Εισαγωγή στην Ρομποτική

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στην Ρομποτική"

Transcript

1 Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1

2 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις 4 2

3 Πιο σύνθετες αρθρώσεις Ανθρώπινες αρθρώσεις 3

4 Βαθμοί Κινητικότητας και Βαθμοί Ελευθερίας Ρομποτικών Χειριστών 4

5 Ωφέλιμο φορτίο, Επαναληψιμότητα και Ακρίβεια Επαναληψιμότητα και Ακρίβεια 2mm 6mm Καλή Επαναληψιμότητα Κακή Ακρίβεια 2mm Καλή Επαναληψιμότητα Καλή Ακρίβεια Κακή Επαναληψιμότητα Κακή Ακρίβεια Θέσεις που πήρε το ρομπότ: Απαιτούμενη θέση: 5

6 Χώρος εργασίας βραχίονα Χώρος εργασίας βραχίονα 6

7 Ευθεία & Αντίστροφη Κινηματική 7

8 Κινηματική Ρομποτικού Βραχίονα Κινηματική: Η μελέτη της κίνησης του ρομπότ στον χώρο χωρίς να εξετάζουμε τις δυνάμεις που την προκαλούν Ευθεία κινηματική ανάλυση Ποια είναι η θέση και ο προσανατολισμός του άκρου (εργαλείου, αρπάγης) όταν ξέρω τις γωνίες των αρθρώσεων του ρομπότ; Βοηθάει στην προσομοίωση Αντίστροφη κινηματική ανάλυση. Ποιες γωνίες αρθρώσεων επιτυγχάνουν μία επιθυμητή θέση του άκρου; Βοηθάει στον έλεγχο Η δυναμική: εξετάζει ταυτόχρονα την κίνηση του ρομπότ σε σχέση με τις ροπές και τις δυνάμεις που την προκαλούν ( λαμβάνεται υπ όψιν η μάζα και η αδράνεια του ρομπότ) 15 Ευθεία & Αντίστροφη Κινηματική Ανάλυση Ευθύ Κινηματικού προβλήματος Βήμα 1: Όρισε τις τιμές των μεταβλητών των αρθρώσεων Βήμα 2: Προσδιόρισε θέση & προσανατολισμό του άκρου (X = f (Q)) Ανάλυση Αντίστροφου Κινηματικού προβλήματος Βήμα 1: Όρισε θέση & προσανατολισμό του άκρου Βήμα 2: Προσδιόρισε τις τιμές των μεταβλητών των αρθρώσεων για να επιτευχθεί η θέση & ο προσανατολισμός του άκρου (Q = f -1 (X)) 8

9 Υπάρχει λύση για το αντίστροφο κινηματικό; Στόχος Για ένα στόχο έξω από τον χώρο εργασίας του ρομπότ δεν υπάρχει λύση για το αντίστροφο κινηματικό Περιορισμοί στις αρθρώσεις έχουν σαν αποτέλεσμα οι πιθανές λύσεις να μην είναι όλες εφαρμόσιμες 17 Υπάρχει μία μόνο λύση για το αντίστροφο κινηματικό; Στόχος Για ένα στόχο μέσα στον χώρο εργασίας του ρομπότ πιθανόν να υπάρχουν πάνω από μία λύσεις Κανόνες επιλογής λύσης 18 9

10 Κανόνες επιλογής λύσης -Πλησιέστερης -Αποφυγή εμποδίων -Κίνηση μικρών αρθρώσεων Ο αριθμός των λύσεων εξαρτάται από: 1) Αριθμό αρθρώσεων 2) Παραμέτρους των συνδέσμων 3) Έύρος κίνησης των αρθρώσεων 19 Χώρος των αρθρώσεων και Καρτεσιανός χώρος δράσης του ρομπότ Χώρος των αρθρώσεων (q 1,q 2,,q n ) Ευθύ κινηματικό Αντίστροφο κινηματικό Καρτεσιανός χώρος (x,y,z,α,β,γ) 10

11 Πλαίσια συντεταγμένων για τον προγραμματισμό του ρομπότ Πλαίσιο κάμερας Πλαίσιο άκρου x Πλαίσιο συνδέσμου z Πλαίσιο βάσης x x y z y x x Πλαίσιο συντεταγμένων Τραπεζιού Πλαίσιο στόχου 21 Τροχιά ρομπότ σε βιομηχανικό περιβάλλον Μετακίνησε τον σωλήνα από το A στο D μέσω των ενδιάμεσων θέσεων B, C Τελική θέση D C B Τροχιά με μικρή ταχύτητα Εμπόδιο A Αρχική θέση 22 11

12 Παράμετροι τροχιάς του βραχίονα Τεχνικές εντολές Ταχύτητα Επιτάχυνση Θέση: Αρχική θέση Τελική θέση Ενδιάμεσες θέσεις Τρόπος κίνησης (PTP-motion) Κίνηση από σημείο σε σημείο Κίνηση σε ευθεία τροχιά Κίνηση σε καμπύλη τροχιά Κίνηση μέσω ενδιάμεσων σημείων 23 Κίνηση της αρπάγης Β A B C A Β MOVE MOVES Α C Α C 24 12

13 Κίνηση από σημείο σε σημείο PTP-κίνηση (point to point) t 2 t 2 >t 1 q 2 q 2 B A t 1 q 1 q 1 Επίλυση του αντίστροφου κινηματικού μόνο για την αρχική (Α) και την τελική θέση(β) Σχεδίαση τροχιάς με τον ίδιο χρόνο δράσης για κάθε άρθρωση 25 Κίνηση σε ευθεία τροχιά και πιθανά προβλήματα στον καρτεσιανό χώρο Μη επιτεύξιμα ενδιάμεσα σημεία Ιδιάζοντα σημεία στο καρτεσιανό μονοπάτι A C B 26 13

14 Σχεδίαση τροχιάς στο χώρο των αρθρώσεων Τροχιά µε πολυώνυµα 3ης Τάξης Τροχιά µε πολυώνυµα 5ης Τάξης Τροχιά µε παραβολική µίξη 27 Τροχιά με παραβολική μίξη q f Συμμετρική τροχιά t0 = 0 Σταθερή Ταχύτητα παραβολ Παραβολή ή q(t ɺ ) = 0 f q(t ) = q f f εευθεία ία V q 0 Παραβολή παραβολ Parabola ή α 0 t b t f t b (sec) 28 14

15 Σύνοψη των τροχιών Προφίλ θέσης Προφίλ ταχύτητας Προφίλ επιτάχυνσης 29 15

2/4/2010. ρ. Φασουλάς Ιωάννης. Απαιτούµενες γνώσεις: Ανάγκη εκπαίδευσης των φοιτητών στον προγραµµατισµό και λειτουργία των βιοµηχανικών ροµπότ

2/4/2010. ρ. Φασουλάς Ιωάννης. Απαιτούµενες γνώσεις: Ανάγκη εκπαίδευσης των φοιτητών στον προγραµµατισµό και λειτουργία των βιοµηχανικών ροµπότ Τµήµα Μηχανολογίας Τ.Ε.Ι. Κρήτης ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ρ. Φασουλάς Ιωάννης Η Ροµ οτική στις σύγχρονες βιοµηχανικές µονάδες αραγωγής

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA

ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΝΟΣ ΕΙΚΟΝΙΚΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΥΠΟΥ SCARA Δρ. Φασουλάς Ιωάννης, jfasoula@ee.auth.gr jfasoulas@teemail.gr Τμήμα Πληροφορικής και Επικοινωνιών Τεχνολογικό

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΡΟΜΠΟΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΧΑΜΗΛΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΡΟΜΠΟΤΙΚΗΣ

ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΡΟΜΠΟΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΧΑΜΗΛΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΡΟΜΠΟΤΙΚΗΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΡΟΜΠΟΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΧΑΜΗΛΟΥ ΚΟΣΤΟΥΣ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΡΟΜΠΟΤΙΚΗΣ Θωµ. Σακάρος,. Τσόντος, ρ. Γ. Φουσκιτάκης, ρ. Λ. οϊτσίδης Τµήµα Ηλεκτρονικής, Τεχνολογικό Εκπαιδευτικό

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής ΡΟΜΠΟΤΙΚΗ: ΟΡΙΣΜΟΣ: Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής, ρομπότ είναι ένας αναπρογραμματιζόμενος και πολυλειτουργικός χωρικός μηχανισμός σχεδιασμένος να μετακινεί υλικά, αντικείμενα, εργαλεία

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός

Διαβάστε περισσότερα

Έλεγχος ενός βαθµού ελευθερίας ροµποτικού συστήµατος

Έλεγχος ενός βαθµού ελευθερίας ροµποτικού συστήµατος Έλεγχος ενός βαθµού ελευθερίας ροµποτικού συστήµατος Το βασικό σχήµα ελέγχου ενός βαθµού ελευθερίας (µιάς άρθρωσης, ενός τροχού, κλπ) ροµποτικού συστήµατος φαίνεται στο Σχήµα 1. Επιθυµητή θέση Ελεγκτής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ 1 ΤO ΡΟΜΠΟΤ INTELLITEK ER-2u

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ 1 ΤO ΡΟΜΠΟΤ INTELLITEK ER-2u Εφαρμογή 1: Το ρομπότ INTELITEK ER-2u Εργαστήριο Ευφυών Συστημάτων και Ρομποτικής Τμήμα Μηχανικών Παραγωγής και Διοίκησης Πολυτεχνείο Κρήτης www.robolab.tuc.gr, τηλ: 28210 37292 / 37314 e-mail: savas@dpem.tuc.gr,

Διαβάστε περισσότερα

Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης

Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης Δραστηριότητες Έρευνας και Ανάπτυξης του Εργαστηρίου Αυτοματικής Ρομποτικής του Τμήματος Μηχανολογίας του ΤΕΙ Κρήτης των Δρ. Μανόλη Καββουσανού και Δρ. Γιάννη Φασουλά Το Εργαστήριο Αυτοματικής Ρομποτικής

Διαβάστε περισσότερα

Αντίστροφη Κινηματική

Αντίστροφη Κινηματική Αντίστροφη Κινηματική Πώς να τοποθετήσω το χέρι μου εδώ; Αντίστροφη Κινηματική: Επέλεξε αυτές τις γωνίες ΥΠΑΡΧΕΙ ΛΥΣΗ; Vrml Inverse Kinema9cs - No solu9on Στόχος Για ένα στόχο έξω από τον χώρο εργασίας

Διαβάστε περισσότερα

Σχεδιασμός Τροχιάς Ρομποτικών Χειριστών

Σχεδιασμός Τροχιάς Ρομποτικών Χειριστών Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 00809, 7ο Εξάμηνο Μάθημα: Ρομποτική Ι Αυτόματος Έλεγχος Ρομπότ Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ, ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ

ΣΧΕΔΙΑΣΜΟΣ, ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΣΧΕΔΙΑΣΜΟΣ, ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ Καθ. Αριστομένης Αντωνιάδης Καθ. Νικόλαος Μπιλάλης Καθ. Γεώργιος Σταυρουλάκης Δεληκωνσταντίνου Βασίλης Πολυτεχνείο Κρήτης Χανιά 2016 3 ΔΟΜΗ

Διαβάστε περισσότερα

Κίνηση κατά μήκος ευθείας γραμμής

Κίνηση κατά μήκος ευθείας γραμμής Μελέτη κινηματικών εννοιών: Θέση, μετατόπιση, ταχύτητα, μέτρο ταχύτητας, και επιτάχυνση. Διαφορά εννοιών "μετατόπισης - " διαστήματος" και "στιγμιαία "μέση". Μελέτη κίνησης με σταθερή επιτάχυνση. Κίνηση

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΕΡΠΥΣΤΡΙΕΣ: ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΕΡΠΥΣΤΡΙΕΣ ΘΕΩΡΙΑ

ΕΡΠΥΣΤΡΙΕΣ: ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΕΡΠΥΣΤΡΙΕΣ ΘΕΩΡΙΑ ΕΡΠΥΣΤΡΙΕΣ ΕΡΠΥΣΤΡΙΕΣ: ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΕΡΠΥΣΤΡΙΕΣ ΘΕΩΡΙΑ ΘΕΩΡΙΑ Τι είναι οι ερπύστριες Ιστορία τους Πλεονεκτήματα Μειονεκτήματα ROVER 5 CHASSIS MULTI CHASSIS (RESCUE PLATFORM BIG) ΕΡΕΥΝΑ ΑΓΟΡΑΣ KIT TRACKED

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ 2 TO ΡΟΜΠΟΤ HITACHI A4010S

ΕΡΓΑΣΤΗΡΙΑΚΗ ΕΦΑΡΜΟΓΗ 2 TO ΡΟΜΠΟΤ HITACHI A4010S Εργαστήριο Ευφυών Συστημάτων και Ρομποτικής Τμήμα Μηχανικών Παραγωγής και Διοίκησης Πολυτεχνείο Κρήτης www.robolab.tuc.gr, τηλ: 28210 37292 / 37314 e-mail: savas@dpem.tuc.gr, kyralakis@dpem.tuc.gr ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ ΕΙΣΑΓΩΓΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΡΟΜΠΟΤΙΚΗΣ 1 ΕΙΣΑΓΩΓΗ 1.1 Ορισµοί και Ιστορικά Στοιχεία Η Ροµποτική είναι εκείνος ο κλάδος της επιστήµης του µηχανικού που ασχολείται µε τη σύλληψη, το σχεδιασµό, την κατασκευή και

Διαβάστε περισσότερα

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948)

εν υπάρχει συµφωνία ως προς τον ορισµό. 1949 Μηχανή Αριθµητικού Ελέγχου (MIT Servo Lab) Βραχίονες για χειρισµό πυρηνικού υλικού (Master Slave, 1948) Κεφάλαιο 1 Εισαγωγή 1-1 Τι είναι Ροµπότ; εν υπάρχει συµφωνία ως προς τον ορισµό. Σύµφωνα µε το Αµερικανικό Ινστιτούτο Ροµποτικής (Rbt Institute f America, RIA) είναι ένας επαναπρογραµµατιζόµενος βραχίονας

Διαβάστε περισσότερα

Ροµποτικοί Επενεργητές Σερβοκινητήρες Πνευµατικοί Υδραυλικοί Ηλεκτρικοί

Ροµποτικοί Επενεργητές Σερβοκινητήρες Πνευµατικοί Υδραυλικοί Ηλεκτρικοί Ηλεκτρικό & Ηλεκτρονικό Υποσύστηµα ενός Ροµπότ Επενεργητές Αισθητήρες Σύστηµα Ελέγχου Επενεργητές στη Ροµποτική Απαιτήσεις Ροµποτικών Επενεργητών χαµηλή αδράνεια µεγάλη σχέση ισχύος-βάρους, ικανότητα ανάπτυξης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ

ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ

ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΔΙΑΜΟΡΦΩΣΗ ΑΝΑΤΟΜΙΑΣ ΜΕΤΑΜΟΡΦΙΚΟΥ ΒΡΑΧΙΟΝΑ ΒΕΛΤΙΣΤΗ ΤΟΠΟΘΕΤΗΣΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΧΩΡΟ ΕΡΓΑΣΙΑΣ ΑΥΤΟΥ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ Χ.Δ. Βάλσαμος α, Β.Χ. Μουλιανίτης β, Ν.Α. Ασπράγκαθος α α Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΙΚΕΣ

ΣΠΟΥΔΑΣΤΙΚΕΣ Ομάδα Ρομποτικής Τμ. ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΠΟΥΔΑΣΤΙΚΕΣ 2016-2017 1. Έλεγχος του άκρου εργασίας ρομπότ 7 βαθμών ελευθερίας. Για να εκτελέσει το άκρο του ρομπότ μια συγκεκριμένη κίνηση στο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Σχεδίασης Προϊόντων και Συστημάτων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Σχεδίασης Προϊόντων και Συστημάτων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Σχεδίασης Προϊόντων και Συστημάτων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ανάλυση και σχεδιασμός επίπεδων μηχανισμών με χρήση του pro/engineer Ματθαίου Ειρήνη Επιβλέπων: Παπανίκος Παρασκευάς

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

Τα ρομπότ στην βιομηχανία

Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Δρ. Φασουλάς Γιάννης

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Τα ρομπότ στην

Διαβάστε περισσότερα

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ Σοφία Α. Ξεργιά PT, MSc, PhD Ανάλυση της Ανθρώπινης Κίνησης Εμβιομηχανική Κινησιολογία Κινηματική Κινητική Λειτουργική Ανατομική Γραμμική Γωνιακή Γραμμική Γωνιακή Θέση Ταχύτητα

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

ΜΙΑ ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΤΗΣ ΕΥΘΕΙΑΣ ΚΙΝΗΜΑΤΙΚΗΣ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΑΡΑΛΛΗΛΩΝ ΡΟΜΠΟΤ 3-RRP KAI 3-PRP

ΜΙΑ ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΤΗΣ ΕΥΘΕΙΑΣ ΚΙΝΗΜΑΤΙΚΗΣ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΑΡΑΛΛΗΛΩΝ ΡΟΜΠΟΤ 3-RRP KAI 3-PRP ΜΙΑ ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΤΗΣ ΕΥΘΕΙΑΣ ΚΙΝΗΜΑΤΙΚΗΣ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΑΡΑΛΛΗΛΩΝ ΡΟΜΠΟΤ 3-RRP KAI 3-PRP Σ. Μήτση 1, Κ.-Δ. Μπουζάκης 1, Γκ. Μανσούρ 1, I. Popescu 1 Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας,

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 05 Έργο και Κινητική Ενέργεια ΦΥΣ102 1 Όταν μια δύναμη δρα σε ένα σώμα που κινείται,

Διαβάστε περισσότερα

και μάζας m 9.1*10 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού πεδίου, υφίσταται την επιρροή του. Πάνω

και μάζας m 9.1*10 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού πεδίου, υφίσταται την επιρροή του. Πάνω Άσκηση Η31 Ο λόγος του ηλεκτρονίου Το ηλεκτρόνιο σε ηλεκτρικό πεδίο Επιτάχυνση του ηλεκτρονίου Ένα ηλεκτρόνιο φορτίου 1.6*1 19 As και μάζας 9.1*1 31 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Χειμερινό Εξάμηνο 007 1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μετρήσεις Τεχνικών Μεγεθών Χειμερινό Εξάμηνο 007 Πρόβλημα 1 Προσδιορίστε ποια από τα παρακάτω

Διαβάστε περισσότερα

Κεφάλαιο 7 Έργο και Ενέργεια. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 7 Έργο και Ενέργεια. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 7 Έργο και Ενέργεια Περιεχόµενα Κεφαλαίου 7 Το έργο σταθερής δύναµης Εσωτερικό Γινόµενο δύο διανυσµάτων Έργο µεταβλητής δύναµης Σχέση Ενέργειας και έργου 7-1 Το έργο σταθερής δύναµης Το έργο που

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

«ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 1. Ρομποτικό Κύτταρο

«ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 1. Ρομποτικό Κύτταρο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρ. Μηχ/κών και Μηχ/κών Υπολογιστών Τομέας Σημάτων, Ελέγχου και Ρομποτικής «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 1. Ρομποτικό Κύτταρο Υπεύθυνος Εργαστηρίου: Κ. Τζαφέστας

Διαβάστε περισσότερα

ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ

ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ ΕΠΙ ΡΑΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ ΣΕ ΕΛΕΥΘΕΡΑ ΑΙΩΡΟΥΜΕΝΑ ΡΟΜΠΟΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΤΡΟΧΙΑ Κώστας Νάνος και Ευάγγελος Παπαδόπουλος Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Μηχανολόγων Μηχανικών, Εργαστήριο Αυτοµάτου

Διαβάστε περισσότερα

Συγκράτηση αντικειμένου από ρομποτικά δάχτυλα: Μοντελοποίηση χωρίς τη χρήση περιορισμών

Συγκράτηση αντικειμένου από ρομποτικά δάχτυλα: Μοντελοποίηση χωρίς τη χρήση περιορισμών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΙΝΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική εργασία με θέμα: Συγκράτηση αντικειμένου

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Απλά ευέλικτα προσιτά

Απλά ευέλικτα προσιτά Ρομποτικά σύστημα, τόσο απλά, όσο θα έπρεπε να είναι! Απλά ευέλικτα προσιτά TEXNIKEΣ ΠΡΟΔΙΑΓΡΑΦΕΣ: www.universal-robots.com/products Επιτέλους, ρομποτικά συστήματα, Η Universal Robots προσφέρει σημαντική

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ Ιωάννης Νταβλιάκος, Ευάγγελος Παπαδόπουλος Σχολή Μηχανολόγων Μηχανικών ΕΜΠ, Εργαστήριο Αυτοµάτου Ελέγχου email: gdavliak@central.ntua.gr,

Διαβάστε περισσότερα

21/6/2012. Μέθοδοι Κινηματικής ανάλυσης ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΣΥΧΝΟΤΗΤΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΣΥΧΝΟΤΗΤΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ. Στόχος μεθόδων κινηματικής ανάλυσης

21/6/2012. Μέθοδοι Κινηματικής ανάλυσης ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΣΥΧΝΟΤΗΤΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΣΥΧΝΟΤΗΤΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ. Στόχος μεθόδων κινηματικής ανάλυσης Στόχος μεθόδων κινηματικής ανάλυσης ΜΕΤΡΗΣΗ Μέθοδοι Κινηματικής ανάλυσης Ανάλυση Βάδισης ΜΕΤΑΤΟΠΙΣΗΣ ΤΑΤΗΤΑΣ ΕΠΙΤΑΝΣΗΣ Σημείου Μέλους Γωνίας ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΣΝΟΤΗΤΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Η συχνότητα καταγραφής

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ & ΔΙΑΜΟΡΦΩΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ OFF-LINE ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΙΟΜΗΧΑΝΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΙ

Διαβάστε περισσότερα

ΤΕΙ ΚΑΒΑΛΑΣ 2012. 1.1 Εισαγωγή Αντικείμενο πτυχιακής εργασίας.σελ. 2. 1.2 Περιεχόμενα εγχειριδίου Αναφοράς Προγραμμάτων.. σελ. 3

ΤΕΙ ΚΑΒΑΛΑΣ 2012. 1.1 Εισαγωγή Αντικείμενο πτυχιακής εργασίας.σελ. 2. 1.2 Περιεχόμενα εγχειριδίου Αναφοράς Προγραμμάτων.. σελ. 3 1 ΠΕΡΙΕΧΟΜΕΝΑ 1.1 Εισαγωγή Αντικείμενο πτυχιακής εργασίας.σελ. 2 1.2 Περιεχόμενα εγχειριδίου Αναφοράς Προγραμμάτων.. σελ. 3 1.3 Παράδειγμα τριφασικού επαγωγικού κινητήρα..σελ. 4-9 1.4 Σχεδίαση στο Visio

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1 Εισαγωγή

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1 Εισαγωγή ΠΡΟΛΟΓΟΣ Το παρόν βιβλίο περιέχει βασικές γνώσεις ανάλυσης και σύνθεσης των επίπεδων μηχανισμών. Μηχανισμοί είναι μηχανολογικές διατάξεις για την καθοδήγηση της κίνησης διαφόρων εξαρτημάτων, την υλοποίηση

Διαβάστε περισσότερα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.

Διαβάστε περισσότερα

Ανεξάρτητααπό τον τύπο του ρυθµιστή πρέπει να διαθέτει δυο κύρια χαρακτηριστικά: Ακρίβεια λειτουργίας Ευστάθεια

Ανεξάρτητααπό τον τύπο του ρυθµιστή πρέπει να διαθέτει δυο κύρια χαρακτηριστικά: Ακρίβεια λειτουργίας Ευστάθεια ΡΥΘΜΙΣΤΕΣ ΣΤΡΟΦΩΝ Ανεξάρτητααπό τον τύπο του ρυθµιστή πρέπει να διαθέτει δυο κύρια χαρακτηριστικά: Ακρίβεια λειτουργίας Ευστάθεια Το πρώτο αναφέρεται σε µόνιµη λειτουργία δηλαδή σε σταθερές στροφές. Το

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 467 ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ Βαρυπάτη Αθηνά Φυσικός- Επιμορφώτρια Τ.Π.Ε. avarypat@de.sch.gr Μαστραλέξης Δημήτρης Φυσικός-Επιμορφωτής Τ.Π.Ε. dmastral@de.sch.gr

Διαβάστε περισσότερα

Πτυχιακή Εργασία Οδηγώντας ένα Ρομποτικό Αυτοκίνητο με το WiFi. Η Ασύρματη Επικοινωνία, χρησιμοποιώντας

Πτυχιακή Εργασία Οδηγώντας ένα Ρομποτικό Αυτοκίνητο με το WiFi. Η Ασύρματη Επικοινωνία, χρησιμοποιώντας Βασικές Έννοιες Πτυχιακή Εργασία 2015 Οδηγώντας ένα Ρομποτικό Αυτοκίνητο με το WiFi. Σχεδίαση Συστήματος Πραγματικής Εφαρμογής (Prototyping). Η Ασύρματη Επικοινωνία, χρησιμοποιώντας το πρωτόκολλο WiFi.

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital:

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital: η Εργασία Ημερομηνία Αποστολής : Ιανουαρίου 7 Άσκηση. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopil: α. β. γ. lim 6 lim lim sin. (Υπόδειξη: χωρίς να την αποδείξετε, χρησιμοποιήστε

Διαβάστε περισσότερα

ΔΟΚΙΜΕΣ ΘΑΛΑΣΣΗΣ ΠΛΟΙΩΝ

ΔΟΚΙΜΕΣ ΘΑΛΑΣΣΗΣ ΠΛΟΙΩΝ ΔΟΚΙΜΕΣ ΘΑΛΑΣΣΗΣ ΠΛΟΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 1/3 ΑΠΟΔΕΙΞΗ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΕΠΙΔΟΣΕΩΝ ΑΝΤΟΧΗΣ ΟΙΚΟΝΟΜΙΑΣ ΔΥΝΑΤΟΤΗΤΩΝ ΕΛΙΓΜΩΝ ΔΕΔΟΜΕΝΑ ΣΧΕΔΙΑΣΗΣ ΑΠΑΙΤΗΣΕΙΣ ΑΣΦΑΛΕΙΑΣ, ΠΛΟΙΟΥ, ΠΛΗΡΩΜΑΤΟΣ, ΕΠΙΒΑΤΩΝ

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 009-0, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΜΕΛΕΤΗ 2ου ΝΟΜΟΥ ΝEWTON ME TH BΟΗΘΕΙΑ ΤΗΣ ΜΗΧΑΝΗΣ ΑΤWOOD

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΜΕΛΕΤΗ 2ου ΝΟΜΟΥ ΝEWTON ME TH BΟΗΘΕΙΑ ΤΗΣ ΜΗΧΑΝΗΣ ΑΤWOOD ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ 2ου ΝΟΜΟΥ ΝEWTON ME TH BΟΗΘΕΙΑ ΤΗΣ ΜΗΧΑΝΗΣ ΑΤWOOD Επιμέλεια: Μπίλιας Κων/νος Φυσικός. ΒΑΡΗ 2012-2013

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Κινηματική ανάλυση και έλεγχος κίνησης-λαβής ανθρωπόμορφου ρομποτικού χεριού. Σπουδαστής: Κριτσωτάκης Νικόλαος 4776

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Κινηματική ανάλυση και έλεγχος κίνησης-λαβής ανθρωπόμορφου ρομποτικού χεριού. Σπουδαστής: Κριτσωτάκης Νικόλαος 4776 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Κινηματική ανάλυση και έλεγχος κίνησης-λαβής ανθρωπόμορφου ρομποτικού χεριού Σπουδαστής: Α.Μ: Κριτσωτάκης

Διαβάστε περισσότερα

Επιμέλεια παρουσίασης: Αριστείδης Παλιούρας ΤΙ ΕΊΝΑΙ ΈΝΑ ΡΟΜΠΟΤ (ROBOT)?

Επιμέλεια παρουσίασης: Αριστείδης Παλιούρας   ΤΙ ΕΊΝΑΙ ΈΝΑ ΡΟΜΠΟΤ (ROBOT)? 1 ΤΙ ΕΊΝΑΙ ΈΝΑ ΡΟΜΠΟΤ (ROBOT)? Τι είναι το ρομπότ (robot)? 1. Περιγράψτε με μια πρόταση την έννοια της λέξης ρομπότ (robot) Το ρομπότ είναι μια μηχανή που συλλέγει δεδομένα από το περιβάλλον του (αισθάνεται),

Διαβάστε περισσότερα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε

Διαβάστε περισσότερα

Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli

Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική - γενικά Ρευστά σε κίνηση Τμήματα με διαφορετικές ταχύτητες και επιταχύνσεις Αλλαγή μορφής

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

ΣΕΡΒΟΜΗΧΑΝΙΣΜΟΙ RC. Καταπόδης Στέφανος

ΣΕΡΒΟΜΗΧΑΝΙΣΜΟΙ RC. Καταπόδης Στέφανος ΣΕΡΒΟΜΗΧΑΝΙΣΜΟΙ RC Καταπόδης Στέφανος 14-1-2014 1.Γενικά για τους Σερβομηχανισμούς Είναι αυτόματες συσκευές που χρησιμοποιούνται για να: - ελέγχουν αν η λειτουργία ενός μηχανισμού γίνεται σωστά - διατηρούν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ ΥΠΟΛΟΓΙΣΜΟΣ ΔΕΙΚΤΗ ΕΠΙΔΕΞΙΟΤΗΤΑΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΧΡΗΣΗ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ Α. Συνοδινός, Ν.Α. Ασπράγκαθος Ερευνητική Ομάδα Ρομποτικής, Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών,

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

20/9/2012. Διδάσκοντες. Γραμμική κινηματική. Αξιολόγηση. Γωνιακή κινηματική. Γραμμική Κινητική Δυναμική

20/9/2012. Διδάσκοντες. Γραμμική κινηματική. Αξιολόγηση. Γωνιακή κινηματική. Γραμμική Κινητική Δυναμική Διδάσκοντες Αποκατάσταση μέσω ισοκινητικής δυναμομετρίας (ΜΒ01) ΠΜΣ Άσκηση και Υγεία ΤΕΦΑΑ, Πανεπιστήμιο Θεσσαλίας Γιάννης Γιάκας Γιάννης Γιάκας - ΠΘ Βασίλης Γεροδήμος - ΠΘ Τσαόπουλος Δημήτριος - ΚΕΤΕΑΘ

Διαβάστε περισσότερα

Σχεδιαστικές προδιαγραφές

Σχεδιαστικές προδιαγραφές Εισαγωγή Τα τελευταία χρόνια, ένα σημαντικό πεδίο δράσης της επιστήμης της Ρομποτικής αφορά στον τομέα της ανάπτυξης και εξέλιξης αυτόνομων οχημάτων επίγειων, εναέριων, πλωτών, υποβρύχιων και διαστημικών.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Προσομοιωτικό μοντέλο κοπής οδοντώσεων με πλάνιση με κύλιση

Προσομοιωτικό μοντέλο κοπής οδοντώσεων με πλάνιση με κύλιση 1 Προσομοιωτικό μοντέλο κοπής οδοντώσεων με πλάνιση με κύλιση Παρουσίαση Διπλωματικής Εργασίας 2 Για την κατασκευή οδοντώσεων που λειτουργούν σε υψηλό αριθμό στροφών και με υψηλές ποιοτικές προδιαγραφές,

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

10 Ν 100 εκ (1 μέτρο) Άγνωστο Ψ (N) 20 εκ (0.2 Μ)

10 Ν 100 εκ (1 μέτρο) Άγνωστο Ψ (N) 20 εκ (0.2 Μ) Τεχνολογία A τάξης Λυκείου Μάθημα 20 ον - Μηχανισμοί Φύλλο εργασίας Μοχλοί σελίδες Dan-78-87 Collins 167-208 1. Ο άνθρωπος όταν πρωτοεμφανίστηκε στην γη ανακάλυψε πολύ σύντομα την χρήση του μοχλού για

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στη μοντελοποίηση και προσομοίωση με τη χρήση του λογισμικού Interactive Physics [Οδηγός Γρήγορης Εκκίνησης]

Εισαγωγή στη μοντελοποίηση και προσομοίωση με τη χρήση του λογισμικού Interactive Physics [Οδηγός Γρήγορης Εκκίνησης] 1 ΕΚΦΕ ΑΓ.ΑΝΑΡΓΥΡΩΝ ΥΠΕΥΘΥΝΟΣ ΕΚΦΕ: Θεοχαρόπουλος Ιωάννης Εισαγωγή στη μοντελοποίηση και προσομοίωση με τη χρήση του λογισμικού Interactive Physics 2005. [Οδηγός Γρήγορης Εκκίνησης] A-Προετοιμασία του

Διαβάστε περισσότερα

Συστήµατα Computer Aided Manufacturing - CAM

Συστήµατα Computer Aided Manufacturing - CAM Συστήµατα Computer Aided Manufacturing - CAM Σχεδιασµός της διαδικασίας παραγωγής τεµαχίων σε ψηφιακά καθοδηγούµενες εργαλειοµηχανές Στόχος του λογισµικού CAM: Η δηµιουργία του προγράµµατος ψηφιακής καθοδήγησης

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΕΛΕΓΧΟΣ ΚΑΤΑΚΟΡΥΦΟΥ ΑΡΘΡΩΤΟΥ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΤΕΣΣΑΡΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ Σακάρος Θωμάς Επιβλέπων καθηγητής: Φουσκιτάκης Γεώργιος

Διαβάστε περισσότερα

Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς.

Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς. ΑΣΚΗΣΗ 1 Ένας οδοντωτός τροχός με ευθείς οδόντες, z = 80 και m = 4 mm πρόκειται να κατασκευασθεί με συντελεστή μετατόπισης x = + 0,5. Να προσδιοριστούν με ακρίβεια 0,01 mm: Τα μεγέθη της οδόντωσης h α,

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

Σχεδιασμός, κατασκευή και έλεγχος μικρής ρομποτικής πλατφόρμας Stewart

Σχεδιασμός, κατασκευή και έλεγχος μικρής ρομποτικής πλατφόρμας Stewart Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σχεδιασμός, κατασκευή και έλεγχος μικρής ρομποτικής πλατφόρμας Stewart Σπουδαστής Καλαντζής Σ. Σπυρίδων

Διαβάστε περισσότερα

Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!!

Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Σε πάρα πολλές περιπτώσεις κατά τη μελέτη του στερεού, το πρόβλημα επιλύεται με εφαρμογή του ου νόμου του Νεύτωνα, τόσο για την περιστροφική κίνηση

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th International Physics Olympiad, erida, exico, -9 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. Η ΕΞΕΛΙΞΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΗΣ-ΣΕΛΗΝΗΣ Οι επιστήμονες μπορούν να προσδιορίσουν την απόσταση Γης-Σελήνης, με μεγάλη

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενός ισοπλεύρου τριγώνου ΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σημειακά ηλεκτρικά φορτία 1 =2μC και 2 αντίστοιχα.

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα

ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot

ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρ. Μηχ/κών και Μηχ/κών Υπολογιστών Τομέας Σημάτων, Ελέγχου και Ρομποτικής ΔΠΜΣ «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» «ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ» Άσκηση 2. Έλεγχος Pendubot Υπεύθυνος

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Κεφάλαιο 4 Ομοιότητα

Κεφάλαιο 4 Ομοιότητα Κεφάλαιο 4 Ομοιότητα Σύνοψη Αδιάστατοι χαρακτηριστικοί αριθμοί Σχέσεις ομοιότητας Ειδικός αριθμός στροφών - Εφαρμογές Προαπαιτούμενη γνώση Προηγούμενα Κεφάλαια 1 και - Κύρια λήμματα: Γεωμετρική, Κινηματική,

Διαβάστε περισσότερα