Μη επιβλεπόμενη εκπαίδευση (Clustering) Μη παραμετρική Μη επιβλεπόμενη εκπαίδευση Μέτρα εγγύτητας Αλγόριθμος k means ISODATA Ιεραρχικό clustering

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μη επιβλεπόμενη εκπαίδευση (Clustering) Μη παραμετρική Μη επιβλεπόμενη εκπαίδευση Μέτρα εγγύτητας Αλγόριθμος k means ISODATA Ιεραρχικό clustering"

Transcript

1 Clustering

2 Σημερινό Μάθημα Μη επιβλεπόμενη εκπαίδευση (Clustering) Μη παραμετρική Μη επιβλεπόμενη εκπαίδευση Μέτρα εγγύτητας Αλγόριθμος k means ISODATA Ιεραρχικό clustering Δεντρογράμματα Demos

3 Επιβλεπόμενη vs Μη Επιβλεπόμενη Μάθηση Μέχρι τώρα θεωρήσαμε μεθόδους αναγνώρισης με classification όπου το πρότυπο χαρακτηρίζεται από τα μεγέθη {x,ω} Αυτά τα προβλήματα αναγνώρισης ονομάζονται Επιβλεπόμενα (supervised) αφού διατίθενται και το χαρακτηριστικό διάνυσμα και η σωστή απάντηση. Υπάρχουν όμως περιπτώσεις όπου δίνεται το χαρακτηριστικό διάνυσμα χωρίς την κλάση. Αυτές οι μέθοδοι καλούνται Μη Επιβλεπόμενες (unsupervised) λόγω του ότι δεν χρησιμοποιούν τη σωστή απάντηση. η

4 Επιβλεπόμενη vs Μη Επιβλεπόμενη Μάθηση Αν και η μέθοδοι μη επιβλεπόμενης μάθησης φαίνονται περιορισμένων δυνατοτήτων υπάρχουν πολλές περιπτώσεις που επιβάλλεται η χρήση τους: Ο χαρακτηρισμός πολλών δεδομένων μπορεί να αποβεί δαπανηρός (π.χ. αναγνώριση ομιλίας) Το είδος της κλάσης μπορεί να μην είναι γνωστό ς ης ης μ ρ μη γ εξ αρχής.

5 Κατηγοριοποιήση των μη επιβλεπόμενων μεθόδων εκμάθησης Παραμετρικές (μείγματα ί κατανομών): Αυτές οι μέθοδοι μοντελοποιούν την υπό συνθήκη πυκνότητα πιθανότητα με ένα μίγμα παραμετρικών πυκνοτήτων με σκοπό να βρουν τις παραμέτρους ρ του μοντέλου. Μη παραμετρικές (clustering): Δεν γίνεται υπόθεση για την πυκνότητα πιθανότητα αλλά επιχειρείται διαχωρισμός των δεδομένων σε κλάσεις.

6 Μη παραμετρική Μη επιβλεπόμενη εκπαίδευση Δεν ασχολούμαστε με συναρτήσεις πυκνότητας Αναζητούμε ομαδοποιήσεις (clusters) σε ένα σύνολο δεδομένωνδ Το μη παραμετρικό clustering συμπεριλαμβάνει 3 βήματα: Ορισμός ενός μέτρου ομοιότητας (ανομοιότητας) μεταξύ των παραδειγμάτων Ορισμός κριτηρίου για clustering (συνάρτηση) Ορισμός αλγορίθμου βελτιστοποίησης της συνάρτησης κριτηρίου

7 Μέτρα εγγύτητας Ένας κανόνας μέτρησης της απόστασης d(x,y) μεταξύ δύο διανυσμάτων x και y πρέπει να πληρεί τις ιδιότητες: Αν έχει και την ιδιότητα: Τό λ ί ό δ λώ Τότε καλείται νόρμα και δηλώνεται ως d(x,y)= x y

8 Μέτρα εγγύτητας Η πιο γενική μορφή ενός μέτρου απόστασης είναι

9 Γνωστά μέτρα εγγύτητας Μέτρο Minkowski ki( (L k ) Η επιλογή του k εξαρτάται από την έμφαση που θέλουμε να δώσουμε σε μεγάλες διαφορές μεταξύ διαστάσεων Απόσταση Manhattan (L1 norm) Όταν χρησιμοποιείται με δυαδικά διανύσματα είναι γνωστή και ως απόσταση Hamming

10 Γνωστά μέτρα εγγύτητας Euclidean απόσταση (L2 norm) Chebyshev απόσταση (L norm)

11 Γνωστά μέτρα εγγύτητας Μη γραμμική απόσταση: Εσωτερικό γινόμενο (απαιτεί κανονικοποιημένα διανύσματα) ) Correlation coefficient (συσχέτιση)

12 Συνάρτηση κριτηρίου για clustering Όταν έχει ορισθεί μέτρο ομοιότητας (ανομοιότητας) χρειάζεται να ορίσουμε μια συνάρτηση κριτηρίου Η πιο γνωστή συνάρτηση κριτηρίου για clustering είναι το άθροισμα τετραγωνικού λάθους Μετράει πόσο καλά το σετ δεδομένων απέχει από τα κέντρα των clusters Επίσης χρησιμοποιούνται οι scatter matrices από το LDA

13 Αξιοπιστία cluster Η επιλογή του μέτρου ομοιότητας (ανομοιότητας) έχει άμεση επίδραση στα παραγόμενα clusters H αξιοπιστία των clusters και το πλήθος τους είναι υποκειμενικά

14 Επαναληπτική βελτιστοποίηση Άπαξ και οριστεί συνάρτηση κριτηρίου, απομένει να ορίσουμε διαμερισμό που να ελαχιστοποιεί το κριτήριο. Εξαντλητική απαρίθμηση όλων των διαμερισμών δεν είναι εφικτή. Φανταστείτε ότι πρόβλημα 5 clusters και 100 παραδειγμάτων δίνει διαμερισμούς. μρ μ

15 Επαναληπτική βελτιστοποίηση Ο πιο κοινός τρόπος είναι η επαναληπτική προσέγγιση: 1. Βρες λογικό αρχικό διαμερισμό 2. Μετέφερε δείγματα ώστε να βελτιστοποιηθεί η συνάρτηση κριτηρίου Τέτοιες προσεγγιστικές μέθοδοι παράγουν υποβέλτιστες λύσεις αλλά είναι υπολογιστικά βολικές

16 Επαναληπτική βελτιστοποίηση Υπάρχουν δύο κατηγορίες επαναληπτικών προσεγγίσεων: Επίπεδοι αλγόριθμοι για clustering Παράγουν σετ ανεξάρτητων clusters Οι πιο γνωστοί είναι οι k means και ISODATA Ιεραρχικοί αλγόριθμοι για clustering Το αποτέλεσμα είναι μια ιεραρχία εμφωλιασμένων clusters Χωρίζονται στους ενωτικούς (agglomerative) και διαχωριστικούς (divisive)

17 Basic Sequential Clustering m=1 1 \{number of clusters}\ C m ={x 1 } For i=2 to N Algorithm (BSAS) Find C k : d(x i,c k )=min 1 j m d(x i,c j ) If (d(x i,c k)>θ) AND (m<q) then o m=m+1 o C m ={x i } Else o C k =C k {x i } o Where necessary, update representatives End {if} End {for} 17

18 Αλγόριθμος k means Είναι απλή διαδικασία clustering που επιδιώκει την ελαχιστοποίηση της συνάρτησης J MSE με επαναληπτική διαδικασία:

19 Αλγόριθμος k means 1. Όρισε το πλήθος των clusters 2. Αρχικοποίησε clusters με: Τυχαία κατανομή παραδειγμάτων στα clusters Ή τυχαία επιλογή κέντρων clusters 3. Υπολόγισε το μέσο κάθε cluster 4. Απέδωσε κάθε δείγμα στο πλησιέστερο μέσο 5. Αν η κατανομή των δειγμάτων δεν άλλαξε τερμάτισε, αλλιώς βήμα 3

20 Αλγόριθμος k means Ο k means χρησιμοποιείται στην επεξεργασία σήματος για διανυσματικό κβαντισμό Μονοδιάστατα σήματα κβαντίζονται σε αριθμό επιπέδων για μετάδοση ή αποθήκευση με δυαδικό τρόπο Κβαντίζουμε το πολυδιάστατο διάνυσμα επιλέγοντας ένα σετ πολυδιάστατων προτύπων (κέντρα clusters) Αυτά τα κέντρα των clusters αποτελούν το codebook της εφαρμογής

21 Αλγόριθμος k means

22 ISODATA ISODATA A είναι συντομογραφία του Iterative Self Organizing Data Analysis Technique Algorithm Είναι επέκταση του k means που εμπεριέχει ευριστικούς τρόπους για την αυτόματη επιλογή του πλήθους των κλάσεων Ο χρήστης επιλέγει τις παραμέτρους: NMIN_EX ελάχιστο πλήθος δειγμάτων ανά cluster ND επιθυμητό πλήθος cluster σ 2 S μέγιστη διασπορά για διαχωρισμό clusters DMERGE μέγιστη απόσταση για ένωση clusters NMERGE μέγιστο πλήθος clusters που μπορούν να ενωθούν

23 ISODATA 1. Εκτέλεσε k-means clustering 2. Διάσπασε όσα clusters έχουν αρκετά ανόμοια δεδομένα 3. Ένωσε όσα clusters έχουν αρκετά όμοια δεδομένα 4. Βήμα 1

24 ISODATA Πλεονεκτήματα Διαθέτει δυνατότητες αυτό οργάνωσης Ευελιξία στον να καταργεί clusters με λίγα δείγματα Ικανότητα να διαιρεί clusters με ανομοιότητες Ικανότητα να ενώνει clusters με ομοιότητες Μειονεκτήματα Τα δεδομένα πρέπει να είναι γραμμικά διαχωριζόμενα Δύσκολος ο προκαθορισμός των παραμέτρων και καθοριστικός Για μεγάλα σετ ή πλήθος clusters υπάρχουν καλύτεροι αλγόριθμοι Στην πράξη εφαρμόζεται για διάφορες παραμέτρους και επιλέγεται ο συνδυασμός με το μικρότερο τετραγωνικό σφάλμα

25 Ιεραρχικό clustering O k means και ο ISODATA Aδημιουργούν ανεξάρτητα clusters με αποτέσμα μια επίπεδη αναπαράσταση των δεδομένων Μερικές φορές επιθυμούμε ιεραρχική αναπαράσταση με clusters και sub clusters σε δεντρική δομή Οι ιεραρχικές ρχ μέθοδοι χωρίζονται σε: Ενωτικές (Agglomerative ή bottom up): ξεκινούν με Ν clusters που ενώνονται διαδοχικά μέχρι να μείνει ένα Διαχωριστικές (Divisive ή top down): ξεκινούν με ένα cluster που διασπάται μέχρι να δημιουργήθούν Ν

26 Δεντρογράμματα Προτιμώνται για την αναπαράσταση ιεραρχικών clusters Το δεντρόγραμμα είναι δυαδικό δέντρο που δείχνει τη δομή των clusters Επιπλέον δείχνει το μέτρο ομοιότητας μεταξύ clusters Εναλλακτική αναπαράσταση είναι με σύνολα {{x1, {x2, x3}}, {{{x4, x5}, {x6, x7}}, x8}} Τα δεντρογράμματα δεν δίνουν ποσοτική πληροφορία Μεγάλη ομοιότητα Μικρή ομοιότητα

27 Διαχωριστικό Clustering 1. Όρισε N C clusters και N EX επιθυμητό 2. Ξεκίνησε με ένα μεγάλο cluster 3. Βρες «χειρότερο» cluster 4. Διαίρεσε το 5. Αν N C < N EX πήγαινε στο 2

28 Διαχωριστικό Clustering Επιλογή «χειρότερου» ό cluster Μεγαλύτερο πλήθος δειγμάτων Μεγαλύτερη διασπορά Μεγαλύτερο τετραγωνικό λάθος Διαχωρισμός clusters Μέσο ή μεσαίο ως προς ένα χαρακτηριστικό Κάθετα ως προς την κατεύθυνση μεγαλύτερης διασποράς Η διαχωριστικοί είναι πιο επίπονοι υπολογιστικά από τους ενωτικούς

29 Ενωτικό Clustering 1. Όρισε N C clusters και N EX επιθυμητό 2. Ξεκίνησε με N C cluster ενός μέλους 3. Βρες «κοντινότερα» clusters 4. Ένωσε τα 5. Αν N C >Nex πήγαινε στο 2

30 Ενωτικό clustering Ελάχιστη Απόσταση Όταν χρησιμοποιείται το d min για την απόσταση μεταξύ clusters, πρόκειται για τον ΝΝ αλγόριθμο (single linkage clustering) Αν ο αλγόριθμος τρέξει μέχρι να μείνει ένα cluster έχουμε ελάχιστο δέντρο Ευνοεί classes μεγάλου μήκους

31 Ενωτικό clustering Μέγιστη Απόσταση Όταν χρησιμοποιείται το d max πρόκειται για τον αλγόριθμο μακρύτερου γείτονα (farthest neighbor ή complete linkage linkage clustering) Κάθε cluster αποτελεί υπο γράφο Ευνοεί συμπαγείς classes

32 Ενωτικό clustering Μεσαία και μέση απόσταση Η ελάχιστη και μέγιστη απόσταση είναι ιδιαίτερα ευαίσθητες σε outliers καθώς το μέτρο των μεταξύ κλάσεων αποστάσεων περιέχει μέγιστα ή ελάχιστα Οι μέση και μεσαία απόσταση είναι πιο ευέλικτες Η μεσαία απόσταση είναι πιο ελκυστική υπολογιστικά Η μέση απόσταση περιλαμβάνει τον υπολογισμό N i N j αποστάσεων για κάθε ζεύγος cluster.

33 Ενωτικό clustering παράδειγμα Εκτέλεσε ενωτικό clustering με ΝΝ για: X = {1, 3, 4, 9, 10, 13, 21, 23, 28, 29} Ένωσε clusters με single linkage li

34 παράδειγμα (a) The data set X. (b) The single link algorithm dissimilarity dendrogram. (c) The complete link algorithm dissimilarity dendrogram 34

35 Ενωτικό clustering, ελάχιστη Vs. μέγιστη απόσταση clustering 9 πόλεων στις USA

36 Hard Clustering An m clustering g R of X, is defined as the partition of X into m sets (clusters), C 1, C 2,,C m, so that C i, i 1,2,..., m m U C X i 1 i C i C j, i j, i, j 1,2,..., m In addition, data in C i are more similar to each other and less similar to the data in the rest of the clusters. Quantifying the terms similar dissimilar depends on the types of clusters that are expected to underlie the structure of X.

37 Fuzzy clustering Fuzzy clustering: Each point belongs to all clusters up to some degree. A fuzzy clustering of X into m clusters is characterized by m functions u j : x [0,1], j 1,2,..., m m j 1 0 u ( x ) 1, i 1,2,..., N j N i 1 i u ( x ) N, j 1,2,..., m j i

38 Membership Functions u j ( xi ), j 1,2,..., m u j (x i ) close to 1 high grade of membership of x i u j ( x i ) close to 0 to cluster j. low grade of membership. 38

39 OTHER CLUSTERING ALGORITHMS Graph theory based clustering algorithms. Competitive learning algorithms. Valley seeking clustering algorithms. Cost optimization clustering algorithms based on: Branch and bound approach. Simulated annealing methodology. Deterministic annealing. Genetic algorithms. Density based clustering algorithms. Clustering algorithms for high h dimensional i data sets. 39

40 Demos / / l / l h ml/index.html emo/kmcluster/ stanford edu/ danklein/demos/constrained demo.shtml

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη επιβλεπόμενη εκπαίδευση (Clustering) Μη παραμετρική Μη επιβλεπόμενη εκπαίδευση Μέτρα εγγύτητας Αλγόριθμος k means ISODATA Ιεραρχικό ρ clustering Δεντρογράμματα 1

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

Αλγόριθμοι & Βελτιστοποίηση

Αλγόριθμοι & Βελτιστοποίηση Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)

Διαβάστε περισσότερα

Αναγνώριση Προτύπων 1

Αναγνώριση Προτύπων 1 Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση.

Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Αναγνώριση Προτύπων Η κατάρα της διαστατικότητας Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Η κατάρα της διαστατικότητας

Διαβάστε περισσότερα

όπου ω j η κλάση j και x το διάνυσμα χαρακτηριστικών Ένας τυπικός κανόνας απόφασης είναι να επιλέγουμε την κλάση με τη μέγιστη P[ω j x]

όπου ω j η κλάση j και x το διάνυσμα χαρακτηριστικών Ένας τυπικός κανόνας απόφασης είναι να επιλέγουμε την κλάση με τη μέγιστη P[ω j x] Bayes Classifiers Θεώρημα Bayes Tο θώ θεώρημα Bayes εκφράζεται ως: όπου ω j η κλάση j και x το διάνυσμα χαρακτηριστικών Ένας τυπικός κανόνας απόφασης είναι να επιλέγουμε την κλάση με τη μέγιστη P[ω j x]

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

Συναρτήσεις. Σημερινό μάθημα

Συναρτήσεις. Σημερινό μάθημα Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Συναρτήσεις & Κλάσεις

Συναρτήσεις & Κλάσεις Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

έγγραφο σε κάθε διάσταση αντιστοιχούν στο πλήθος εμφανίσεων της λέξης (που αντιστοιχεί στη συγκεκριμένη διάσταση) εντός του εγγράφου.

έγγραφο σε κάθε διάσταση αντιστοιχούν στο πλήθος εμφανίσεων της λέξης (που αντιστοιχεί στη συγκεκριμένη διάσταση) εντός του εγγράφου. Π Π Σ Τ Π Ε Τ Ψ Σ Δομές Δεδομένων 2016-2017 2η Εργασία Χρήστος Δουλκερίδης Ορέστης Τελέλης 1 Περιγραφή Η ομαδοποίηση εγγράφων (document clustering) με βάση τα περιεχόμενά τους είναι ένα πολύ ενδιαφέρον

Διαβάστε περισσότερα

Αντικειμενοστραφής. Προγραμματισμού

Αντικειμενοστραφής. Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Σημερινό μάθημα Μειονεκτήματα Δομημένου Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Ορισμοί Κλάσεις Αντικείμεναμ Χαρακτηριστικά ΑΠ C++ Class 1 Δομημένος Προγραμματισμός

Διαβάστε περισσότερα

5.1 Μετρήσιμες συναρτήσεις

5.1 Μετρήσιμες συναρτήσεις 5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον)

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) ΣΥΝΔΕΤΙΚΑ ΔΕΝΤΡΑ Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) δέντρο (spanning tree) του Γ εάν αυτό είναι δέντρο και περιέχει όλες τις κορυφές του Γ. Παράδειγμα. Στο παρακάτω

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά

Διαβάστε περισσότερα

τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές

τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές Σ Υ Π Τ Μ Α 8 Ιουνίου 2010 Άσκηση 1 Μια εταιρία τηλεφωνίας προσπαθεί να βρει πού θα τοποθετήσει τις συνιστώσες τηλεφωνικού καταλόγου που θα εξυπηρετούν τους συνδρομητές της. Η εταιρία εξυπηρετεί κατά βάση

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΡΧΕΙΑ Ο πιο γνωστός τρόπος οργάνωσης δεδομένων με τη χρήση ηλεκτρονικών υπολογιστών είναι σε αρχεία. Ένα αρχείο μπορούμε να το χαρακτηρίσουμε σαν ένα σύνολο που αποτελείται από οργανωμένα

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

Περιγραφή Περιγράμματος

Περιγραφή Περιγράμματος Περιγραφή Περιγράμματος Σήμερα! Περιγραφή Περιγράμματος Κώδικας Αλύσσου (chain code) Πολυγωνική γραμμή Υπογραφή (signature) περιγράμματος Μετασχηματισμός Fourier περιγράμματος 1 Περιγραφή Περιγράμματος

Διαβάστε περισσότερα

Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.

Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Συναρτήσεις ΙΙ. Σημερινό μάθημα

Συναρτήσεις ΙΙ. Σημερινό μάθημα Συναρτήσεις ΙΙ 1 Σημερινό μάθημα Εμβέλεια Εμφωλίαση Τύπος αποθήκευσης Συναρτήσεις ως παράμετροι Πέρασμα με τιμή Πολλαπλά return Προκαθορισμένοι ρ Παράμετροι ρ Υπερφόρτωση συναρτήσεων Inline συναρτήσεις

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Επιλογή Χαρακτηριστικών Feature selection Αντικειμενική συνάρτηση Φίλτρα Wrappers Διαδικασία Αναζήτησης Σειριακοί αλγόριθμοι Εκθετικοί αλγόριθμοι Τυχαίοι αλγόριθμοι

Διαβάστε περισσότερα

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων Clustering Αλγόριθµοι Οµαδοποίησης Αντικειµένων Εισαγωγή Οµαδοποίηση (clustering): οργάνωση µιας συλλογής από αντικείµενα-στοιχεία (objects) σε οµάδες (clusters) µε βάση κάποιο µέτρο οµοιότητας. Στοιχεία

Διαβάστε περισσότερα

Επιχειρησιακή Ερευνα Ι

Επιχειρησιακή Ερευνα Ι Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Διανυσματικές Συναρτήσεις

Διανυσματικές Συναρτήσεις Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση

Διαβάστε περισσότερα

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27 ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής. Διαμόρφωση Κωδικοποίηση. Διδάσκων: Ευάγγελος Παπαπέτρου

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής. Διαμόρφωση Κωδικοποίηση. Διδάσκων: Ευάγγελος Παπαπέτρου Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Ασύρματα Δίκτυα Διαμόρφωση Κωδικοποίηση Διδάσκων: Ευάγγελος Παπαπέτρου 1 Διάρθρωση Διαμόρφωση σε συστήματα στενής ζώνης διαμόρφωση αναλογικών δεδομένων σε αναλογικό

Διαβάστε περισσότερα

Μία χρονοσειρά (time serie) είναι μια ακολουθία

Μία χρονοσειρά (time serie) είναι μια ακολουθία Matching Βάση Χρονοσειρών Μία χρονοσειρά (time serie) είναι μια ακολουθία πραγματικών αριθμών, που αντιπροσωπεύουν μετρήσεις μιας πραγματικής μεταβλητής σε ίσα χρονικά διαστήματα πχ Οι τιμές των μετοχών

Διαβάστε περισσότερα

Επιλογή Χαρακτηριστικών Feature selection Αντικειμενική συνάρτηση Φίλτρα Wrappers Διαδικασία Αναζήτησης Σειριακοί αλγόριθμοι Εκθετικοί αλγόριθμοι

Επιλογή Χαρακτηριστικών Feature selection Αντικειμενική συνάρτηση Φίλτρα Wrappers Διαδικασία Αναζήτησης Σειριακοί αλγόριθμοι Εκθετικοί αλγόριθμοι Αναγνώριση Προτύπων Σημερινό Μάθημα Επιλογή Χαρακτηριστικών Feature selection Αντικειμενική συνάρτηση Φίλτρα Wrappers Διαδικασία Αναζήτησης Σειριακοί αλγόριθμοι Εκθετικοί αλγόριθμοι Τυχαίοι αλγόριθμοι

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΙΑΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΙΑΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΔΙΑΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ Πανεπιστήμιο Πατρών Σχολή : Θετικών Επιστημών Τμήμα : Μαθηματικών Μ.Δ.Ε. : Μαθηματικά των Φυσικών και Βιομηχανικών Εφαρμογών Ακαδημαϊκό Έτος

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 2 Εισαγωγή: Η

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

Αλγόριθμοι & Βελτιστοποίηση Μεταπτυχιακό Μάθημα ΠΜΣ/ΕΤΥ 2η Ενότητα: Μοντελοποίηση Προβλημάτων ως ΓΠ, Ισοδυναμες Μορφές ΓΠ, Γεωμετρία Χωρου Λύσεων

Αλγόριθμοι & Βελτιστοποίηση Μεταπτυχιακό Μάθημα ΠΜΣ/ΕΤΥ 2η Ενότητα: Μοντελοποίηση Προβλημάτων ως ΓΠ, Ισοδυναμες Μορφές ΓΠ, Γεωμετρία Χωρου Λύσεων Αλγόριθμοι & Βελτιστοποίηση Μεταπτυχιακό Μάθημα ΠΜΣ/ΕΤΥ 2η Ενότητα: Μοντελοποίηση Προβλημάτων ως ΓΠ, Ισοδυναμες Μορφές ΓΠ, Γεωμετρία Χωρου Λύσεων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Ανάπτυξη και υλοποίηση νέων τεχνικών. αναγνώρισης πραγματικού χρόνου ιδακτορική ιατριβή

Ανάπτυξη και υλοποίηση νέων τεχνικών. αναγνώρισης πραγματικού χρόνου ιδακτορική ιατριβή Ανάπτυξη και υλοποίηση νέων τεχνικών όρασης μηχανών για εφαρμογές αναγνώρισης πραγματικού χρόνου ιδακτορική ιατριβή Λεωνίδας Κωτούλας Εργαστήριο Ηλεκτρονικής Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. 2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος

Αναγνώριση Προτύπων. Σήμερα! Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος Αναγνώριση Προτύπων Σήμερα! Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος 1 Περιεχόμενο μαθήματος Επιλογή Χαρακτηριστικών Γέννηση Χαρακτηριστικών Ταξινομητές

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή

Διαβάστε περισσότερα

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους.

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους. Προτεινόμενα θέματα στο μάθημα Αρχές οργάνωσης και διοίκησης επιχειρήσεων ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους Στις παρακάτω προτάσεις να γράψετε δίπλα στον αριθμό της καθεμιάς τη λέξη Σωστό αν κρίνετε ότι

Διαβάστε περισσότερα

G περιέχει τουλάχιστον μία ακμή στο S. spanning tree στο γράφημα G.

G περιέχει τουλάχιστον μία ακμή στο S. spanning tree στο γράφημα G. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 2014-2015 Λύσεις 3ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Ring Routing and Wavelength Conversion. Γιώργος Ζώης

Ring Routing and Wavelength Conversion. Γιώργος Ζώης Ring Routing and Wavelength Conversion Γιώργος Ζώης Ενότητες της παρουσίασης 1. Directed Ring Routing Wavelength Conversion σε WDM δίκτυα. 2. Wavelength Conversion σε shortest path δρομολογήσεις. 3. Επιπλέον

Διαβάστε περισσότερα

Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 01: ΕΞΑΝΤΛΗΤΙΚΗ ΑΝΑΖΗΤΗΣΗ

Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 01: ΕΞΑΝΤΛΗΤΙΚΗ ΑΝΑΖΗΤΗΣΗ Π. ΚΡΗΤΗΣ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ 380, «ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ» Φ 01: ΕΞΑΝΤΛΗΤΙΚΗ ΑΝΑΖΗΤΗΣΗ Δεδομένου ενός προβλήματος Q, ο πρώτος σκοπός μιας εξαντλητικής αναζήτησης είναι να μας εφασφαλίσει

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη

Υπολογιστική Νοημοσύνη Υπολογιστική Νοημοσύνη Σημερινή Διάλεξη Περιεχόμενο μαθήματος Διαδικαστικά Εργασίες Μαθήματος Εισαγωγή στο αντικείμενο του μαθήματος Εφαρμογές 1 Περιεχόμενο μαθήματος οµή και Χαρακτηριστικά ενός Γενετικού

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 20 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1.1.

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

«Εξατομικεύοντας την επιλογή των πόρων των ψηφιακών βιβλιοθηκών για την υποστήριξη της σκόπιμης μάθησης» Άννα Μαρία Ολένογλου

«Εξατομικεύοντας την επιλογή των πόρων των ψηφιακών βιβλιοθηκών για την υποστήριξη της σκόπιμης μάθησης» Άννα Μαρία Ολένογλου ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΥΠΗΡΕΣΙΕΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΕ ΨΗΦΙΑΚΌ ΠΕΡΙΒΑΛΛΟΝ Εργασία στο μάθημα «Ψηφιακές Βιβλιοθήκες» Παρουσίαση του άρθρου (ECDL, 2008, LNCS,

Διαβάστε περισσότερα

Το υπόδειγμα IS-LM: Εισαγωγικά

Το υπόδειγμα IS-LM: Εισαγωγικά 1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις (3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις Είναι πράγματι τα «προβλήματα» τόσο δύσκολα; Είδαμε (σύντομα) στα προηγούμενα

Διαβάστε περισσότερα

Συνιστώσες Βιώσιμης Ανάπτυξης

Συνιστώσες Βιώσιμης Ανάπτυξης ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Συνιστώσες Βιώσιμης Ανάπτυξης 1 Η στρατηγική ανάπτυξης των αστικών κέντρων αναπτύσσεται ως συνδυασμός τεσσάρων στοιχείων. Πολυκεντρικότητα Δικτύωση Βελτίωση και ανάπτυξη των υποδομών

Διαβάστε περισσότερα

Νευρωνικά Δίκτυα. Σημερινό Μάθημα

Νευρωνικά Δίκτυα. Σημερινό Μάθημα Νευρωνικά Δίκτυα Σημερινό Μάθημα Από τα Βιολογικά Νευρωνικά Δίκτυα στα Τεχνητά Επιβλεπόμενη Μάθηση Μη επιβλεπόμενη Μάθηση 1 Νευρωνικά Δίκτυα (Ν.Δ) Τα Τεχνητά Νευρωνικά ίκτυα (ΤΝ ) αποτελούν μια προσπάθεια

Διαβάστε περισσότερα

Ανελίξεις σε συνεχή χρόνο

Ανελίξεις σε συνεχή χρόνο 4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-3, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Πολυκριτηριακή ανάλυση

Πολυκριτηριακή ανάλυση Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο Τυπικά κριτήρια που διέπουν τη διαχείριση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 Ένας χρήστης μιας PDH μισθωμένης γραμμής χρησιμοποιεί μια συσκευή πρόσβασης που υλοποιεί τη στοίβα ΑΤΜ/Ε1. α) Ποιος είναι ο μέγιστος υποστηριζόμενος ρυθμός (σε

Διαβάστε περισσότερα