 1 1. Izrazi funkciju za funkciju iz gornjeg zadatka i nacrtaj graf i dokazi da je funkcija viseznacna. f = 8 y = y = Rjesimo po : f 1 1, f y ( y) b± b 4ac ± + = = = = a 1 ± 36 4y 1± 9 y = = = 5 ± 9 y zamijenimo nepoznanice: y = f = ± Dio grafa AV, je predstavljen sa y = 5 + 9, a dio VB sa y = Za sve vrijednosti, u intervalu < 9 funkcija f je dvoznacna. 11. Dokazi da je funkcija y = f = 5 + 9, striktno padajuca u intervalu 9 i ispitaj da li je monotono padajuca u istom intervalu. Da li funkcija ima jednoznacnu inverznu funkciju? 1) Funkcija je striktno padajuca ako f > f kada je <. Znaci da za : < imamo > 9 9 > > Funkcija je striktno padajuca. Funkcije 5

6 ) Iz f > f zakljucujemmo, funkcija je ujedno i monotono padajuca. 1 3) Rijesimo y = f = po : y 5 = 9 y 5 = 9 y 1y+ 5 = 9 = y + 1y 16 = y 8 y Inverzna funkcija funkcije f = je jednoznacna. 1 sin, > 1. Zadana je funkcija y = f ( ) =. Konstruiraj graf funkcije., = Analizirajmo izraz sin : y = f ( ) = kada je sin = = kπ k = 1,,3, odnosno, kada je =,,...Graf je omedjen sa dva pravca, y = i y =. π π 3π Slijedece vrste funkcija se cesto susrecu: 1. Cijela racionalna funkcija ili funkcija polinoma n n 1 n P = a + a + a a + a n n 1 n 1 Koeficijenti a, a, a... a su konstante a n je stupanj polinoma. 1 n Za n funkcija ima oblik P = a i graf je pravac paralelan sa osi. = Za n = 1 funkcija ima oblik P = a + a i graf predstavlja pravac. 1 1 Funkcije 6

7 y koeficijent a1 = tanα = koeficijent smjera, a odsjecak pravca na osi y. Za n = funkcija ima oblik P = a + a + a graf je kvadratna funkcija. 1 Za n = 3 funkcija ima oblik P = a + a + a + a grafje kubna funkcija.. Razlomljena racionalna funkcija R Pn = Q ( ) ( ) U brojniku i nazivniku su polinomi ogovarajuceg stupnja. R( ) Nultocke razlomljene racionalne funkcije su tocke u kojima = Polovi razlomljene racionalne funkcije su tocke u kojima R vrijednost ±. m n n n 1 1 Koeficijenti n... su polinomi od. Primjer su, poprima beskonacnu 3. Algebarska funkcija ima oblik p y p y... p y p y p = n p p y = y = p 4. Transcedentne funkcije: su sve ostale funkcije koje ne spadaju u gornje grupe a) Trigonometrijske funkcije, su oblika: y = sin, y = tan b) Inverzne Trigonometrijske funkcije, su oblika: = sin, = tan 1 1 y y e e e e c) Hiperbolne funkcije, su oblika: sinh =, tanh = e + e 1 1 d) Inverzne Hiperbolne funkcije, su oblika: y = sinh, y = tanh e) Eksponencijalne funkcije, su oblika: Funkcija je inverzna logaritamskoj funkciji. y = f = a f) Logaritamske funkcije, su oblika: y = f = log Funkcija je inverzna eksponencijalnoj funkciji. a Granicna vrijednost funkcije f je vrijednost L; lim f = L: kada nezavisna promjenjiva, tezi prema vriednosti, ; kada za neki mali broj ε mozemo naci pozitivni broj δ (koji je obicno ovisan o ε)tako da je f L < ε, kada je < < δ Drukcije receno: Apsolutna vrijednost razlike f L izaberemo vrijednost za dovoljno blizu vrijednosti. moze se napraviti po volji malom ako Nezavisna promjenjiva moze poprimati vrijednosti i priblizavati se tocki bilo sa desne ili lijeve strane. Funkcije 7

8 + Oznacimo li priblizavanje sa desne strane izrazom ; f a priblizavanje s lijeva, + + sa ; f tada imamo: lim = L limes kada se priblizavamo sa desne strane. lim = L L limes kada se priblizavamo sa lijeve strane. D Limes funkcije lim f = L postoji onda i samo onda kada jelim f = lim f = L + Pravila za limes funkcija: Ako je lim f = A i lim g = B tada vrijedi: a) lim f + g = lim f + lim g = A+ B b) lim f g = lim f lim g = A B c) lim f ( ) g( ) = lim f ( ) lim g ( ) = A B f ( ) lim f ( ) A d) lim = = B g lim g B sin 1 cos 1 Posebni limesi: lim = 1 lim = lim 1+ = e e 1 1 lim 1+ = lim = 1 lim = 1 ln 1 ( ) e + 1 ( ε) 13. Zadana je funkcija y = f =. Dokazi da je lim f = 4. y = f = lim f = 4 Rjesenje se svodi na slijedece: Mora se dokazati da se za svaki dani ε > moze naci δ> koji je ovisan o tako, da je 4, < ε kada je < < δ Ako izaberemo δ 1, tada je < < 1 odnosno nakon sredjivanja: < < 3, δ Tada je 4 = + = + < δ + < 3+ < 5δ ε 5 δ Sada imamo izbor sa δ = 1 ili,zavisi koji je manji, pa je onda 4 < ε, kada je < < δ. Rijesimo to sa konkretnim brojevima: Zelimo da je 4 <.5 Apsolutna vrijednost razlike funkcijske vrijednosti i limesa L u promatranoj tocki je mala, ε.5 po nasoj volji,.5. Izaberimo δ = = = Ako je < <.1 onda je.1 < < < <.1, i Funkcije 8

9 1.99 < < < < 4.41 ili < 4 < < < < i za sigurno je 4.5 uz Dokazi da je lim = Rjesenje se svodi na slijedece: Mora se dokazati da se za svaki dani ε > moze naci δ> ( koji je ovisan o ε) tako, da je ( 8 ) < ε, 1 kada je < 1 < δ Funkciju mozemo napisati i kao: = = = ( + + ) = ( )( ) Za jednakost vidi postupak na rjesavanja u dijelu srednjoskolske matematike: Linearne Jednadzbe kada je 1. 3 ( ) Znaci da za svaki ε > mora postojati δ> tako da je < ε + < ε < < δ Izaberimo δ 1: < 1 < δ < 1 < 1 < <, 1 Sada koristeci isti postupak kao ranije, rastavimo: 4 ( ) δ 5 δ 5 < δ < 17δ δ u izraz: + = < < + + < Rijesimo to sa konkretnim brojevima: Zelimo da je ( 8) <.5 1 Apsolutna vrijednost razlike funkcijske vrijednosti i limesa L u promatranoj tocki je mala, ε.5 po nasoj volji,.5. Izaberimo δ = = = Ako je < 1 <.1 onda je 1.9 < < 1+.9 ( ) (.99) < < 1.9, 1 < < ( 8) < < f 8 < ili < f L < Funkcije 9

10 .145 < f L <.1433 i za sigurno je f L <.5 uz Izracunaj limes: lim lim 3 3 ( + 1) ( ) = lim ( ) ( + ) ( ) ( ) ( ) 16. Izracunaj limes: lim 6 4 ( ) ( + ) ( ) = lim + 1 = = 5 lim = lim + lim 6 + lim 4 = = Izracunaj limes: lim 4 lim = lim Izracunaj limes: lim ( ) = lim + = + = ( 3 1) = lim lim 1 + ( 3 1) ( ) ( + ) 3 1 lim = = = = Izracunaj limes: lim lim 4 = lim 4 = lim = lim + lim lim = = lim ( 6) + lim lim + 3. Izracunaj limes: lim U zadacima 7. i 8. brojnik i nazivnik lim = lim = lim = smo podijelili sa najvisom potencijom + + Funkcije 1

11 1. Izracunaj limes: lim ( 4+ ) lim = lim = lim = = lim = = + 4 ( + 1) Izracunaj limes: lim lim = lim = lim( + 1) = 1 3. ( ) Izracunaj limes: lim lim = lim = lim = 1 ( 1)( + 1) = + 1 ( + 1) ( ) = 3 ( 3 )( 1) 3 ( 3 ) ( ) ( 1) 1 ( 1) 1 ( 1) Izracunaj limes: lim lim lim Izracunaj limes: lim lim = lim 1 = Izracunaj limes:lim lim = lim = lim = 1 ( ) ( + ) 4 ( + ) ( + ) ( 4+ ) 7. Izracunaj limes:lim lim = lim = lim 4 + = Izracunaj limes: lim lim = = Izracunaj limes:lim lim 3 lim + = = = Izracunaj limes: lim lim lim = = = = = Funkcije 11

12 1.3 Neprekinutost funkcija Za neku jednoznacnu funkciju f ( ) kazemo da je neprekinuta ili kontinuirana za sve vrijednosto od u neposrednoj blizini = i u samoj tocki ako zu zadovoljeni slijedeci uvjeti: 1. Funkcija ima limes: lim f = f -. Funkcija je definirana na mjestu f ( ) 3. f = L L oznacava vrijednost za limes funkcije. 4. Funkcija ima jednake limese s lijeve i s desne strane: lim f = lim f = L = L = lim f = f = L L D Tocke u kojima funkcija nije neprekinuta, zovu se tocke prekinutosti ili tocke diskontinuiteta. Ako je funkcija neprekinuta samo za onda kazemo da je funkcija neprekinuta samo sa desne strane (kako se priblizavamo tocki lim f = f ili f = f ;odnosno Ako je funkcija neprekinuta samo za lijeve strane (kako se priblizavamo tocki onda kazemo da je funkcija neprekinuta samo sa lim f = f ili f = f. - Teoremi neprekinutosti funkcija: 1. Ako su dvije funkcije f i g neprekinute u tocki =, tada su neprekinute i funkcije ( ) f f ( ) + g( ), f ( ) g( ), f ( ) g( ) i uz g( ). g. Slijedece funkcije su neprekinute u svaskom konacnom intervalu: sve funkcije polinoma, sin, cos i a a ( > ), te njihove inverzne funkcije. [ ab] 3. Ako je funkcija neprekinuta u zatvorenom intervalu,, ona je i ogranicena u tom intervalu. 4. Ako je funkcija neprekinuta u = i f >, (ili f < ) tada postoji tocka intervala = u kojem je f >, (ili f < ). 5. Ako je funkcija neprekinuta u nekom intervalu i striktno rastuca ili padajuca, njena inverzna funkcija je jednoznacna, neprekinuta i strikno rastuca ili padajuca. [ ] f ( c) = C 6. Ako je funkcija neprekinuta u zatvorenom intervalu a,b i ako je f a = A i f b = B, tada postoji vrijednost c unutar intervala, za koju vrijedi. 7. Ako funkcija zadovoljava gornje uvjete a limesi su suprotnog predznaka, postoji barem jedna vrijednost c za koju je f ( c ) = 8. Ako je funkcija neprekinuta u zatvorenom intervalu [ a,b ] onda u tom intervalu ima Funkcije 1

13 maksimalnu vrijednost Ma ili minimalnu vrijednost min za barem jednu vrijednost unutar intervala. K = g f ( ) = u = i = y = y y = f ( ) 9. Kompozicija funkcija, je neprekinuta ako su obje funkcije neprekinute: y f K g y u i ako je. Funkcija koja je definirana u nekom intervalu je jednoliko neprekinuta (uniformno kontinuirana) ako se za po volji izabrani broj ε > moze naci δ > takav, da za svake dvije vrijednosti i 1 1 tog intervala vrijedi: f f < ε kada je < δ 31. Ispitaj neprekinutost funkcije: y = f = sin za bilo koji =. Postavimo uvjete prema definiciji: + + f ( ) f ( ) = sin sin = sin cos = sin cos + sin < cos 1 sin sin < 1 ili sin sin < i posto sin sin kada je δ Funkcija je neprekinuta za sve. < ε < = 3. Ispitaj neprekinutost funkcije: za. Utvrdi da li je funkcija uniformno neprekinuta u intervalu < < 1. a) Izracunajmo limes funkcije:lim f = lim = 4 funkcija ima limes, f =4, pa je neprekidna y = = b) Koristimo teorem o neprekidnosti: f f < ε kada < δ f f = < < 4 ε kada δ. ε U ranijem zadatku je dokazano da su uvjeti zadovoljeni za δ =. 5 Funkcije 13

14 Da bi bila uniformno neprekinuta, funkcija mora zadovoljiti uvjete: = < ε kada < δ ( δ ovisi samo o ε) f f Za bilo koje dvije tocke u zadanom intervalu vrijedi: = + < 1+ 1 = i za < δ < δ ε Uvjeti su zadovoljeni za izabrani δ =. Funkcija y = je uniformno neprekinuta u intervalu < < 1. < 33. Ispitaj neprekinutost funkcije: f ( ) = u tocki = + 1 > Iz grafa funkcije je vidljivo da y = za < ima prekid i lim f = L = = y = + 1 za > ima prekid i lim f = L = 1 Limesi nisu jednaki, pa funkcija nije neprekinuta. Tocka = je tocka diskontinuiteta ili tocka prekinutosti funkcije. = Dokazi da funkcija y = nije jednoliko neprekinuta u intervali < < 1. koristeci definiciju: f f < ε kada < δ δ δ ε Za = δ i = imamo: = δ = δ < δ odnosno 1+ ε 1+ ε 1+ ε Funkcije 14

15 ε ε = = > ε ( < δ < 1 ) i uvjet nije zadovoljen. δ δ δ Funkcija nije jednoliko neprekinuta u intervalu < < 1. 3 () () () () Zadana je funklcija f = Dokazi da je f = u intervalu 1 < <. Kako se ta vrijednost izracuna? Izracunajmo vrijednost funkcije u tockama intervala: f = f 1 = = 4 3 = = f f 1 = 8 Iz teorema o neprekinutosti (7): unutar intervala mora postojati tocka c, za koju je f = f c = f 1 < f > Nadjimo tu tocku, koja je izmedju 1 i : 3 Probajmo sa = 1.5 : f = f 1.5 = =.5 3 nastavimo sa = 1.4 : f = f 1.4 = = 59 Trazena tocka je izmedju 1.4 i 1.5. Tocna vrijednost iznosi = 1.46 Funkcije 15

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

( pol funkcije), horizontalna ili kosa.

( pol funkcije), horizontalna ili kosa. 4. ANALIZA TOKA FUNKCIJE, EKSTREMI 4. Opci pojmovi Nultocke funkcije - su tocke u kojima je funkcija jednak nula. Za razlomljenu racionalnu funkciju, je kada je brojnik nula. Polovi funkcije - su tocke

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y . ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 2

ELEMENTARNA MATEMATIKA 2 ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. TRIGONOMETRIJA 5. Definicija trigonometrijskih funkcija Naj jednostavnija definicija trigonometrijskih funkcija dobije se promatranjem pravokutnog ( ) ( r) ( ) trokuta. Svaki takav trokut, za promatrani

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola Hasan Jamak Prirodno-matematički fakultet Sarajevo January 24, 2012 Uvod U Bosni i Hercegovini već pedesetak godina se organizuju

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto?

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Franka Miriam Brückler Igor Pažanin Zagreb, 2012. Sadržaj 1 Uvod 7 1.1 Varijable i konstante............................

Διαβάστε περισσότερα

1. Skupovi Algebra skupova

1. Skupovi Algebra skupova 1. Skupovi 1.1. Algebra skupova Temeljne definicije i oznake. Pod pojmom skupa razumijevamo bilo koju množinu elemenata. Npr.: (a) skup svih prirodnih brojeva N = {1, 2, 3,...} ; (b) skup svih cijelih

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Vjeºbe iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama

Διαβάστε περισσότερα

Pitanja za usmeni dio ispita iz matematike

Pitanja za usmeni dio ispita iz matematike PITANJA ZA MATURALNI ISPIT Pitanja za usmeni dio ispita iz matematike. Dokazati da je zbroj unutarnjih kutova u trokutu 80 0,a spoljnjih 60 0.. Dokazati da je spoljnji kut trokuta jednak zbroju dva nesusjedna

Διαβάστε περισσότερα

5. Aproksimacija i interpolacija

5. Aproksimacija i interpolacija APROKSIMACIJA I INTERPOLACIJA 56 5. Aproksimacija i interpolacija 5.. Opći problem aproksimacije Što je problem aproksimacije? Ako su poznate neke informacije o funkciji f, definiranoj na nekom skupu X

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

f[n] = f[n]z n = F (z). (9.2) n=0

f[n] = f[n]z n = F (z). (9.2) n=0 9. Z transformacija 9.. Z transformacija Z transformacija nia brojeva {f[n]} a koje vrijedi je Z [ f[n] ] = f[n] = 0, n < 0 9.) f[n] n = F ). 9.) Ovom transformacijom niu brojeva {f[n]} pridružuje se funkcija

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Skinuto sa

Skinuto sa Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo

Διαβάστε περισσότερα

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= *

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= * POPIS ZADATAKA:.Odredi modul IZI iz kompleksnog broja Z=+i i i.riješi zadatak:izi= * i i.izračunaj:(8+6i)(8-6i)=.odredi realne brojeve i y za koje vrijedi:(-i)+(+i)y=i.riješi kvadratnu jednadžbu :9²-=0

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Preporuke za rješavanje ispita iz Matematike

Preporuke za rješavanje ispita iz Matematike Preporuke za rješavanje ispita iz Matematike Tijekom ocjenjivanja nacionalnih ispita i ispita državne mature, neovisno o razini, uvidjeli smo neke probleme pri rješavanju zadataka. Ovdje želimo navesti

Διαβάστε περισσότερα

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014 Nermin Okičić Vedad Pašić MATEMATIKA II 014 Sadržaj 1 Funkcije više promjenljivih 1 1.1 Pojam funkcije više promjenljivih................ 1.1.1 Osnovni elementi preslikavanja.............. 1.1. Grafičko

Διαβάστε περισσότερα

Polinomske jednaqine

Polinomske jednaqine Matematiqka gimnazija u Beogradu Dodatna nastava, xk.g. 2005/06. Polinomske jednaqine 13.6.2006. Naslov se odnosi na određivanje polinoma po jednoj ili vixe promenljivih (sa npr. realnim ili kompleksnim

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Krijan, Sara Muhvić MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA Zagreb, 2013. Ovaj rad izraden je na Zavodu

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone.

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone. Matrice Uvod u matrice i vektore Pretpostavite da ste odgovorni za iznajmljivanje automobila zaposlenicima svoje firme Sedmični najmovi za različite veličine automobila su: kompaktni 9KM, srednji 60KM,

Διαβάστε περισσότερα