p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,"

Transcript

1 Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον σύνδεσµο. Αυτές συσχετίζονται, ανεξάρτητα µε το αν η άρθρωση είναι περιστροφική ή πρισµατική µέσω κατάλληλης µετάδοσης ισχύος (κιβώτιο) µε την & ϑ = k q& (3.24) m r ω m p& m p m z x y Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα, όπου για τον ρότορα του κινητήρα : m = m m p& m p& m + ω m I m ω m (3.25) 2 2 m m είναι η µάζα του, p& m είναι η (γραµµική) ταχύτητα του κέντρου µάζας του και I m ο τανυστής αδράνειάς του ως προς το κέντρο µάζας του εκφρασµένος στο τοπικό σύστηµα συντεταγµένων. Παρατηρούµε ότι ω = ω + & ϑ z = ω + k q & z (3.26) m m m m r όπου ω είναι η γωνιακή ταχύτητα του συνδέσµου επί του οποίου ευρίσκεται ο κινητήρας και είναι το µοναδιαίο διάνυσµα του άξονα του ρότορα. Παροµοίως µε προηγούµενα z m m p& = J q& (3.27) ω m = J q& (3.28)

2 ( m ) J ( m ) J όπου οι Ιακωβιανές θέσης και προσανατολισµού και υπολογίζονται µε τρόπο αντίστοιχο µε αυτόν που περιγράψαµε πιο πάνω θεωρώντας όµως ότι ο κινητήρας βρίσκεται τοποθετηµένος πάνω στον σύνδεσµο. Αυτή η θεώρηση δεν απέχει από την πραγµατικότητα, καθώς κατά τη συνήθη πρακτική επιχειρείται οι κινητήρες των αρθρώσεων να βρίσκονται τοποθετηµένοι όσο πιο κοντά στη βάση του βραχίονα γίνεται, έτσι ώστε να µειώνονται κατά το δυνατόν τα αναπτυσσόµενα δυναµικά φορτία. Θα έχουµε λοιπόν: I I Τα διανύσµατα και δίνονται ως εξής: ( m) ( m) ( m) J = I K I K (3.29) ( m) ( m) ( m) J = I K I K (3.3) ( m ) z I = z p p ( m ) για πρισµατική άρθρωση για περιστροφική άρθρωση (3.3) όπου p είναι το διάνυσµα θέσης της αρχής του συστήµατος και διάνυσµα θέσης του κέντρου µάζας του κινητήρα και p m είναι το ( l ) I =, K, I =. (3.32) k r z = m Υπενθυµίζουµε ότι στην τελευταία σχέση k είναι ο λόγος µείωσης του µειωτήρα και ο µοναδιαίος άξονας z κατά µήκος του άξονα περιστροφής του ρότορα του κινητήρα. r z m Υπενθυµίζοντας ότι όσον αφορά στους τανυστές αδράνειας I (τανυστής αδράνειας του ρότορα του κινητήρα ως προς το κέντρο µάζας του εκφρασµένος στο τοπικό σύστηµα συντεταγµένων) και I ισχύουν αντίστοιχα πράγµατα µε αυτά που σηµειώσαµε παραπάνω για τους τανυστές m I l και λαµβάνουµε τη σχέση: I l, δηλαδή I = R I R m, (3.33) m m m m m ( m) m ( m) m = m m q& J J q& + q& J Rm I m R m J q& (3.34) 2 2 όπου m η µάζα του ρότορα του κινητήρα, m J και m m J αντίστοιχα οι Ιακωβιανές θέσης και προσανατολισµού που έχουν προκύψει για τον κινητήρα, περιστροφής του ρότορα του κινητήρα τανυστής αδράνειας του ρότορα του κινητήρα στο τοπικό σύστηµα συντεταγµένων. Ολική Κινητική Ενέργεια R το µητρώο ως προς το σύστηµα αναφοράς της βάσης και m I ο m m ως προς το κέντρο µάζας του εκφρασµένος Έχοντας προσδιορίσει για κάθε σύνδεσµο τις συνεισφορές κινητικής ενέργειας l και είµαστε πλέον σε θέση να υπολογίσουµε την ολική κινητική ενέργεια του βραχίονα. Μετά τις σχετικές πράξεις προκύπτει ότι η ολική κινητική ενέργεια θα δίνεται από µία σχέση της µορφής m 2

3 = ( q, q& ) = b ( q) q& q& = q& B( q) q& 2 2 = = (3.35) όπου ο τετραγωνικός πίνακας B( q) = ( m J J + J R I R J = l ( l ) ( l ) ( l ) ( l) l ( m) ( m) ( m) m ( m ) + mm J ) J + J Rm I m R m J R (3.36) ονοµάζεται µητρώο αδράνειας ή µητρώο κινητικής ενέργειας του βραχίονα, και είναι συµµετρικό (δηλ. b = b ), θετικά ορισµένο, και γενικά εξαρτώµενο από την εκάστοτε θέση του βραχίονα. 3.3 Προσδιορισµός της Ολικής υναµικής Ενέργειας Η ολική δυναµική ενέργεια του βραχίονα προκύπτει ως άθροισµα των συνεισφορών δυναµικής ενέργειας των συνδέσµων και των κινητήρων, µε λογική αντίστοιχη µε αυτή που περιγράψαµε στην περίπτωση της κινητικής ενέργειας. Θα έχουµε λοιπόν: U l U = ( Ul + U ) m (3.37) = όπου η δυναµική ενέργεια του συνδέσµου και η δυναµική ενέργεια του κινητήρα που επενεργεί στην άρθρωση. U m Η δυναµική ενέργεια του (µη παραµορφώσιµου) συνδέσµου και δίνεται από τη σχέση: ( 3.6) * l Vl οφείλεται µόνο στη βαρύτητα U = g p ρ dv = ml g p (3.38) l όπου p l το διάνυσµα θέσης τους κέντρου µάζας του συνδέσµου και g η επιτάχυνση της βαρύτητας. Και τα δύο αυτά µεγέθη είναι εκφρασµένα στο σύστηµα αναφοράς της βάσης. Έτσι π.χ. στην περίπτωση που ο άξονας z του συστήµατος βάσης είναι κατακόρυφος η επιτάχυνση της βαρύτητας θα ισούται µε [ g] g =. Με παρόµοιο τρόπο η συνεισφορά δυναµικής ενέργειας λόγω του ρότορα του κινητήρα θα είναι: Um m m g pm = (3.39) όπου p το διάνυσµα θέσης του κέντρου µάζας του κινητήρα εκφρασµένο στο σύστηµα m αναφοράς της βάσης. Εποµένως l m l l = = U = U( q) = ( U + U ) = ( m g p + mm g pm ) (3.4) Από τις σχέσεις που προηγήθηκαν για την ολική κινητική και δυναµική ενέργεια του βραχίονα γίνεται φανερό ότι η µεν κινητική ενέργεια είναι συνάρτηση τόσο των µετατοπίσεων όσο και των ταχυτήτων των αρθρώσεων, η δε δυναµική ενέργεια αποτελεί συνάρτηση µόνο των µετατοπίσεων των αρθρώσεων. Ειδικά για τα διανύσµατα και p l p m 3

4 υπενθυµίζουµε ότι εξαρτώνται, µέσω της κινηµατικής, µόνο από το διάνυσµα των µεταβλητών των αρθρώσεων q και όχι από το διάνυσµα των ταχυτήτων q&. 3.4 Προσδιορισµός των Εξισώσεων Κίνησης Με δεδοµένες την ολική κινητική και την ολική δυναµική ενέργεια από τις σχέσεις που έχουν προηγηθεί, οι δυναµικές εξισώσεις του βραχίονα προκύπτουν µε εφαρµογή των σχέσεων Euler-Lagrage (3.3). Πιο συγκεκριµένα, επειδή έχουµε: L( q, q& ) = ( q, q& ) U( q) = b ( q) q& q& + ( m g p + m g p ) (3.4) Εύκολα παίρνουµε τις παραγώγους l l m m 2 = = = ( 3.35 d L d ) db ( q) b ( q) dt q& dt q dt q = = b ( q) q&& + q& = b ( q) q&& + q& kq& & = = = = k= k q ( 3.35) = 2 = k= (3.42) bk ( q) qq & & k (3.43) q U p p m g m g m g m g g ( q) (3.44) q q q ( 3.4) ( 3.8,27) l m ( l ) = ( l + ) ( m = l I + m I ) = = Εποµένως µε βάση τις (3.4-44) οι Euler-Lagrage (3.3) γίνονται k k = = k= b ( q) q&& + h q q& q& + g ( q) = ξ =, K, (3.45) όπου h k ( q) Αν στην παραπάνω σχέση θεωρήσουµε b ( q) bk ( q) = q 2 q k (3.46) παίρνουµε c = h q & (3.47) k k k = ή σε µητρωϊκή µορφή b ( q) q&& + c q& + g ( q) = ξ =, K, (3.48) = = B( q) q&& + C( q, q& ) q& + G( q) = ξ (3.49) Στο πρώτο µέλος της τελευταίας σχέσης παρατηρούµε ότι εµφανίζονται όροι τριών διαφορετικών ειδών: Οι όροι b (αδρανειακοί) συνιστούν το µητρώο αδράνειας Bq που αναφέραµε πιο πάνω. Από τα στοιχεία του µητρώου αυτού τα µεν διαγώνια b αναπαριστούν τη ροπή αδράνειας του άξονα της άρθρωσης, στην εκάστοτε θέση του βραχίονα, όταν οι υπόλοιπες αρθρώσεις είναι ακίνητες. Από την άλλη πλευρά τα µη διαγώνια στοιχεία περιγράφουν το αποτέλεσµα της επιτάχυνσης της άρθρωσης στην άρθρωση. b 4

5 Οι όροι c συνιστούν ένα µητρώο Cqq (, &) R, το οποίο περιέχει τις φυγόκεντρες ροπές και τις ροπές Corols που αναπτύσσονται στο βραχίονα. Τα στοιχεία του µητρώου C( qq&, ) δίνονται από την c = c q& όπου οι σταθερές k k k = b b b k k ck = + ονοµάζονται σύµβολα Chrstoffel πρώτου τύπου. Είναι 2 qk q q προφανές ότι το µητρώο C( qq&, ) προκύπτει ουσιαστικά από το µητρώο κινητικής ενέργειας, µετά τις παραγωγίσεις που υποδηλώνονται στην παραπάνω σχέση. Από τον τρόπο ορισµού των συµβόλων Chrstoffel έπεται εύκολα ότι ck = ck. Οι όροι g ονοµάζονται βαρυτικοί όροι, εξαρτώνται µόνο από τις µετατοπίσεις των αρθρώσεων του βραχίονα και προέρχονται από την ολική δυναµική ενέργεια U και συνιστούν ένα διάνυσµα Gq R. Οι όροι αυτοί αναπαριστούν τη ροπή που αναπτύσσεται στον άξονα της άρθρωσης, στην εκάστοτε θέση του βραχίονα, λόγω της παρουσίας της βαρύτητας Στο δεύτερο µέλος των εξισώσεων κίνησης εµφανίζονται, όπως έχουµε ήδη σηµειώσει, οι µη συντηρητικές δυνάµεις που παράγουν έργο στις αρθρώσεις του βραχίονα. Αυτές είναι ίσες µε τις ροπές των κινητήρων που οδηγούν τις αρθρώσεις µείον τις ροπές λόγω ιξώδους και στατικής τριβής. Θα έχουµε λοιπόν: ξ = τ F q& F sg( q& ) (3.5) u s όπου F u και F s αντίστοιχα η σταθερά ιξώδους και στατικής τριβής της άρθρωσης και sg(q& η συνάρτηση πρόσηµου 2 της ταχύτητας της άρθρωσης. Η παραπάνω εξίσωση σε ) µητρωϊκή µορφή γράφεται ως εξής: ξ = τ F q& F sg( q& ) (3.5) u s Όπου R και R είναι αντίστοιχα τα διαγώνια µητρώα των σταθερών ιξώδους F u F s και στατικής τριβής του βραχίονα. Στην περίπτωση που το εργαλείο του βραχίονα βρίσκεται σε επαφή µε το περιβάλλον στο οποίο κινείται, ένα µέρος των ροπών χρησιµοποιείται για να αντισταθµίσει τις ροπές που b bk Από τις ( ) παίρνουµε cq& = hkqq & & k = qq & & k = = = k= = k= qk 2 q b b bk = + qq & & k όπου αν κάνουµε αλλαγή άθροισης µεταξύ και k = k= 2 qk 2 qk 2 q b b b k b k b k k cq = qq + qq = + qq = = k= 2 qk 2 = k= q q b & & & & & & & = k= 2 qk q q k k k = ckq & kq &. = k= 2 Υπενθυµίζουµε ότι x < sg(x) = x = + x > 5

6 αναπτύσσονται στις αρθρώσεις λόγω των δυνάµεων επαφής. Η µητρωϊκή έκφραση των ροπών αυτών είναι: όπου Jq R 6 τ cotact = J ( q) h (3.52) η γεωµετρική Ιακωβιανή του βραχίονα που έχει προκύψει από τη = R 6 3 διαφορική κινηµατική και h f µ το διάνυσµα των δυνάµεων f R και 3 ροπών ( µ R ) που ασκούνται από το εργαλείο του βραχίονα στο περιβάλλον. Συνοψίζοντας όσα αναφέραµε πιο πάνω, οι εξισώσεις κίνησης ενός ροµποτικού βραχίονα µπορούν να γραφτούν σε µητρωϊκή µορφή ως εξής: B( q) q&& + C( q, q& ) q& + F q& + F sg(q& ) + G( q) = τ J ( q) h (3.53) u Η τελευταία σχέση αποτελεί για τον υπό εξέταση βραχίονα το δυναµικό µοντέλο του χώρου αρθρώσεων. s 3.5 Αξιοσηµείωτες Ιδιότητες του υναµικού Μοντέλου Αντισυµµετρικότητα του µητρώου : Nqq (, &) = Bq & 2 Cqq (, &) Τα στοιχεία του µητρώου N ( qq&, ) ικανοποιούν τη σχέση =. Η µαθηµατική απόδειξη της συγκεκριµένης ιδιότητας ξεφεύγει των σκοπών µας. Άµεση συνέπεια αυτής της ιδιότητας είναι ότι για κάθε διάνυσµα w R Γραµµικότητα ως προς τις δυναµικές παραµέτρους w N( q, q& ) w= (3.54) Μπορεί να αποδειχθεί ότι η βασική δυναµική εξίσωση Euler-Lagrage (E-L) Bq q&& + Cqq (, &) q& + F q& + F sg(q& ) + Gq + J ( q) h= τ Είναι δυνατό να γραφεί στη µορφή u (,, ) s Y qqq &&& π = τ (3.55) p όπου π R είναι ένα διάνυσµα αγνώστων παραµέτρων που ευρίσκονται µέσα στις p δυναµικές εξισώσεις, ενώ Y qqq, &&&, R είναι ο πίνακας που περιέχει όλους τους 6 παράγοντες γωνιακών θέσεων, ταχυτήτων και επιταχύνσεων καθώς επίσης και τις γνωστές p παραµέτρους. Πρέπει να τονιστεί ότι το π R δεν περιέχει τις άγνωστες παραµέτρους ανά µία αλλά στην πεπλεγµένη µορφή µε την οποία εµφανίζονται στις E-L. Η παραπάνω σχέση είναι πολύ χρήσιµη για εκείνες τις περιπτώσεις όπου για ένα βραχίονα, αν και είναι γνωστή η βασική δοµή του, είναι άγνωστες αρκετές (ή όλες οι) δυναµικές του παράµετροι και χρειάζεται να τις «αναγνωρίσουµε». Αν υποθέσουµε ότι εκτελούνται πειράµατα κίνησης και καταγράφονται σε δεδοµένες χρονικές στιγµές t, t2, K, t N οι ροπές στις αρθρώσεις τ ( t ) και οι αντίστοιχες γωνιακές θέσεις µπορούµε να έχουµε και τους πίνακες σχηµατίσουµε την σχέση qt ( ), ταχύτητες qt ( ) (,, ) = & και επιταχύνσεις qt &&, τότε Y q t q& t q&& t Y t. Μπορούµε λοιπόν να 6

7 τ ( t ) ( t ) τ Y t τ Y t M M τ ( t ) Y( t ) 2 2 = π π N N Y (3.56) Εφόσον ικανοποιείται N >> p καθώς επίσης και άλλες συνθήκες που φεύγουν από τους σκοπούς αυτού του εισαγωγικού σηµειώµατος, µπορούµε να βρούµε τον ψευδοανάστροφο του Y και να βρούµε µια καλή εκτίµηση ˆ του διανύσµατος αγνώστων παραµέτρων π = Y Y Y τ (3.57) p π R. 7

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται

Διαβάστε περισσότερα

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων υναµική των Ροµποτικών Βραχιόνων Ροµποτική Αρχιτεκτονική: η υναµική u Ροµποτική υναµική q, q& Ροµποτική Κινηµατική Περιβάλλον Θέση, Προσανατολισµός & και αλληλε ίδραση Η δυναµική ασχολείται µε την εξαγωγή

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

3.6 Ευθεία και Αντίστροφη υναµική

3.6 Ευθεία και Αντίστροφη υναµική 3.6 Ευθεία και Αντίστροφη υναµική Στη δυναµική µας απασχολούν δύο ειδών προβλήµατα, το ευθύ δυναµικό πρόβληµα και το αντίστροφο δυναµικό πρόβληµα. Το αντίστροφο πρόβληµα αφορά στον προσδιορισµό των ροπών

Διαβάστε περισσότερα

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον.

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ 9.0 Εισαγωγικά Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9.1 Έλεγχος «Συµµόρφωσης» ή «Υποχωρητικότητας» (Comliance Control)

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - Β. - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 06. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Κίνηση στερεών σωμάτων - περιστροφική

Κίνηση στερεών σωμάτων - περιστροφική Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 4 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Μοντελοποίηση Μηχανικών Συστημάτων Ν Βαθμών Ελευθερίας Μηχανικά δυναμικά συστήματα πολλών Β.Ε. Μοντελοποίηση

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

( ) { } ( ) ( ( ) 2. ( )! r! e j ( ) Κίνηση στερεών σωμάτων. ω 2 2 ra. ω j. ω i. ω = ! ω! r a. 1 2 m a T = T = 1 2 i, j. I ij. r j. d 3! rρ. r! e!

( ) { } ( ) ( ( ) 2. ( )! r! e j ( ) Κίνηση στερεών σωμάτων. ω 2 2 ra. ω j. ω i. ω = ! ω! r a. 1 2 m a T = T = 1 2 i, j. I ij. r j. d 3! rρ. r! e! Κίνηση στερεών σωμάτων ΦΥΣ 11 - Διαλ.30 1 q Κίνηση στερεού σώµατος: Ø Υπολογισµός της κινητικής ενέργειας Ø Θεωρήσαµε ότι ένα σώµα διακριτής ή συνεχούς κατανοµής µάζας q Η κινητική ενέργεια δίνεται από

Διαβάστε περισσότερα

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

Οµάδα Ασκήσεων #3-Λύσεις

Οµάδα Ασκήσεων #3-Λύσεις Οµάδα Ασκήσεων #3-Λύσεις Πρόβληµα # (α) Ο βραχίονας είναι επίπεδος. Μπορούµε να βρούµε τον προσπελάσιµο χώρο εργασίας µε µια βήµα-προς-βήµα προσέγγιση. Πρώτα βρίσκουµε το χώρο που καλύπτεται όταν η άρθρωση-3

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόμενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσματικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναμική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h

( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h Μη αδρανειακά συστήματα αναφοράς ΦΥΣ 211 - Διαλ.27 1 q Μέχρι τώρα έχουµε χρησιµοποιήσει συστήµατα αναφοράς όπως ( x, y,z) καρτεσιανό q όπου ο 2 ος νόµος του Newton F = m a x = f x, y,z έχει την µορφή:

Διαβάστε περισσότερα

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

mg ηµφ Σφαίρα, I = 52

mg ηµφ Σφαίρα, I = 52 Μελέτη της κίνησης ενός σώµατος που µπορεί να κυλάει σε κεκλιµένο επίπεδο (π.χ. σφόνδυλος, κύλινδρος, σφαίρα, κλπ.) Τ mg συνφ Κ Ν mg ηµφ Το σώµα του σχήµατος έχει µάζα m, ακτίνα και µπορεί να είναι: Σφόνδυλος

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική Δυναμική Μηχανών I 2 2 Επανάληψη: Κινηματική και Δυναμική 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

Hamiltonian φορμαλισμός

Hamiltonian φορμαλισμός ΦΥΣ - Διαλ.0 Hamltonan φορμαλισμός q = H H Οι εξισώσεις Hamlton είναι:, p = p q Ø (p,q) ονομάζονται κανονικές μεταβλητές Ø Η είναι συνάρτηση που ονομάζεται Hamltonan Ø Κανονικές μεταβλητές ~ θέση και ορμή

Διαβάστε περισσότερα

Σχεδίαση τροχιάς. (α) (β) (γ) (δ) Σχήµα 2.5

Σχεδίαση τροχιάς. (α) (β) (γ) (δ) Σχήµα 2.5 Σχεδίαση τροχιάς Η πιο απλή κίνηση ενός βραχίονα είναι από σηµείο σε σηµείο. Με την µέθοδο αυτή το ροµπότ κινείται από µία αρχική θέση σε µία τελική θέση χωρίς να µας ενδιαφέρει η ενδιάµεση διαδροµή που

Διαβάστε περισσότερα

) = 0 όπου: ω = κ µε m-εκφυλισµό

) = 0 όπου: ω = κ µε m-εκφυλισµό Εκφυλισμένες ιδιοτιμές Ø Υποθέσαµε ότι : ω k ω k ΦΥΣ 211 - Διαλ.25 1 Ø Τι ακριβώς συµβαίνει όταν έχουµε εκφυλισµών των ιδιοτιµών? Ø Στην περίπτωση αυτή πολλαπλές ιδιοτιµές αντιστοιχούν σε πολλαπλά ιδιοδιανύσµατα

Διαβάστε περισσότερα

Στερεό σώµα (διάκριτη κατανοµή): ορίζεται ως ένα σύνολο σηµειακών µαζών που διατηρούν σταθερές αποστάσεις µεταξύ τους.

Στερεό σώµα (διάκριτη κατανοµή): ορίζεται ως ένα σύνολο σηµειακών µαζών που διατηρούν σταθερές αποστάσεις µεταξύ τους. Φροντιστήριο ο : Εξίσωση κίνησης στερεών σωµάτων και επίλυση (ΠΕΡΙΤΡΟΦΙΚΗ ΚΙΝΗΗ, ΚΥΛΙΗ, ) τερεό σώµα (διάκριτη κατανοµή): ορίζεται ως ένα σύνο σηµειακών µαζών που διατηρούν σταθερές αποστάσεις µεταξύ τους.

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

Ένας δακτύλιος με μια μπίλια

Ένας δακτύλιος με μια μπίλια Ένας δακτύλιος με μια μπίλια Θεωρούμε ένα κατακόρυφο δακτύλιο ακτίνας R και μάζας m στο εσωτερικό του οποίου έχει προσκολληθεί σφαιρίδιο αμελητέων διαστάσεων μάζας m. O δακτύλιος μπορεί να κυλίεται χωρίς

Διαβάστε περισσότερα

u u u u u u u u u u u x x x x

u u u u u u u u u u u x x x x Βασικοί συµβολισµοί και σχέσεις ϕ ϕ ui & ϕ=, ϕ, i=, ui, j= t x x u1 u1 u1 x1 x2 x u 3 1, 1 ui, j ui, j u1, 1 ui, j ui, j u u u u u u u u u u u i 2 2 2 i, j= = i, j 2, 2 i, j = i, j 2, 2 i, j = x j x1 x2

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

Η έννοια του συναρτησιακού (functional).

Η έννοια του συναρτησιακού (functional). ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΛΟΓΙΣΜΟΥ ΤΩΝ ΜΕΤΑΒΟΛΩΝ (CALCULUS OF VARIATIONS) Η έννοια του συναρτησιακού (fnctionl). Ορισµός : Εάν σε κάθε συνάρτηση που ανήκει σε κάποιο χώρο συναρτήσεων A, αντιστοιχεί µέσω κάποιου

Διαβάστε περισσότερα

ΜΕΡΟΣ Α! Κινηµατική άποψη

ΜΕΡΟΣ Α! Κινηµατική άποψη ΜΕΡΟΣ Α Κινηµατική άποψη Θεωρούµε στερεό σώµα που κινείται στον χώρο, ενώ ένα σηµείο του Ο είναι διαρκώς ακίνητο ως προς το αδρανειακό σύττηµα από το οποίο εξετάζεται. Η θέση του στερεού καθορίζεται κάθε

Διαβάστε περισσότερα

Οι τροχαλίες θεωρούνται κυλινδρικά σώµατα µε ροπή αδράνειας ως προς τον άξονα περιστροφής τους I. = mr και g=10m/s 2.

Οι τροχαλίες θεωρούνται κυλινδρικά σώµατα µε ροπή αδράνειας ως προς τον άξονα περιστροφής τους I. = mr και g=10m/s 2. Γιο Γιο σε Τροχαλία και µια Ολίσθηση που µετατρέπεται σε Κύλιση Η µεγάλη τροχαλία του διπλανού σχήµατος έχει µάζα Μ=4kg, ακτίνα R=0, και κρέµεται από σταθερό σηµείο. Η µικρή τροχαλία έχει µάζα =kg και

Διαβάστε περισσότερα

16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι...

16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι... 1. Ο νόµος του Hooke υποστηρίζει ότι οι ελαστικές παραµορφώσεις είναι.των...που τις προκαλούν. 2. Ο τρίτος νόµος του Νεύτωνα υποστηρίζει ότι οι δυνάµεις που αναφέρονται στο νόµο αυτό έχουν... µέτρα,......

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control)

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Αλληλεπίδρασης με το Περιβάλλον Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Εμπέδησης (Impeance Control) Αλληλεπίδραση με το περιβάλλον Η αλληλεπίδραση με το περιβάλλον

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 08 Δυναμική περιστροφικής κίνησης Ροπή Ροπή Αδρανείας ΦΥΣ102 1 Περιστροφική κίνηση

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Μετασχηµατισµοί

Χωρικές Περιγραφές και Μετασχηµατισµοί Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται 1 Δυναµική F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Γιατί σώµατα κινούνται µε το τρόπο που κινούνται " Θεµελιώδεις νόµοι της µηχανικής: Οι τρεις νόµοι του

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ

ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ A A N A B P Y T A ΡΑΛΛΟΥ ΦΑΣΟΥΡΑΚΗ (Β4) ΜΑΡΤΙΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 9 5 ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ Γενίκευση της άσκησης (σελ 4) του σχολικού βιβλίου Φυσικής Κατεύθυνσης Β Λυκείου

Διαβάστε περισσότερα

Κύληση. ΦΥΣ Διαλ.33 1

Κύληση. ΦΥΣ Διαλ.33 1 Κύληση ΦΥΣ 111 - Διαλ.33 1 Κύλιση χωρίς ολίσθηση ΦΥΣ 111 - Διαλ.33 H συνθήκη για να έχουµε κύλιση χωρίς ολίσθηση είναι: s = Rθ = d ή a εφ. = αr V = d d ( Rθ ) = R dθ d = Rω για σταθερό R To σηµείο επαφής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Ροπή και Στροφορµή Μέρος δεύτερο

ΚΕΦΑΛΑΙΟ 8. Ροπή και Στροφορµή Μέρος δεύτερο ΚΕΦΑΛΑΙΟ 8 Ροπή και Στροφορµή Μέρος δεύτερο Στο προηγούµενο Κεφάλαιο εξετάσαµε την περιστροφή στερεού σώµατος περί σταθερό άξονα. Εδώ θα εξετάσοµε την εξίσωση κίνησης στερεού σώµατος γενικώς. Πριν το κάνοµε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 9. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - Cpyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις - Αρµονική Ταλάντωση Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις - Αρµονική Ταλάντωση Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις - Αρµονική Ταλάντωση Α.1. Σε µια κρούση δύο σφαιρών : Ενδεικτικές Λύσεις Θέµα Α (γ) το άθροισµα των ορµών των σφαιρών πριν από την κρούση είναι πάντα ίσο µε το

Διαβάστε περισσότερα

Κινητική ενέργεια κύλισης

Κινητική ενέργεια κύλισης ΦΥΣ 111 - Διαλ.34 1 Κινητική ενέργεια κύλισης H ολική κινητική ενέργεια ενός σώµατος που κυλίεται χωρίς ολίσθηση είναι το άθροισµα της κινητικής ενέργειας του κέντρου µάζας του λόγω µεταφοράς και της κινητικής

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Στη διαδικασία σχεδιασμού των Συστημάτων Αυτομάτου Ελέγχου, η απαραίτητη και η πρώτη εργασία που έχουμε να κάνουμε, είναι να

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων

ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων ΠΕΙΡΑΜΑ 8 Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της ροπής αδρανείας διαφόρων στερεών σωµάτων και των στροφικών ταλαντώσεων που εκτελούν γύρω

Διαβάστε περισσότερα

Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις

Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις Σφαίρα Σ 2 µάζας m 2 =m=2kg ηρεµεί στερεωµένη στο αριστερό άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=50n/m το άλλο άκρο του οποίου είναι στερεωµένο

Διαβάστε περισσότερα

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1 ΦΥΣ 3 - Διαλ. Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε

Διαβάστε περισσότερα

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Μηχανική Στερεού Ασκήσεις Εμπέδωσης Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή

Διαβάστε περισσότερα

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες Μικρό σώμα μάζας m κινείται μέσα σε βαρυτικό πεδίο με σταθερά g και επιπλέον κάτω από την επίδραση μιας δύναμης με συνιστώσες F x = 2κm και F y = 12λmt 2 όπου κ και λ είναι θετικές σταθερές σε κατάλληλες

Διαβάστε περισσότερα

Γιο Γιο σε Τροχαλία και μια Ολίσθηση που μετατρέπεται σε Κύλιση

Γιο Γιο σε Τροχαλία και μια Ολίσθηση που μετατρέπεται σε Κύλιση Γιο Γιο σε Τροχαλία και μια Ολίσθηση που μετατρέπεται σε Κύλιση Απάντηση α) Επειδή το νήµα δεν ολισθαίνει στις τροχαλίες και παραµένει τεντµένο, όλα τα σηµεία του έχουν την ίδια ταχύτητα. Το σηµείο Α συµµετέχει

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο

Διαβάστε περισσότερα

Οµάδα Ασκήσεων #1-Λύσεις

Οµάδα Ασκήσεων #1-Λύσεις Οµάδα Ασκήσεων #-Λύσεις Πρόβληµα # (α) (β) Τουλάχιστον Β.Ε. (Βαθµοί Ελευθερίας) χρειάζονται για αυθαίρετη τοποθέτηση στο χώρο (x,y,z) και επιπλέον Β.Ε. απαιτούνται για αυθαίρετο προσανατολισµό (στη δεδοµένη

Διαβάστε περισσότερα

( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν

( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν ΦΥΣ 111 - Διαλ.33 1 Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας αβαρούς τροχαλίας όπως στο σχήµα. Από διατήρηση ενέργειας υπολογίστε την ταχύτητα των δυο σωµάτων όταν η µάζα m 2 έχει κατέβει

Διαβάστε περισσότερα

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις Περιεχόµενα Κεφαλαίου 5 Εφαρµογές Τριβής Οµοιόµορφη Κυκλική Κίνηση Δυναµική Κυκλικής Κίνησης Οι κλήσεις στους αυτοκινητοδρόµους

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 24 Γενάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

Τα θέματα συνεχίζονται στην πίσω σελίδα

Τα θέματα συνεχίζονται στην πίσω σελίδα ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ ΑΚΑΔ. ΕΤΟΣ 16-17 Διδάσκων : Χ. Βοζίκης Τ. Ε. Ι. ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Διαβάστε περισσότερα

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών Συστημάτων Πολλών

Διαβάστε περισσότερα

Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση

Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 8-9, 7ο Εξάμηνο Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα