Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος"

Transcript

1 Δυναµική των Ροµποτικών Βραχιόνων Κ. Κυριακόπουλος

2 Ροµποτική Αρχιτεκτονική: η Δυναµική Περιβάλλον u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται από τις διαφορικές εξισώσεις που περιγράφουν αναλυτικά τη σχέση ανάµεσα στις ροπές των κινητήρων που κινούν τις αρθρώσεις του βραχίονα και την Κίνηση (θέση προσανατολισµός), και αλληλεπίδραση της κατασκευής (µέσα στο / µε το) περιβάλλον.

3 Μεθοδολογίες Δυναµικής Ροµποτικών Βραχιόνων Οι δυναµικές εξισώσεις είναι δυνατό να αναπτυχθούν στον τρισδιάστατο χώρο λειτουργίας του ροµπότ στον χώρο των µεταβλητών των αρθρώσεων του. Στα πλαίσια του µαθήµατος θα ασχοληθούµε µε το δυναµικό µοντέλο του χώρου αρθρώσεων. u Ροµποτική Δυναµική q,!q Ροµποτική Κινηµατική Θέση, Προσανατολισµός και αλληλεπίδραση Για την εξαγωγή του εφαρµόζονται διάφορες µέθοδοι, όπως Euer-Lagrange, Newton-Euer Kane H πιο (εκπαιδευτικά) κατάλληλη είναι η µέθοδος Euer- Lagrange που θα παρουσιαστεί και στη συνέχεια.

4 H Μέθοδος Euer-Lagrange ( =,, ) λ i i n Γενικευµένες συντεταγµένες: περιγράφουν τις θέσεις των συνδέσµων. Λαγκρανζιανή (Lagrangian): συνάρτηση των γενικευµένων συντεταγµένων = T ( λ,! λ) U λ L λ,! λ T: ολική κινητική ενέργεια του συστήµατος U: ολική δυναµική ενέργεια του συστήµατος. Ροµποτικός βραχίονας: ως γενικευµένες συντεταγµένες µπορούν να επιλεγούν οι µεταβλητές των αρθρώσεων,! " λ! λ n Οι δυναµικές εξισώσεις του βραχίονα προκύπτουν από την παρακάτω σχέση ξ i d dt όπου είναι η γενικευµένη δύναµη που αντιστοιχεί στη γενικευµένη συντεταγµένη. = q =! L "! λ L = ξ i λ i i! " q! q n i =,,n

5 H Μέθοδος Euer-Lagrange Οι γενικευµένες δυνάµεις προκύπτουν από τις µησυντηρητικές δυνάµεις που ασκούνται στην κατασκευή, π.χ. τις ροπές των κινητήρων που οδηγούν τις αρθρώσεις, τις ροπές τριβής στις αρθρώσεις καθώς επίσης και τις ροπές που αναπτύσσονται στις αρθρώσεις ως αποτέλεσµα των δυνάµεων επαφής που ασκούνται στο εργαλείο. Η σχέση d dt! L! λ L = ξ " i λ i i i=,, n i =,,n όταν εφαρµοστεί για µας δίνει τις αναλυτικές σχέσεις που ισχύουν ανάµεσα στις γενικευµένες δυνάµεις που ασκούνται στο βραχίονα και στις µετατοπίσεις, τις ταχύτητες και τις επιταχύνσεις των αρθρώσεων. βασίζεται στην ολική κινητική και την ολική δυναµική ενέργεια του συστήµατος.

6 Προσδιορισµός της Ολικής Κινητικής Θεωρούµε ένα ροµποτικό βραχίονα µε n συνδέσµους. Η ολική κινητική ενέργεια ενός βραχίονα προκύπτει ως άθροισµα των συνεισφορών κινητικής ενέργειας λόγω κίνησης των συνδέσµων και των αντίστοιχων επενεργητών των T q,!q που ευρίσκονται επι των συνδέσµων: n i=! " = T ( i q,!q ) +T ( mi q,!q ) T i q,!q Ενέργειας είναι η κινητική ενέργεια του i-συνδέσµου, και T ( mi q,!q ) είναι η κινητική ενέργεια του κινητήρα που ευρίσκεται επι του i-συνδέσµου. z 0 x 0 y 0 z 0 x 0 y 0 p i p" i p i p! mi ω i p mi r i ω mi

7 Προσδιορισµός της Ολικής Η ολική δυναµική ενέργεια ενός βραχίονα προκύπτει ως άθροισµα των συνεισφορών δυναµικής ενέργειας των συνδέσµων και Δυναµικής Ενέργειας των επενεργητών των αρθρώσεων p i " p i p i ω i r i n δυναµική ενέργεια του συνδέσµου i U q = U q + U i m q i i= z 0 ω mi x 0 y 0 p! mi p mi δυναµική ενέργεια του κινητήρα που επενεργεί στην άρθρωση i z 0 x 0 y 0

8 Προσδιορισµός των Εξισώσεων Με δεδοµένες την ολική κινητική και την ολική δυναµική ενέργεια από τις σχέσεις που έχουν προηγηθεί, προκύπτουν: n n T ( q,!q ) = T i +T mi U( q) = ( U ( q) + U ) i m q i Η Λαγκρανζιανή: Κίνησης L( q,!q ) = T ( q,!q ) U ( q) που µέσω των εξισώσεων Euer-Lagrange: d dt i=! L "!q i L = ξ q i i i =,,n οδηγούν στις δυναµικές εξισώσεις τύπου Euer-Lagrange του ροµπότ: B(q) q!! +C(q,!q)!q +G(q) = ξ i=

9 Με βάση τη παραπάνω µεθοδολογία το δυναµικό µοντέλλο ενός ροµποτικού βραχίονα είναι όπου : µητρώο αδράνειας. Bq Το Δυναµικό Μοντέλλο B(q)!! q +C(q,!q)!q +G(q) = ξ b ( q) b ( q) Τα διαγώνια στοιχεία του αναπαριστούν τη ροπή αδράνειας του άξονα της άρθρωσης i, στην ii εκάστοτε θέση του βραχίονα, όταν οι υπόλοιπες αρθρώσεις είναι ακίνητες. Τα µη διαγώνια στοιχεία του ij περιγράφουν το αποτέλεσµα της επιτάχυνσης της άρθρωσης j στην άρθρωση i. C(q,!q) : µητρώο, το οποίο περιέχει τις φυγόκεντρες ροπές και τις ροπές Coriois που αναπτύσσονται στο βραχίονα. Προκύπτει από το µητρώο κινητικής ενέργειας, µετά από παραγωγίσεις. Gq : διάνυσµα βαρυτικών όρων, εξαρτώνται µόνο από τις µετατοπίσεις των αρθρώσεων του βραχίονα και προέρχονται από την ολική δυναµική ενέργεια και συνιστούν. Αναπαριστούν τη ροπή που αναπτύσσεται στον άξονα µιας άρθρωσης, στην εκάστοτε θέση του βραχίονα, λόγω βαρύτητας. : µη συντηρητικές δυνάµεις που παράγουν έργο στις αρθρώσεις του βραχίονα: ξ F, F ξ = τ F u!q i F s sgn(!q i ) x < 0 sgn(x) = 0 x = 0 + x > 0 u s : διαγώνια µητρώα των σταθερών ιξώδους και στατικής τριβής του, αντίστοιχα.

10 Το Δυναµικό Μοντέλο συνεχ. Στην περίπτωση που το εργαλείο του βραχίονα βρίσκεται σε επαφή µε το περιβάλλο ένα µέρος των ροπών χρησιµοποιείται για να αντισταθµίσει τις ροπές που αναπτύσσονται στις αρθρώσεις λόγω των δυνάµεων επαφής: Jq T τ contact = J ( q) h : γεωµετρική Ιακωβιανή που έχει προκύψει από τη διαφορική κινηµατική και T.! h = f T µ T R : σύνθετο διάνυσµα δυνάµεων ροπών που ασκούνται " από ( f R ) ( µ R ) το εργαλείο του βραχίονα στο περιβάλλον. Συνοψίζοντας όσα αναφέραµε πιο πάνω, το Δυναµικό µοντέλο χώρου αρθρώσεων ενός ροµποτικού βραχίονα µπορούν να γραφτούν σε µητρωϊκή µορφή ως εξής: B(q) q!! +C(q,!q)!q + F u!q + F s sgn(!q) +G(q) + J T (q) h = τ Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου: αφορούν τον Πίνακα αδράνειας τον διάνυσµα Φυγόκεντρων και Coriois τους όρους Βαρύτητας και Ιξώδους Τριβής, και την Γραµµικότητα του Δυναµικού µοντέλου ώς προς τις Γεωµετρικές και Μηχανικές Παραµέτρους

11 H Μέθοδος Euer-Lagrange: Παράδειγµα- Μ τ : Ροπή Κινητήρα Ι : Ροπή Αδράνειας θ m : µάζα οµογενούς συνδέσµου : µήκος συνδέσµου L θ = m g sinθ L θ! = I θ! d dt! L " θ! L T = I θ! U = m g θ ( cos ) L = T U = I θ! m g ( cosθ) θ = ξ I!! θ + m g sinθ = τ Απλός και ευθύς τρόπος. Ενδείκνυται όταν η απλότητα της διάταξης το επιτρέπει. (Τι γίνεται όµως όταν έχουµε πολύπλοκους µηχανισµούς?) B(q)!! q +C(q,!q)!q + F u!q + F s sgn(!q) +G(q) + J T (q) h = τ

12 H Μέθοδος Euer-Lagrange: Παράδειγµα- B(q)!! q +C(q,!q)!q + F u!q + F s sgn(!q) +G(q) + J T (q) h = τ

13 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L: ο πίνακας Αδράνειας Ο πίνακας αδράνειας Εξάρτάται από την «θεση» q του βραχίονα: = B T ( q) είναι συµµετρικός: B q, και θετικά ορισµένος: x T B( q) x > 0 x R n,x 0 Είναι άνω και κάτω φραγµένος µ I n n B( q) µ I n n. 0 / 0 x T B q µ I n n x T µ I n n B q R n n B q ( ) x 0 x Rn Ο αντίστροφός του είναι άνω κάτω φραγµένος µ I n n B q µ I n n ( ) x 0 x Rn

14 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L: ο πίνακας Αδράνειας Για τα µ,µ ισχύει, αναλογα µε το άν ο βραχίονας έχει όλες τις αρθρώσεις του: περιστροφικές: µ,µ = const. γιατί τα στοιχεία του B(q) περιέχουν sin(.), cos(.) µ,µ Δεδοµένου ότι ο B(q) είναι φραγµένος, τότε πρισµατικές: είναι βαθµωτές συναρτήσεις του q M B q M όπου η νόρµα του B(q) µπορεί να είναι οιαδήποτε ορισµένη νόρµα:,, p,

15 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L: ο όρος Φυγόκεντρων Coriois Αν " C q,!q c q,!q Για το k-στοιχείο του ισχύει: c ( k q,!q ) =!q T S ( k q)!q S ( k q) = * b k q +, b k, q µε b k : την k-στήλη του Β(q) + c q,!q!q c q,!q! q Ο όρος είναι τετραγωνικός ώς προς το και c ( k q,!q ) = C ( q,!q )!q p c!q Για τα p c ισχύει, αναλογα µε το άν ο βραχίονας έχει όλες τις αρθρώσεις του: περιστροφικές: p c = const. γιατί τα στοιχεία του B(q) περιέχουν µόνο συναρτήσεις sin(.), cos(.) του q. πρισµατικές: p c είναι βαθµωτή συνάρτηση του q ( T B q k - / /.

16 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L : ο όρος Φυγόκεντρων Coriois Ενώ το διάνυσµα c q,!q είναι δεδοµένο για δεδοµένο βραχίονα, ο πίνακας C q,!q δεν είναι µονοσήµαντα ορισµένος Αν ορίσουµε τον πίνακα " C q,!q N q,!q!q " B! ( q) C ( q,!q ) C q,!q Ανεξαρτήτως επιλογής του ισχύει!q T N ( q,!q ) q = 0 Με κατάλληλη επιλογή του (χρήση συµβόλων Christoffe) τότε ο πίνακας είναι αντισυµµέτρικός, δηλ. και εποµένως ισχύει: = N Τ ( q,!q ) N q,!q C q,!q w T N (q,!q) w = 0 w

17 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L : Βαρυτικός όρος Ιξώδους Τριβής B(q)!! q + C(q,!q)!q + F u!q + F s sgn(!q)+ G(q)+ J T (q) h = τ Ο όρος της ιξώδους τριβής είναι φραγµένος F u!q f max!q Ο όρος της βαρύτητας είναι φραγµένος G( q ) g b q Για τ συνάρτηση g b (q) ισχύει, αναλογα µε το άν ο βραχίονας έχει όλες τις αρθρώσεις του: περιστροφικές: g b (q) = const. γιατί τα στοιχεία του G(q) περιέχουν µόνο συναρτήσεις sin(.), cos(.) του q. πρισµατικές: g b (q) είναι βαθµωτή συνάρτηση του q

18 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L : Γραµµικότητα ως προς Γεωµετρικές Μηχανικές Παραµέτρους Το δυναµικό µοντέλο ενός βραχίονα είναι: Μία µη-γραµµική (στη γενική περίπτωση) συνάρτηση των ( q,!q,!! q) B(q)!! q + C(q,!q)!q + F u!q + F s sgn(!q)+ G(q)+ J T (q) h = τ Μία γραµµική, ως προς τις γεωµετρικές µηχανικές παραµέτρους (π.χ. µάζες, αδράνειες, τριβές, κλπ) του βραχίονα, συνάρτηση Y ( q,!q, q!! ) π = τ

19 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L : Γραµµικότητα ως προς Γεωµετρικές Μηχανικές Παραµέτρους H γραµµική»-µορφή του δυναµικού µοντέλου E-L είναι χρήσιµη για την αναγνώριση των (πιθανά) αγνώστων παραµέτρων π του βραχίονα µέσω της εξής µεθοδολογίας: Εκτελούνται τροχίες ( q( t),!q ( t),!! q ( t )) t " 0,t f Κατά την διάρκεια αυτών «καταγράφονται» οι τιµές ( q( t i ),!q ( t i ),!! q ( t ),τ ( t )) i i t i 0,t f i = 0,,," Δηµιουργούµε τα (τεράστια) διανύσµατα Τ και (ψηλό) πίνακα Υ βαζοντας τα τ(t i ) και Υ(t i ) το ένα πάνω στο άλλο Η εκτίµηση του π δίδεται από τον ψευδοανάστροφο π = Υ Τ! ( Υ Τ Υ) Υ Τ Τ

20 B(q) q!! +C(q,!q)!q + F u!q + F s sgn(!q) +G(q) + J T (q) h = τ Αυτό είναι η µορφή αντίστροφης δυναµικής που ουσιαστικά αφορά τον προσδιορισµό των ροπών που είναι αναγκαίες για να υλοποιήσουν αυτή την κίνηση του βραχίονα, η οποία περιγράφεται από συγκεκριµένες µετατοπίσεις, ταχύτητες και επιταχύνσεις ( q,!q, q!! ) των αρθρώσεων. Αυτή η µορφή είναι κατάλληλη για προσοµοίωση ενός ροµπότ Η ευθεία δυναµική συνίσταται στον προσδιορισµό των επιταχύνσεων και (µέσω αριθµητικής ολοκλήρωσης) των ταχυτήτων µετατοπίσεων των αρθρώσεων που προκαλούνται από την εφαρµογή κάποιων συγκεκριµένων συναρτήσεων ροπών στις αρθρώσεις του βραχίονα, όταν είναι γνωστή η αρχική κατάσταση του συστήµατος (δηλ. οι θέσεις και οι ταχύτητες): q!! = B (q) τ C(q,!q)!q + F u!q + F s sgn(!q) +G(q) + J T (q) h q t = 0 Ευθεία Αντίστροφη Δυναµική Το Δυναµικό µοντέλο χώρου αρθρώσεων ενός ροµποτικού βραχίονα γράφεται σε µητρωϊκή µορφή ως εξής: { } = q 0,!q ( t = 0) =!q 0 Έχει νόηµα γιατί Bq > 0 Αυτή η µορφή είναι κατάλληλη για έλεγχο

21 Παράδειγµα 3 (θέµα) d Ένας ροµποτικός βραχίονας-pr αποτελείται από ένα περιστροφικό βαθµό ελευθερίας (q : η γωνία του ου συνδέσµου από τον άξονα-x του αδρανειακού συστήµατος) και ένα πρισµατικό (µεταφορικό) βαθµό ελευθερίας (q >0 : η απόσταση του κέντρου µάζας του ου συνδέσµου). Το κέντρο µάζας του πρώτου συνδέσµου ευρίσκεται σε σταθερή απόσταση r από τη πρώτη άρθρωση. Ο ος σύνδεσµος θεωρειται ότι έχει ροπή αδράνειας Ι ως προς το κέντρο µάζας του και µάζα m. Ο ος σύνδεσµος έχει ροπή αδράνειας Ι ως προς το κέντρο µάζας του µάζα m. Η επιτάχυνση της βαρύτητας είναι g και κατά τον άξονα-y. r q q x Κινητική Ενέργεια T = I + m r ( )!q T = m!q + I + m q ( )!q y g

22 Παράδειγµα 3 (θέµα) Δυναµική Ενέργεια U = m g r sin q = m r sin q g ( sin ) U = m g q sin q = m q q g d y g Λαγκρανζιανή L = T +T U U = I + m r ( )!q + m!q + I + m q ( )!q ( m r sin q ) g ( m q sin q ) g r q q x Εξισώσεις Euer-Lagrange " d " L " L = u dt!q q d " L dt!q d " L dt!q " L q L q " = τ f

23 Εξισώσεις Euer-Lagrange Παράδειγµα 3 (θέµα) " d " L " L = u dt!q q L = ( I!q + m r )!q + ( I + m q )!q = d " L dt!q d " L dt!q = I + m r ( + I + m q )!q d! L = I dt!q + m r ( + I + m q ) q!! + m q!q!q " L = m!q!q d! L = m dt!q q!! " L = ( m r cos q) g ( m q cos q) g = ( m r + m q) cos q g q L = m q q!q m sin q g " Δυναµικές εξισώσεις I + m r ( + I + m q ) q!! + m q!q!q + ( m r + m q ) cosq g = τ m q!! m q!q + m sin q g = f L q L q " = τ f

24 Παράδειγµα 3 (θέµα) Δυναµικές εξισώσεις I + m r ( + I + m q ) q!! + m q!q!q + ( m r + m q ) cosq g = τ m q!! m q!q + m sin q g = f Δυναµικές Εξισώσεις σε Μητρωϊκή Μορφή! I + m r! + I + m q 0 q! " 0 m! " " q + m q q 0! " m q q 0 q! m r + m q! + ( ) cosq " q! " " m sin q g = τ f! " "! B(q) ( q +C(q, q) q! + F u q + F s sgn( q) +G(q) + J T (q) h = u Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου T Το µητρώο αδράνειας ( B( q )) είναι συµµετρικό Bq = B( q), θετικά ορισµένο, και γενικά εξαρτώµενο από την εκάστοτε θέση του βραχίονα. Αντισυµµετρικότητα (δηλ. Ν = - Ν Τ ) του µητρώου: Γραµµικότητα ως προς τις δυναµικές παραµέτρους : N (q,!q) =! B(q) C(q,!q) Y ( q,!q, q!! ) π = u

25 Παράδειγµα 3 (θέµα) Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου Γραµµικότητα ως προς τις δυναµικές παραµέτρους : Y ( q,!q, q!! ) π = u Δυναµικές εξισώσεις I + m r ( + I + m q ) q!! + m q!q!q + ( m r + m q ) cosq g = τ m q!! m q!q + m sin q g = f q!! ( I + m r + I ) + ( cosq g) m r + ( q q!! + q!q!q + q cosq g) m = τ ( q!! q!q + sin q g) m = f I q!! cosq g q + m r + I q!! + q!q!q + q cosq g ( ( 0 0 q!! q!q ( m r ( = τ ( + sin q g ( ( f ( " m ( " " (!! Y q,!q, q!! π = u

26 Άσκηση: Δυναµικό Μοντέλο βραχίονα 3 β.ε. σε Αλληλεπίδραση µε το περιβάλλον (θέµα?) κ κ

27 Παράδειγµα 4 (επόµενο θέµα?) Οριζόντιος Βραχίονας DOF Δυναµική Euer-Lagrange Πιστοποίηση Ιδιοτήτων Πινάκων Y-π µορφή [ ] T q = ϑ ϑ : διάνυσµα των γενικευµένων συντεταγµένων a = a =: µήκη των συνδέσµων και, αντίστοιχα = = 0.5 : αποστάσεις των κέντρων µάζας των δύο συνδέσµων από τους αντίστοιχους άξονες m = m = 50 περιστροφής : µάζες των δύο συνδέσµων I = I =0: ροπές αδράνειας των συνδέσµων ως προς τα κέντρα µάζας τους αντίστοιχα Τα φαινόµενα τριβής θεωρούνται αµελητέα

28 Παράδειγµα 4 (επόµενο θέµα?) q = " ϑ ϑ T T ( q,!q ) = m υ + I ω + m υ + I ω ω =! ϑ ω =! ϑ +! ϑ x = cosϑ y = sinϑ x = a cosϑ + cos ϑ +ϑ y = a sinϑ + sin ϑ +ϑ -. / "x = ϑ " sinϑ "y = ϑ " cosϑ "x = ϑ " ) * a sinϑ + sin( ϑ +ϑ ) +, ϑ " sin ϑ +ϑ "x = ϑ " ) * a cosϑ + cos( ϑ +ϑ ) +, + ϑ " cos ϑ +ϑ T ( q,!q ) = m (!x +!y )+ I ϑ! + m!x +!y ( ϑ ) + I ϑ! +!

29 Παράδειγµα 4 (επόµενο θέµα?) T ( q,!q ) = qt B q q = ϑ ϑ b (ϑ ) b (ϑ ) b (ϑ ) b ( ( ϑ ϑ ( ( B q b ( ϑ ) b ( ϑ ) = b( ϑ ) b Οριζόντιος U ( q,!q ) = 0 L( q,!q ) = T ( q,!q ) b = I + m + I + m a + + a cosϑ b = b = I + m + a cosϑ b = I + m d dt " L!q i L = ξ q i i =, i ξ = τ

30 Παράδειγµα 4 (επόµενο θέµα?) B q b ( ϑ ) b ( ϑ ) = b( ϑ ) b B( q )!! q + C( q,!q )!q = τ C( q,!q ) = m a sinϑ ϑ! m a sinϑ ϑ! +! m a sinϑ ϑ! 0 ( ϑ ) ) ) () Aς επιβεβαιώσουµε τώρα τις ιδιότητες του Δυναµικού Μοντέλου E-L.

31 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L: ο πίνακας Αδράνειας Γενικά, ισχύει η µ I n n B q για Παράδειγµα 4 (επόµενο θέµα?) B q b ( ϑ ) b ( ϑ ) = b( ϑ ) b b = I + m + I + m a + + a cosϑ b = b = I + m + a cosϑ µ I b = I + m n n ( µ,µ ) = ( λ min,λ ) max ιδιοτιµές του B(q)

32 Παράδειγµα 4 (επόµενο θέµα?) Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L: ο πίνακας Αδράνειας Αν θεωρήσουµε M B q M, τότε επειδή B( q) = I + m + I + m ( a + + a cosϑ ) + I + m ( + a cosϑ ) Συνάγουµε ότι... M = I + m + I + m ( a + ) M = I + m + I + m a + + 3a Με χρήση των αριθµητικών τιµών των χαρακτηριστικών του βραχίονα M =7.5 M =9.5 B =9.5 B =6.5 B =9.5

33 Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L: ο όρος Φυγόκεντρων Coriois Επειδή Προφανώς Επίσης Παράδειγµα 4 (επόµενο θέµα?)!q = m a sinϑ! C q,!q N( q,!q ) = B(! q ) C( q,!q ) = C ( q,!q )!q = m a sinϑ ϑ! ϑ! +! ( ϑ ϑ! +! ϑ ) m a sinϑ! ( ϑ ) + m a sinϑ ϑ! m a ϑ!! ϑ + ϑ! + ϑ! m a ϑ! +! h ϑ! h ϑ! h ϑ! 0 ) ) h ϑ! h ( ϑ! + ϑ! ) ( h ϑ! 0 = ϑ T () ( ϑ ) = p c!q ) ) = ( 0 h! ϑ h! ϑ h! ϑ + h! ϑ 0 ( ( N (q,!q) = N T (q,!q) h = m a s

34 Παράδειγµα 4 (επόµενο θέµα?) Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L : Γραµµικότητα ως προς Γεωµετρικές Μηχανικές Παραµέτρους Ξεκινόντας από τις Δυναµικές Εξισώσεις E L :! I + m + I + m ( a + + a cosϑ ) " ϑ "" +! " I + m + a cosϑ m a sinϑ ϑ " " ϑ m a sinϑ ϑ " = τ! " I + m + a cosϑ ϑ "" + I + m "" Θέλουµε να το θέσουµε στη µορφή Y ( q,!q, q!! ) π = τ ϑ + m a sinϑ ϑ " = τ "" ϑ

35 Παράδειγµα 4 (επόµενο θέµα?) Αξιοσηµείωτες Ιδιότητες του Δυναµικού Μοντέλου τύπου E-L : Γραµµικότητα ως προς Γεωµετρικές Μηχανικές Παραµέτρους Μπορούµε να θεωρήσουµε τις µεταβλητές που συνιστούν το διάνυσµα π αγνώστων παραµέτρων,και " π = m + I m m m + I R 4 τα στοιχεία y ij του πίνακα Y q,!q,!! q δηλαδή y = ϑ!! y = a!! ϑ y 4 = y 4 = ϑ!! + ϑ!! y 3 = a cosϑ!! ϑ +!! ϑ +! ( ϑ ) a sinϑ (! ϑ )! ϑ ( ϑ ) y = y = 0 y 3 = a cosϑ ϑ!! + sinϑ! Τ

36 Παράδειγµα 5 (επόµενο θέµα?) Κατακόρυφος Βραχίονας DOF, µε κινητήρες Δυναµική Euer-Lagrange Πιστοποίηση Ιδιοτήτων Πινάκων Y-π µορφή [ ] T q = ϑ ϑ : διάνυσµα των γενικευµένων συντεταγµένων a, a: µήκη των συνδέσµων και, αντίστοιχα : αποστάσεις των κέντρων µάζας των δύο συνδέσµων από τους, αντίστοιχους άξονες περιστροφής m,m : µάζες των δύο συνδέσµων m m,m : µάζες των κινουµένων µερών των δύο κινητήρων m I m,i : ροπές αδράνειας των κινητήρων ως προς τους άξονες m περιστροφής τους I,I : ροπές αδράνειας των συνδέσµων ως προς τα κέντρα µάζας τους αντίστοιχα pm = p : οι κινητήρες βρίσκονται τοποθετηµένοι στους i i,zm = z i i, i =, άξονες των αρθρώσεων, µε Κ.Μ. τοποθετηµένα στις αντίστοιχες αρχές των συστηµάτων

37 Παράδειγµα 5: (επόµενο θέµα?) y z 0 z x ( I + m + k r I m + I + m ( a + + a c )+ I m + m m a ) "" ϑ + +( I + m ( + a c )+ k r I m ) ϑ "" m a s " ϑ " ϑ m a s " ϑ +( m + m m a + m a )gc + m gc = τ ( I + m ( + a c )+ k r I m ) "" ϑ +( I + m + k r I m ) "" ϑ + + m a s " ϑ + m gc = τ

38 Παράδειγµα 5: Μητρώο Αδρανείας y z 0 z x B q b = I + m + k I + I + m (a + + a c ) + I + m a r m m m b = b = I + m ( + a c ) + k I r m b I m k I = + + r m b ( ϑ ) b ( ϑ ) = b( ϑ ) b T = Bq B q Το µητρώο αδράνειας είναι προφανώς συµµετρικό και (µπορεί να αποδειχθεί εύκολα ότι) είναι θετικά ορισµένο.

39 Παράδειγµα 5: Μητρώο Φυγόκεντρων Coriois y z 0 z x C( q,!q ) = m a s ϑ! m a s ϑ! +! m a s ϑ! 0 ( ϑ ) ) ) ()

40 Παράδειγµα 5: Διάνυσµα Βαρύτητας y z 0 G q g z x (m + m a + m a ) g c + m g c m = g = = m g c (m + m a + m a ) c + m c m = m c g

41 z 0 y z Παράδειγµα 5: Δυναµική x B( q )!! q +C( q,!q )!q + g( q ) = τ G q C( q,!q ) = h ϑ! h ( ϑ! + ϑ! ) h ϑ! 0 ( m + m a + m a )gc + m gc m = m gc r m m m r m B q I + m + k I + I + m (a + + a c ) + I + m a I + m ( + a c ) + k I = I + m ( + a c ) + kr I m I + m + kr I m ( ( ( I + m + I + m ( a + + a c )+ ) ϑ "" +( I + m ( + a c )+ k ) ϑ "" m a s " ϑ " ϑ m a s " ϑ +( m + m a )gc + m gc = τ ( I + m ( + a c )) ϑ "" +( I + m ) ϑ "" + m a s " ϑ + m gc = τ

42 Παράδειγµα 5: Αξιοσηµείωτες Ιδιότητες Δυναµικού Μοντέλου y Αντισυµµετρικότητα Πίνακα N (q,!q) =! B(q) C(q,!q) z 0 z x N( q,!q ) = B(! q ) C( q,!q ) = h ϑ! h! h ϑ! 0 = ϑ ( ( h ϑ! h ( ϑ! + ϑ! ) h ϑ! 0 0 h! ϑ h! ϑ h! ϑ + h! ϑ 0 N (q,!q) = N T (q,!q) h = m a s

43 Παράδειγµα 5: Αξιοσηµείωτες Ιδιότητες Δυναµικού Μοντέλου z 0 y = a!! ϑ + a gc y = a!! ϑ + gc y 3 =!! ϑ y 4 = k r!! ϑ y z ϑ!! + ( a a c + a )!! ϑ!! + ( a c + a )!! y 5 = a + a a c + a y 6 = a c + a y 7 = y 7 = ϑ!! + ϑ!! y 8 =!! ϑ + k r!! ϑ y = y = y 3 = y 4 = 0!!!! y 5 = a a c + a y 6 = a c + a y 8 = k!! r ϑ + k!! r ϑ ϑ + a!! ϑ + a a s! ϑ + a gc ϑ + a!! ϑ + a s! ϑ + gc x Γραµµικότητα ως προς τις δυναµικές παραµέτρους Y ( q,!q, q!! ) π = τ! " y y y 8 y y y 8 ϑ a a s! ϑ! ϑ a a s! ϑ + a gc + a gc ϑ a s! ϑ! ϑ a s! ϑ + gc! " π = m + m ( a ) ( ) ( a ) 6 ( ) 7 8 π π! π 8 m m m π = m π = I + m a + I π = I π = m π = m π = I + m a π = I! = τ " τ m

44 Μαθηµατική Επανάληψη: Νόρµες Διανυσµάτων Η νόρµα ενός διανύσµατος x =! " x x!x n T R n µπορεί να θεωρηθεί ως ένα «µέτρο» έκφρασης του «µεγέθους» του " x = m n i= x i m m m = x n = x i i= x m = x = m x = im m m = x m = max i=!n { x i } " n x = x i i= x = x =

45 Μαθηµατική Επανάληψη: Νόρµες Πινάκων Η m-νόρµα ενός πίνακα A R n n παριστά την ελάχιστη αυξοµείωση που θα προκαλέσει στο µέγεθος (εκφρασµένου µε την m-νόρµα) οιοδήποτε στοιχείου o Πολλαπλασιασµός µε τον A x =! " x x!x n T R n A m = min x R n A x m x m

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων

υναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων υναµική των Ροµποτικών Βραχιόνων Ροµποτική Αρχιτεκτονική: η υναµική u Ροµποτική υναµική q, q& Ροµποτική Κινηµατική Περιβάλλον Θέση, Προσανατολισµός & και αλληλε ίδραση Η δυναµική ασχολείται µε την εξαγωγή

Διαβάστε περισσότερα

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i, Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον

Διαβάστε περισσότερα

3.6 Ευθεία και Αντίστροφη υναµική

3.6 Ευθεία και Αντίστροφη υναµική 3.6 Ευθεία και Αντίστροφη υναµική Στη δυναµική µας απασχολούν δύο ειδών προβλήµατα, το ευθύ δυναµικό πρόβληµα και το αντίστροφο δυναµικό πρόβληµα. Το αντίστροφο πρόβληµα αφορά στον προσδιορισµό των ροπών

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - Β. - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 06. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον.

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ 9.0 Εισαγωγικά Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9.1 Έλεγχος «Συµµόρφωσης» ή «Υποχωρητικότητας» (Comliance Control)

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 4 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Μοντελοποίηση Μηχανικών Συστημάτων Ν Βαθμών Ελευθερίας Μηχανικά δυναμικά συστήματα πολλών Β.Ε. Μοντελοποίηση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός

Διαβάστε περισσότερα

Μάθημα: Ρομποτικός Έλεγχος

Μάθημα: Ρομποτικός Έλεγχος Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ε.Μ.Π., Ακαδημαϊκό Έτος 011-1 Μάθημα: Ρομποτικός Έλεγχος Αυτόματος Έλεγχος Ρομπότ (Μη-Γραμμικός Ρομποτικός Έλεγχος Κων/νος Τζαφέστας

Διαβάστε περισσότερα

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control)

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Αλληλεπίδρασης με το Περιβάλλον Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Εμπέδησης (Impeance Control) Αλληλεπίδραση με το περιβάλλον Η αλληλεπίδραση με το περιβάλλον

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ. Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ. Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΑΣΚΗΣΕΙΣ Π. Ασβεστάς Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Πανεπιστήμιο Δυτικής Αττικής E-mail: pasv@uniwa.gr ΑΣΚΗΣΗ 1 1. Έστω δύο 3Δ καρτεσιανά συστήματα συντεταγμένων,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί

Διαβάστε περισσότερα

Οµάδα Ασκήσεων #3-Λύσεις

Οµάδα Ασκήσεων #3-Λύσεις Οµάδα Ασκήσεων #3-Λύσεις Πρόβληµα # (α) Ο βραχίονας είναι επίπεδος. Μπορούµε να βρούµε τον προσπελάσιµο χώρο εργασίας µε µια βήµα-προς-βήµα προσέγγιση. Πρώτα βρίσκουµε το χώρο που καλύπτεται όταν η άρθρωση-3

Διαβάστε περισσότερα

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000 Τµήµα Π Ιωάννου & Θ Αποστολάτου 2/2000 Μηχανική ΙI Λογισµός των µεταβολών Προκειµένου να αντιµετωπίσουµε προβλήµατα µεγιστοποίησης (ελαχιστοποίησης) όπως τα παραπάνω, όπου η ποσότητα που θέλουµε να µεγιστοποιήσουµε

Διαβάστε περισσότερα

Κίνηση στερεών σωμάτων - περιστροφική

Κίνηση στερεών σωμάτων - περιστροφική Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Εισαγωγική Ανάλυση και Γραμμικοποίηση. Μη-Γραμμικών Δυναμικών Εξισώσεων

Δυναμική Μηχανών I. Εισαγωγική Ανάλυση και Γραμμικοποίηση. Μη-Γραμμικών Δυναμικών Εξισώσεων Δυναμική Μηχανών I Εισαγωγική Ανάλυση και Γραμμικοποίηση 4 5 Μη-Γραμμικών Δυναμικών Εξισώσεων 25 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση

Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ. Μηχ/κών

Διαβάστε περισσότερα

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών Συστημάτων Πολλών

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται

Διαβάστε περισσότερα

Σχεδιασµός Τροχιάς. Σχήµα Πορείες στον χώρο των αρθρώσεων και τον Καρτεσιανό χώρο.

Σχεδιασµός Τροχιάς. Σχήµα Πορείες στον χώρο των αρθρώσεων και τον Καρτεσιανό χώρο. Κεφάλαιο 11 Σχεδιασµός Τροχιάς 11-1 Εισαγωγή Πορεία (path) είναι µία γραµµή σε έναν πολυδιάστατο χώρο, η οποία συνδέει δύο από τα σηµεία του., βλ. Σχ. 11-1. Σχήµα 11-1. Πορείες στον χώρο των αρθρώσεων

Διαβάστε περισσότερα

Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση

Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 8-9, 7ο Εξάμηνο Ρομποτική Ι: Διαφορική Κινηματική Ανάλυση Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 8.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 8. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 8. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 Copyrght ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 00. Με επιφύλαξη

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά Δυναμική Μηχανών I 2 1 Επανάληψη: Μαθηματικά 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Συμβολισμοί Μεταβλητών

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 5. - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 04-05 opyight ΕΜΠ - Σχολή

Διαβάστε περισσότερα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α, Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Κλασικη ιαφορικη Γεωµετρια

Κλασικη ιαφορικη Γεωµετρια Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία

Διαβάστε περισσότερα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα ΦΥΣ 11 - Διαλ.3 1 Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα q Το παρακάτω σύστημα είναι ανάλογο με το σύστημα των δύο εκκρεμών. q Οι δυο ιδιοσυχνότητες του συστήματος είναι ίδιες με τις ιδιοσυχνότητες

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική Δυναμική Μηχανών I 2 2 Επανάληψη: Κινηματική και Δυναμική 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 017 Πρόβλημα Α Ένα σημειακό σωματίδιο μάζας m βάλλεται υπό γωνία ϕ και με αρχική ταχύτητα μέτρου v 0 από το έδαφος Η κίνηση εκτελείται στο ομογενές

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόμενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσματικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναμική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h

( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h Μη αδρανειακά συστήματα αναφοράς ΦΥΣ 211 - Διαλ.27 1 q Μέχρι τώρα έχουµε χρησιµοποιήσει συστήµατα αναφοράς όπως ( x, y,z) καρτεσιανό q όπου ο 2 ος νόµος του Newton F = m a x = f x, y,z έχει την µορφή:

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 19.1 - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 1. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

mg ηµφ Σφαίρα, I = 52

mg ηµφ Σφαίρα, I = 52 Μελέτη της κίνησης ενός σώµατος που µπορεί να κυλάει σε κεκλιµένο επίπεδο (π.χ. σφόνδυλος, κύλινδρος, σφαίρα, κλπ.) Τ mg συνφ Κ Ν mg ηµφ Το σώµα του σχήµατος έχει µάζα m, ακτίνα και µπορεί να είναι: Σφόνδυλος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)

Διαβάστε περισσότερα

Εφαρμογή της γενικής λύσης

Εφαρμογή της γενικής λύσης Εφαρμογή της γενικής λύσης Να βρεθούν οι χαρακτηριστικές συχνότητες του συστήματος ΦΥΣ 11 - Διαλ.4 1 x 1 x m 1 m k 1 k 1 k 3 Η δυναμική ενέργεια του συστήματος είναι: U = 1 kx 1 + 1 k 1 ( x x 1 ) + 1 kx

Διαβάστε περισσότερα

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

Οµάδα Ασκήσεων #1-Λύσεις

Οµάδα Ασκήσεων #1-Λύσεις Οµάδα Ασκήσεων #-Λύσεις Πρόβληµα # (α) (β) Τουλάχιστον Β.Ε. (Βαθµοί Ελευθερίας) χρειάζονται για αυθαίρετη τοποθέτηση στο χώρο (x,y,z) και επιπλέον Β.Ε. απαιτούνται για αυθαίρετο προσανατολισµό (στη δεδοµένη

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 12. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 12. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 12 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Απόκριση Συστημάτων N Β.Ε. Σε αρχικές συνθήκες Συστήματα χωρίς απόσβεση Εισαγωγή στην ιδιοανυσματική ανάλυση

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ

ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ ΕΛΕΓΧΟΣ ΗΛΕΚΤΡΟΫ ΡΑΥΛΙΚΩΝ ΣΕΡΒΟΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΣΜΕΝΟΣ ΣΤΗ ΥΝΑΜΙΚΗ Ιωάννης Νταβλιάκος, Ευάγγελος Παπαδόπουλος Σχολή Μηχανολόγων Μηχανικών ΕΜΠ, Εργαστήριο Αυτοµάτου Ελέγχου email: gdavliak@central.ntua.gr,

Διαβάστε περισσότερα

Σχεδίαση τροχιάς. (α) (β) (γ) (δ) Σχήµα 2.5

Σχεδίαση τροχιάς. (α) (β) (γ) (δ) Σχήµα 2.5 Σχεδίαση τροχιάς Η πιο απλή κίνηση ενός βραχίονα είναι από σηµείο σε σηµείο. Με την µέθοδο αυτή το ροµπότ κινείται από µία αρχική θέση σε µία τελική θέση χωρίς να µας ενδιαφέρει η ενδιάµεση διαδροµή που

Διαβάστε περισσότερα

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1 ΦΥΣ 3 - Διαλ. Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για την περιγραφή

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Μηχανική Στερεού Ασκήσεις Εμπέδωσης Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή

Διαβάστε περισσότερα

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται 1 Δυναµική F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Γιατί σώµατα κινούνται µε το τρόπο που κινούνται " Θεµελιώδεις νόµοι της µηχανικής: Οι τρεις νόµοι του

Διαβάστε περισσότερα

10. Παραγώγιση διανυσµάτων

10. Παραγώγιση διανυσµάτων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ

ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-16 ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ 18/9/2014 ΕΙΣΑΓΩΓΗ_ΚΕΦ. 1 1 ΠΛΗΡΟΦΟΡΙΕΣ Διδάσκων Γεράσιμος Κουρούκλης Καθηγητής (Τμήμα Χημικών Μηχανικών). (gak@auth.gr,

Διαβάστε περισσότερα

) A a r a. Κίνηση σωματιδίου κάτω από επίδραση δύναμης. T = 1 2 m (!r 2 + r 2!θ 2. A a r a + C. = Ar a 1 dr V = F = V r V = Fdr

) A a r a. Κίνηση σωματιδίου κάτω από επίδραση δύναμης. T = 1 2 m (!r 2 + r 2!θ 2. A a r a + C. = Ar a 1 dr V = F = V r V = Fdr Κίνηση σωματιδίου κάτω από επίδραση δύναμης ΦΥΣ 211 - Διαλ.05 1 Έστω ένα σωματίδιο κινείται κάτω από την επίδραση μιας δύναμης F = Ar α 1 που έχει διεύθυνση προς την αρχή των αξόνων. Τα Α και α είναι σταθερές.

Διαβάστε περισσότερα

4. Σειρές Τέηλορ και Μακλώριν

4. Σειρές Τέηλορ και Μακλώριν Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Σειρές Τέηλορ και Μακλώριν Το θεώρηµα του Τέηλορ Το θεώρηµα του Τέηλορ (Tayl) µάς δίνει τη δυνατότητα να αναπτύσσουµε συναρτήσεις

Διαβάστε περισσότερα

ΦΥΣ Διαλ Δυναµική

ΦΥΣ Διαλ Δυναµική ΦΥΣ 131 - Διαλ.08 1 Δυναµική Ø F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Ø Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Ø Γιατί σώµατα κινούνται µε το τρόπο που κινούνται q Θεµελιώδεις νόµοι της µηχανικής:

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 7 έκδοση DΥΝI-EXC07-06b Copyright Ε.Μ.Π. - 06 Σχολή

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

Γενικευμένες συντεταγμένες

Γενικευμένες συντεταγμένες Γενικευμένες συντεταγμένες Έστω ένα σύστημα n-υλικών σημείων. Η θέση του συστήματος ως προς ένα αδρανειακό σύστημα αναφοράς, καθορίζεται την τυχαία χρονική στιγμή t από τα διανύσματα θέσης των υλικών σημείων:

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Προσέγγιση Galerkin

Δυναμική Μηχανών I. Προσέγγιση Galerkin Δυναμική Μηχανών I 8 2 Προσέγγιση Galerkin Χειμερινό Εξάμηνο 214 Τμήμα Μηχανολόγων Μηχανικών, ΕΜΠ Δημήτριος Τζεράνης, Ph.D. 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Κίνηση κατά μήκος ευθείας γραμμής

Κίνηση κατά μήκος ευθείας γραμμής Μελέτη κινηματικών εννοιών: Θέση, μετατόπιση, ταχύτητα, μέτρο ταχύτητας, και επιτάχυνση. Διαφορά εννοιών "μετατόπισης - " διαστήματος" και "στιγμιαία "μέση". Μελέτη κίνησης με σταθερή επιτάχυνση. Κίνηση

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Μετασχηµατισµοί

Χωρικές Περιγραφές και Μετασχηµατισµοί Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του Ροµποτική Ο χειρισµός αντικειµένων και εργαλείων από ένα ροµποτικό βραχίονα σηµαίνει ότι το ροµπότ πρέπει να είναι ικανό να τοποθετεί και να προσανατολίζει κατάλληλα το άκρο του στο χώρο εργασίας π.χ.

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις

Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις Σφαίρα Σ 2 µάζας m 2 =m=2kg ηρεµεί στερεωµένη στο αριστερό άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=50n/m το άλλο άκρο του οποίου είναι στερεωµένο

Διαβάστε περισσότερα

) = 0 όπου: ω = κ µε m-εκφυλισµό

) = 0 όπου: ω = κ µε m-εκφυλισµό Εκφυλισμένες ιδιοτιμές Ø Υποθέσαµε ότι : ω k ω k ΦΥΣ 211 - Διαλ.25 1 Ø Τι ακριβώς συµβαίνει όταν έχουµε εκφυλισµών των ιδιοτιµών? Ø Στην περίπτωση αυτή πολλαπλές ιδιοτιµές αντιστοιχούν σε πολλαπλά ιδιοδιανύσµατα

Διαβάστε περισσότερα

Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις

Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις q Ταλαντώσεις εμφανίζονται παντού Ø Μικρές ταλαντώσεις γύρω από θέση ισορροπίας Ø Εμφανίζονται σε πολλά προβλήματα κβαντοµηχανικής Ø Έχουμε ήδη συναντήσει σε

Διαβάστε περισσότερα