Μαθηματικα Γ Γυμνασιου

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηματικα Γ Γυμνασιου"

Transcript

1 Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu

2 σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΜΟΝΩΝΥΜΩΝ 6 ΠΡΟΣΘΕΣΗ ΜΟΝΩΝΥΜΩΝ 6 ΓΕΝΙΚΕΣ ΠΡΑΞΕΙΣ ΜΕΤΑΞΥ ΠΟΛΥΩΝΥΜΩΝ 7 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 8 ΕΚΠ ΚΑΙ ΜΚΔ ΠΟΛΥΩΝΥΜΩΝ 9 ΤΑΥΤΟΤΗΤΕΣ 10 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ (1) 10 ΣΗΜΑΝΤΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 10 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ () 10 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ () 10 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ (4) 11 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ (5) 1 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ 1 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΜΕ ΧΡΗΣΗ ΤΑΥΤΟΤΗΤΩΝ 1 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΜΕ ΚΟΙΝΟΥΣ ΠΑΡΑΓΟΝΤΕΣ 14 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΠΟΛΥΩΝΥΜΟΥ ΤΗΣ ΜΟΡΦΗΣ 15 ΡΗΤΕΣ (ΚΛΑΣΜΑΤΙΚΕΣ) ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 16 ΠΡΑΞΕΙΣ ΜΕ ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 16 ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ (ΔΙΑΚΡΙΝΟΥΣΑ) 17 ΑΣΚΗΣΕΙΣ ΣΤΗ ΔΙΑΚΡΙΝΟΥΣΑ (1) 18 ΑΣΚΗΣΕΙΣ ΣΤΗ ΔΙΑΚΡΙΝΟΥΣΑ () 19 ΠΑΡΑΒΟΛΗ 0 ΠΙΘΑΝΟΤΗΤΕΣ 1 ΣΥΝΟΛΑ 1 ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΟΛΑ ΠΕΙΡΑΜΑ ΤΥΧΗΣ - ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ ΚΛΑΣΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ 4 Β ΜΕΡΟΣ: ΓΕΩΜΕΤΡΙΑ 5 ΤΡΙΓΩΝΑ 5 ΕΙΔΗ ΤΡΙΓΩΝΩΝ 5 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ 5 ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ 6 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 6 ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 7 ΟΜΟΙΑ ΣΧΗΜΑΤΑ 8 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΟΙΟΤΗΤΑ ΠΟΛΥΓΩΝΩΝ 8 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 9 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ [ 0,180 0 ] 9 ΙΔΙΟΤΗΤΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ 9

3 σελ. απο 9 ΝΟΜΟΣ ΗΜΙΤΟΝΩΝ ΚΑΙ ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ 9

4 σελ. 4 απο 9 Α μερος: Αλγεβρα και πιθανοτητες Συστήματα Χ Ενα τετοιο συστημα αποτελειται απο δυο εξισωσεις, καθε μια απο τις οποιες περιεχει δυο μεταβλητες y, υψωμενες στην 1 η δυναμη (γραμμικο συστημα). Για παραδειγμα οι παρακατω δυο εξισωσεις αποτελουν συστημα: Λύση του συστήματος είναι ενα ζευγάρι αριθμών 0, 0 y5 y8 y που επαληθεύει και τις δύο εξισώσεις ταυτόχρονα. Εφοσον καθε μια απο τις δυο εξισωσεις αναπαριστα μια ευθεια στους αξονες, ενα σύστημα εξισώσεων μπορεί να έχει: Ακριβώς μια λύση, πράγμα που σημαίνει ότι οι δύο ευθείες τέμνονται σε ακριβώς ένα σημείο. Άπειρες λύσεις (αόριστο), πράγμα που σημαίνει ότι οι δύο ευθείες συμπίπτουν. Καμία λύση (αδύνατο), πράγμα που σημαίνει ότι οι δύο ευθείες είναι παράλληλες. Για να λύσουμε ένα σύστημα υπάρχουν δύο μέθοδοι. Ας τις δούμε λύνοντας το σύστημα Με αντικατάσταση y y5 y8 (1) : y 5 y 5 5 y. () : y 8 5 y y 8 10 y y 8 y (1) 5 Άρα το σύστημα μας έχει μια λύση, το σημείο,. Με απαλοιφή y (1) : y 5 y 5 y 10 y y 10 8 y () : y 8 () Άρα η λύση του συστήματος είναι το σημείο,. Τα συστηματα ειναι πολυ χρησιμα στη λυση καποιων προβληματων. Για παραδειγμα: Ενας παραγωγος ελαιολαδου συσκευασε 500 kg λαδι σε 800 δοχεια των kg και των 5 kg. Μπορειτε να βρειτε ποσα -κιλα και ποσα 5-κιλα δοχεια χρησιμοποιησε;

5 σελ. 5 απο 9 Μονώνυμα & πολυώνυμα Μονώνυμα Πολυώνυμα Μονώνυμο είναι κάθε γινομενο που περιεχει εναν πραγματικο αριθμο (συντελεστη) και διαφορες μεταβλητες υψωμενες σε δυναμεις. Για παραδειγμα η παρακατω παρασταση ειναι ενα μονωνυμο: 5 8 y z Η δυναμη της καθε μεταβλητης λεγεται βαθμος της μεταβλητης αυτης και πρεπει να ειναι θετικος φυσικος αριθμος ή 0. Το παραπανω μονωνυμο εχει βαθμο 5 ως προς, 1 ως προς y και 8 ως προς z. Ο συνολικος βαθμος ειναι ισος με το αθροισμα των βαθμων ολων των Πολυώνυμο είναι το άθροισμα δύο ή περισσότερων μονωνύμων. Για παράδειγμα, η παράσταση y z y z 9 y z 5 είναι ένα πολυώνυμο που αποτελειται απο 4 μονωνυμα. Ο βαθμος του πολυωνυμου ειναι 8 ως προς, 7 ως προς y και 10 ως προς z. Ο συνολικος βαθμος ειναι = 0. Δυο πολυωνυμα λεγονται ισα αν ολα τα μονωνυμα τους ειναι ισα. Ως ασκηση βρειτε τα,, ετσι ωστε τα παρακατω πολυωνυμα να ειναι ισα: μεταβλητων. Στο παραδειγμα μας ο συνολικος βαθμος ειναι = 14. Το κομματι που περιεχει μονο τις μεταβλητες, δηλαδη το ονομαζεται κυριο μερος του μονωνυμου. y z, 5 8 Ριζα πολυωνυμου Αν ενα πολυωνυμο περιεχει μονο μια μεταβλητη τοτε μπορουμε να το ονομασουμε δηλωνοντας τη μεταβλητη. Για παραδειγμα, το πολυωνυμο μπορουμε να το ονομασουμε Καθε μονωνυμο εχει και ενα αντιθετο μονωνυμο. Το αντιθετο μονωνυμο P( ) του 5 8 y z ειναι το 5 8 y z. Αυτο σημαινει οτι στη θεση του εχουμε το δικαιωμα να βαλουμε οποιον αριθμο θελουμε και να υπολογισουμε την τιμη του. Για παραδειγμα: Καθε πραγματικος αριθμος μπορει να θεωρηθει ως μονωνυμο (ολες οι μεταβλητες ειναι υψωμενες στη μηδενικη) και τον λεμε απλα σταθερο μονωνυμο. Το 0 λεγεται μηδενικό μονώνυμο. Πρεπει να ειναι ειναι σαφες οτι ο βαθμος ενος σταθερου μονωνυμου ειναι 0. Δυο μονωνυμα λεγονται ομοια αν εχουν το ιδιο κυριο μερος. Για παραδειγμα, τα παρακατω μονωνυμα ειναι ομοια: 4 y z, y z y, y y 5, 7y, P () P( ) P( 4) P 1 4 Ένας πραγματικός αριθμός που μηδενιζει ενα πολυωνυμο λεγεται ρίζα του πολυωνύμου. Ευκολα φαινεται οτι οι ριζες του παραπανω πολυωνυμου ειναι οι 0 και 1 : P P (0) (1) Δυο μονωνυμα λεγονται ισα αν εχουν τον ιδιο συντελεστη και το ιδιο κυριο μερος. Ως ασκηση, βρειτε τα,, ωστε τα παρακατω μονωνυμα να ειναι i) ομοια ii) ισα iii) αντιθετα: 10 a y, y Παραδειγματα: Εξεταστε αν το ειναι ριζα του πολυωνυμου: P ( ) 4 6 Αν δυο μονωνυμα ειναι ομοια τοτε μπορουμε να κανουμε τις μεταξυ τους πραξεις. Για παραδειγμα: Βρειτε τις ριζες του πολυωνυμου: 1 6.

6 σελ. 6 απο 9 Πολλαπλασιασμος μονωνυμων Αν μας δωθουν δυο η περισσοτερα μονωνυμα μπορουμε παντα να τα πολλαπλασιασουμε εκτελωντας τον πολλαπλασιασμο με τους συντεστες και ακολουθωντας τις ιδιοτητες των δυναμεων για τις μεταβλητες. Για παραδειγμα: Ως ασκηση, καντε τους παρακατω πολλαπλασιασμους μονωνυμων: yz 5 y 4 8y y y 5 y 4 5 y y y ( ) y y y 4 y y y y 6 y 5 Προσθεση μονωνυμων Αν μας δωθουν δυο η περισσοτερα ομοια μονωνυμα μπορουμε παντα να τα προσθεσουμε χρησιμοποιωντας την επιμεριστικη ιδιοτητα. Για παραδειγμα: Ως ασκηση, καντε τις παρακατω προσθεσεις μονωνυμων: y 10 y y 5y y y y y

7 σελ. 7 απο 9 Γενικες πραξεις μεταξυ πολυωνυμων Αν μας δωθει ενα μονωνυμο και ενα πολυωνυμο μπορουμε να τα πολλαπλασιασουμε χρησιμοποιωντας την επιμεριστικη ιδιοτητα. Για παραδειγμα: y y y y y y y y 6 y 4 4 Ομοιως, αν μας δωθουν δυο ή περισσοτερα πολυωνυμα μπορουμε να τα πολλαπλασιασουμε χρησιμοποιωντας την επιμεριστικη ιδιοτητα. Για παραδειγμα: Ως ασκηση καντε τις παρακατω πραξεις: ( 1) ( 1) ( ) ( ) ( ) ( ) ( 1) y y ( 1)( 5) ( 6) 4 y y 4y y y y 4 y y 4 5 y y y y y y y 4y y y y 5 y y y4 y y

8 σελ. 8 απο 9 Διαίρεση πολυωνύμων Στο σημειο αυτο θυμιζουμε την Ευκλειδεια διαιρεση φυσικων: Για καθε δυο φυσικους αριθμους, εναν διαιρετεο και εναν διαιρετη 0, υπαρχουν μοναδικοι φυσικοι, το πηλικο και το υπολοιπο, ετσι ωστε, 0 Μπορουμε να επεκτεινουμε την εννοια της Ευκλειδειας διαιρεσης και να την εφαρμοσουμε στα πολυωνυμα: Για κάθε πολυώνυμο διαιρετέο και πολυώνυμο - διαιρέτη 0 με βαθμος ( ) βαθμος ( ), υπάρχουν μοναδικά πολυώνυμα (πηλίκο) και ώστε 0 βαθμος ( ) βαθμος ( ) (υπόλοιπο) έτσι Ειναι προφανες οτι αν το ( ) ειναι παραγοντας του ( ) (εχουμε δηλαδη τελεια Ευκλειδεια διαιρεση πολυωνυμων) τοτε ( ) 0. Υπάρχουν δύο τρόποι για να βρουμε την εξίσωση τηε Ευκλειδειας διαίρεσης πολυωνύμων. Ας τους δούμε με παραδείγματα: Αναγωγή σε σύστημα Έστω ( ) 5 1, ( ). Απο την ισοτητα της διαιρεσης πολυωνυμων εχουμε: 5 1 ( ) ( ) με βαθμος ( ) βαθμος ( ) 1 πραγμα που σημαινει οτι βαθμος ( ) 0 ( ) και βαθμος ( ) Αν θεσουμε ( ), τοτε η ισοτητα ξαναγραφεται ως 5 1. Εκτελουμε τις πραξεις στο δεξι μελος και εχουμε: 5 1 ( ) ( ) ( ) Στο τελικο βημα λυνουμε το απλο συστημα που προκυπτει: 1, 5,, 1 1,, 4, 1 Χρηση του αλγοριθμου Ευκλείδειας διαίρεσης Εστω οτι θελουμε να διαιρεσουμε το πολυωνυμο 4 ( ) 4 1 με το ( ) : 4 ( ) ( ) 4 4 = 1 ( ) = 1 ( ) 1 = 4 1 H διαδικασια τερματιζεται διοτι βαθμος ( 4 1) βαθμος ( ). Υπολοιπο: ( ) 4 1 Πηλικο: ( ) 1

9 σελ. 9 απο 9 ΕΚΠ και ΜΚΔ πολυωνυμων Στο σημειο αυτο θυμιζουμε τη διαδικασια ευρεσης ΜΚΔ και ΕΚΠ δυο ή περισσοτερων φυσικων αριθμων. Έστω ότι μας δίνονται δύο ή περισσότεροι φυσικοι αριθμοί, π.χ. οι 1800 και Για να βρούμε το ΜΚΔ και το ΕΚΠ τους ακολουθούμε τα παρακάτω βήματα: 1. Αναλύουμε τους αριθμούς σε πρώτους παράγοντες: Για να βρούμε το ΜΚΔ διαλέγουμε μόνο τους κοινούς παράγοντες (που στο παράδειγμά μας είναι οι, και 5) και τους υψώνουμε στη μικρότερη δύναμη στην οποία εμφανίζονται: 1800, Για να βρούμε το ΕΚΠ διαλέγουμε όλους τους παράγοντες (κοινούς και μη κοινούς) και τους υψώνουμε στη μεγαλύτερη δύναμη στην οποία εμφανίζονται: 1800, Μπορουμε να επεκτεινουμε την παραπανω διαδικασια και να την εφαρμοσουμε στα πολυωνυμα. Για παραδειγμα, εστω οτι θελουμε να βρουμε το ΜΚΔ και το ΕΚΠ των μονωνυμων : Βρισκουμε πρωτα το ΜΚΔ και το ΕΚΠ των συντελεστων: 4 1 y, 4 y z, 6 y (1,4,6) 6, (1,4,6) 4 Ο συντελεστης του ΜΚΔ των πολυωνυμων θα ειναι το ΜΚΔ των συντεστων τους και το κυριο μερος του ΜΚΔ θα προκυψει αν επιλεξουμε μονο τις κοινες μεταβλητες και τις υψωσουμε στη μικροτερη δυναμη που εμφανιζονται. Αρα λοιπον ο ΜΚΔ των τριων μονωνυμων θα ειναι το μονωνυμο 6 y Ο συντελεστης του ΕΚΠ των πολυωνυμων θα ειναι το ΕΚΠ των συντεστων τους και το κυριο μερος του ΕΚΠ θα προκυψει αν επιλεξουμε ολες τις μεταβλητες (κοινες και μη κοινες) και τις υψωσουμε στη μεγαλυτερη δυναμη που εμφανιζονται. Αρα λοιπον το ΕΚΠ των τριων μονωνυμων θα ειναι το μονωνυμο 4 4 y z Ως ασκηση βρειτε το ΜΚΔ και το ΕΚΠ των παρακατω μονωνυμων και πολυωνυμων: 1 y z, 18 z, 4y 15 y z, 10 y z, 5y z y y y y, 18, 9 ( ),, 8 y y y y y y

10 σελ. 10 απο 9 Ταυτοτητες Σημαντικες ταυτοτητες Ταυτοτητα ειναι μια εξισωση που περιεχει μεταβλητες και ισχυει οποιες τιμες και αν παρουν οι μεταβλητες. Οι πιο σημαντικες ταυτοτητες ειναι οι παρακατω: y y y ( )( ) y y y y y y y y y y y y y y 1 4y ( y) (9 5 y)(9 5 y) y Εξασκηση στις ταυτοτητες (1) y9 5y 6y 6y y y y y ( 7)( 7) ( ) y y 5 ( ( )) ( 4 ) Εξασκηση στις ταυτοτητες () Εξασκηση στις ταυτοτητες ()

11 σελ. 11 απο 9 Εξασκηση στις ταυτοτητες (4) y y y νδο ( ) ( ) νδο για καθε ισχυει νδο y y ( y) ( y) ( )( ) 8 y y y y y y y y 4 ( 1)( 1) ( 1)( 1) 1 y y y y 1 y y y y y y y y 4y 4

12 σελ. 1 απο 9 Εξασκηση στις ταυτοτητες (5) Συμπληρωστε τα παρακατω κενα: y y 6y 4 5 y 6 y 4

13 σελ. 1 απο 9 Παραγοντοποιηση Παραγοντοποίηση με χρήση ταυτοτήτων Παραγοντοποιηση ειναι η διαδικασια με την οποια μετατρεπουμε ενα πολυωνυμο σε γινομενο πολυωνυμων (1 ) y ( 15) ( 15) y y y ( ) 6( )

14 σελ. 14 απο y 6y 4 6y 8y y yz y 16 y 7y 14 y 8 y ( 1) 4 ( 1) ( 1)( ) ( 4)( ) ( 1) (1 )( ) ( 1)( 1) ( 1) ( 1) 4 ( 1) 1 ( ) ( 1) ( 1) y y ( 1) ( 1) ( 1) 4( 1) ( y) ( y) Παραγοντοποίηση με κοινούς παράγοντες ( 1) y y y y z yz yz y z yz yz 6 4 y y y 5 4 1

15 σελ. 15 απο 9 Παραγοντοποιηση πολυωνυμου της μορφης Ενα τετοιο πολυωνυμο παραγοντοποιειται ως εξης: a a Για παραδειγμα, για να παραγοντοποιησουμε το πολυωνυμο 8 1 ψαχνουμε δυο αριθμους με αθροισμα 8 και γινομενο 1. Με δοκιμες βρισκουμε οτι 6 8, 6 1, αρα το πολυωνυμο γραφεται ως: ( ) 6( ) ( )( 6) Ως ασκηση παραγοντοποιειστε τα παρακατω πολυωνυμα: 54 1y ( 5 8) 5 8 ( 6 ) 1 4 4

16 σελ. 16 απο 9 Ρητες (κλασματικες) αλγεβρικες παραστασεις 10 5y z 5 y z 5 y y y 6 4 ( 4) y y y y y y y y y y y y y y 1 y 1 y y y y y y y y y 1 y y y Πραξεις με ρητες αλγεβρικες παραστασεις

17 σελ. 17 απο 9 Εξισώσεις ου βαθμού με έναν άγνωστο (διακρίνουσα) Εξίσωση ου βαθμού με έναν άγνωστο είναι κάθε εξίσωση που μπορεί να έρθει στη μορφή P * ( ) 0 (,, ) Η εξίσωση αυτή είναι επιλύσιμη σε κάθε περίπτωση. Για να τη λύσουμε υπολογίζουμε τη διακρίνουσα της διακρίνουμε τις παρακάτω περιπτώσεις: 4 και ανάλογα με το πρόσημό Αν 0 τότε η εξίσωση έχει δύο λύσεις διαφορετικές μεταξύ τους: Αν 0 τότε η εξίσωση έχει μια (διπλή) λύση: Αν 0 τότε η εξίσωση είναι αδύνατη (δεν έχει καμία λύση στους πραγματικούς). 1 Επιπλέον, το πολυώνυμο παραγοντοποιείται και γράφεται ως 1 Επιπλέον, το πολυώνυμο παραγοντοποιείται και γράφεται ως Παραδείγματα: P 1 P 1 Παραδείγματα: Παραδείγματα:

18 σελ. 18 απο 9 Ασκησεις στη διακρινουσα (1) ( 1) (1 )( ) 0 ( ) 4 ( 1) 1 0 ( ) 6 ( ) 1 ( )( 4) ( 1) ( 1)( ) ( ( ) ( 4) ( 1) ( )( ) 1 ) 8 ( 1) (5 ) (1 4 )

19 σελ. 19 απο 9 Ασκησεις στη διακρινουσα () Απλοποιειστε τα παρακατω κλασματα: Δινονται οι παραστασεις: A 4 6, B o Να βρειτε για ποιες τιμες του οριζονται οι παραστασεις. o Να λυσετε την εξισωση A B 0. Ποιοί πρέπει να είναι οι συντελεστές β,γ μιας εξίσωσης ου βαθμού για να έχει ρίζες το 10 και το -0; Να βρειτε που τεμνονται (αν τεμνονται) ο κυκλος y 5 και η ευθεια y1. Δινεται το πολυωνυμο P( ). o Να βρειτε τις ριζες του πολυωνυμου και να το παραγοντοποιησετε. o Να λυσετε την εξισωση 1 0 P( ). Λυστε την εξισωση 16y 0 y y ( y)( y). Δινονται οι παραστασεις: A ( 1)( ) 9( 1) B o Να απλοποιηθει η παρασταση A B o Να λυθει η εξισωση AB 0 o Αν η εξισωση AB εχει μια ριζα, να υπολογισετε την παραμετρο.

20 σελ. 0 απο 9 Παραβολή Κάθε συνάρτηση με γενική μορφή y P ( ),,,, 0 ονομάζεται παραβολή. Η γραφική παράσταση της παραβολής στη γενική μορφή της είναι μια καμπύλη που μοιάζει με κύπελο. Για τη γραφική παράσταση της παραβολής ισχύουν τα εξής: Η κορυφή της παραβολής είναι το σημείο K, Η παραβολή είναι συμμετρική ως προς την ευθεία Αν 0 προς τα πάνω (το κυπελλο ειναι αναποδα). 4 όπου η διακρίνουσα του τριωνύμου.. τότε η κορυφή της παραβολής «κοιτάει» προς τα κάτω (το κυπελλο ειναι ορθιο). Αν 0 τότε η κορυφή της παραβολής «κοιτάει» Όσο μεγαλύτερη η απόλυτη τιμή του τόσο πιο «κλειστή» ή «απότομη» η παραβολή. Ανεξάρτητα από το πρόσημο του, αν η διακρίνουσα είναι: θετική, τότε η παραβολή τέμνει τον άξονα σε δύο διαφορετικά σημεία. μηδέν, τότε η παραβολή τέμνει τον άξονα σε ακριβώς ένα σημείο. αρνητική, τότε η παραβολή δεν τέμνει τον άξονα. Όλα τα παραπάνω συνοψίζονται γραφικά στα παρακάτω σχήματα:

21 σελ. 1 απο 9 Πιθανότητες Σύνολα Σύνολο είναι μια ομάδα που περιέχει διάφορα στοιχεία το καθενα διαφορετικο απο το αλλο. Για παράδειγμα: {οι θετικοι ακεραιοι αριθμοι μαζι με το 0} {0,1,,,4,5,...} {οι ακεραιοι αριθμοι} {...,,, 1, 0, 1,,,...} {οι πραγματικοι αριθμοι} {ολοι οι ρητοι και ολοι οι αρρητοι} Α {οι αρτιοι αριθμοι} Β {οι διαιρετες του 16} {τα ψηφια του αριθμου 45808}= {τα γραμματα της λεξης "γαλαξιας"}= Αν ένα στοιχείο ανήκει σε ένα σύνολο X, αυτό το συμβολίζουμε ως X. Αν ένα στοιχείο δεν ανήκει σε ένα σύνολο X, τότε μπορούμε να χρησιμοποιήσουμε το συμβολισμό X. Ο συμβολισμός αυτός είναι πολύ χρήσιμος ως προς την εκφραση συνολων: { : 6 4} { : διαιρετης του 0} {ρητοι αριθμοι} :,, 0 {αρρητοι αριθμοι} { } Ένα σύνολο που δεν περιέχει κανένα στοιχείο λέγεται κενό σύνολο και συμβολίζεται ως {}. Εξεταστε αν τα παρακατω συνολα ειναι κενα: {οι ανθρωποι που κατοικουν στη σεληνη} {οι αρτιοι διαιρετες του 15}={ : αρτιος και διαιρετης του 15} { : 0} { : 0} Δύο σύνολα λέγονται ίσα αν περιέχουν ακριβώς τα ίδια στοιχεία, ανεξαρτητα απο τη σειρα με την οποια εμφανιζονται. Εξεταστε αν τα παρακατω συνολα ειναι ισα:?? {αρτιοι αριθμοι} = {οι φυσικοι που διαιρουνται ακριβως με το } = {οι φυσικοι που τελειωνουν σε 0,,4,6 ή 8}? {τα ψηφια του αριθμου 76} = {τα ψηφια του αριθμου 677} Αν ενα συνολο εμπεριεχεται εξολοκληρου μεσα σε ενα συνολο τοτε λεμε οτι το ειναι υποσυνολο του και το γραφουμε ως. Αυτο σημαινει οτι καθε στοιχειο του ειναι και στοιχειο του. Για παραδειγμα, το είναι υποσύνολο του :. Μπορούμε να αναπαραστήσουμε όλα τα γνωστά σύνολα με ένα κατατοπιστικό διάγραμμα Venn. Ως ασκηση, βαλτε το σωστο συμβολο ( ή ) στα παρακατω συνολα: {περιττοι αριθμοι} {περιττοι αριθμοι} { : 9} { : } {διαιρετες του 16} {αρτιοι αριθμοι}

22 σελ. απο 9 Πράξεις με σύνολα Ας πάρουμε το συνολο {1,,, 4,5,6,7,8,9,10} και τα υποσύνολα του {1,,}, {,, 4,5,10} Η ένωση των, είναι ένα καινούργιο σύνολο που περιέχει τα στοιχεια που ανηκουν ή στο ή στο. Με άλλα λόγια, η ένωση περιεχει όλα τα κοινά στοιχεία και όλα τα μη κοινά στοιχεία: {1,,,4,5,10} Η τομή των, είναι ένα καινούργιο σύνολο που περιέχει όλα εκείνα τα στοιχεία που ανήκουν και στο Α και στο Β. Με άλλα λόγια, η τομή περιέχει (μόνο) τα κοινά στοιχεία των συνόλων και συμβολίζεται ως {,} Το συμπλήρωμα (ή αντίθετο) του Α θα είναι εκείνο το σύνολο που περιέχει όλα τα στοιχεία του που δεν ανήκουν στο : {4,5,6,7,8,9,10} Το ειναι εκεινο το συνολο που περιεχει ολα τα στοιχεια που ανηκουν στο εκτος απο εκεινα που ανηκουν στο : {1} Το συμπληρωμα της ενωσης ειναι εκεινο το συνολο που περιεχει ολα τα στοιχεια του που δεν ανηκουν στην ενωση: {6,7,8,9} Το συμπληρωμα της τομης ειναι το συνολο που περιεχει ολα τα στοιχεια του που δεν ανηκουν στην τομη: {1,4,5,6,7,8,9,10} Αν επιπλεον {,5,7,9,10}, εξεταστε αν ισχυουν οι παρακατω ιδιοτητες:

23 σελ. απο 9 Πείραμα τύχης - δειγματικός χώρος - ενδεχόμενα Σε καθε πείραμα τύχης, δειγματικός χώρος ονομάζεται το σύνολο όλων των δυνατών αποτελεσμάτων. Για παράδειγμα αν ρίξουμε ένα ζάρι μια φορά ο δειγματικός χώρος ειναι {1,,, 4,5,6}. Ομοίως, αν ριξουμε ενα κερμα ο δειγματικος χωρος θα ειναι το συνολο {, }. Ο δειγματικος χωρος των αποτελεσματων ενος ποδοσφαιρικου αγωνα ειναι {1,, }. Αν ριξουμε το ζαρι δυο φορες τοτε ο δειγματικος χωρος περιεχει 6 ζευγαρια αποτελεσματων: Κάθε υποσύνολο του δειγματικού χώρου ονομάζεται ενδεχόμενο. Για παράδειγμα το ενδεχόμενο Α = { να φέρουμε τον ίδιο αριθμό και στις δυο ρίψεις } είναι το υποσύνολο Α = { (1,1), (,), (,), (4,4), (5,5), (6,6) }. Αν λοιπον φερουμε 6 και στα δυο ζαρια τοτε το ενδεχομενο Α πραγματοποιειται. Αν φερουμε 4 στο ενα ζαρι και 5 στο αλλο τοτε το ενδεχομενο Α δεν πραγματοποιειται. Οι ευνοικες περιπτωσεις ωστε να πραγματοποιηθει ενα ενδεχομενο ειναι ο αριθμος των στοιχειων του ενδεχομενου. Για παράδειγμα, οι ευνοικες περιπτωσεις ώστε να πραγματοποιηθεί το ενδεχόμενο Α είναι 6. Γραφουμε λοιπον ( ) 6. Ένα ενδεχόμενο που είναι απίθανο να πραγματοποιηθεί (πχ το ενδεχόμενο να φέρουμε αθροισμα 14) λέγεται αδύνατο. Ένα αδύνατο ενδεχόμενο είναι ίσο με το κενό σύνολο. Ένα ενδεχόμενο που είναι σιγουρο οτι θα πραγματοποιηθει (πχ να φέρουμε αθροισμα απο και πανω) ονομάζεται βέβαιο. Ενα βέβαιο ενδεχόμενο ισούται με το δειγματικό χώρο. Δύο ενδεχόμενα που δεν έχουν κανένα κοινό στοιχείο (η τομή τους είναι το ) ονομάζονται ασυμβίσβαστα ή ξένα μεταξυ τους. Δύο ασυμβίβαστα ενδεχόμενα είναι αδύνατον να συμβούν ταυτόχρονα. Για παραδειγμα, τα ενδεχομενα Α = { (1,1), (,), (,), (4,4), (5,5), (6,6) } και Β = { να φερουμε αθροισμα περιττο αριθμο } ειναι ασυμβιβαστα. Ενα ενδεχομενο λεγεται υποσυνολο ενος ενδεχομενου ( ) αν η πραγματοποιηση του συνεπαγεται την πραγματοποιηση του. Για παράδειγμα, τα ενδεχομενα = { να φέρουμε τον ίδιο αριθμό και στις δυο ρίψεις } και = { το ενδεχομενο να φερουμε αθροισμα ζυγο αριθμο } τοτε προφανως ισχυει. Εφόσον τα ενδεχόμενα είναι σύνολα, μπορούμε να εφαρμοσουμε ολες τις γνωστες πραξεις μεταξυ συνολων. Πιο συγκεκριμενα, για καθε δυο ενδεχομενα, ενος δειγματικου χωρου ισχυουν τα εξης: Το ενδεχομενο να συμβει τουλαχιστον ενα απο τα, Β( ή το ή το ) ισουται με. Το ενδεχομενο να συμβει ταυτοχρονα και το και το ισουται με. Το ενδεχομενο να μην συμβει το ισουται με. Αν ειναι ο δειγματικος χωρος της ριψης δυο ζαριων να γραψετε τα παρακατω ενδεχομενα και να υπολογισετε τις ευνοικες περιπτωσεις για το καθενα: { να φερουμε τον ιδιο αριθμο } { να φερουμε αθροισμα 9 } { να φερουμε τον ιδιο αριθμο ή αθροισμα 9 } { να φερουμε τον ιδιο αριθμο και αθροισμα 9 } { να φερουμε αθροισμα 8 } { να φερουμε γινομενο 1 } { να φερουμε τουλαχιστον μια φορα 1 } { να φερουμε διαδοχικους αριθμους } { να φερουμε γινομενο 1 }

24 σελ. 4 απο 9 Κλασσικός ορισμός πιθανότητας Σε ένα πείραμα τύχης ορίζουμε την πιθανότητα ενός ενδεχομένου ως εξής: πλήθος ευνοϊκών περιπτώσεων αριθμός στοιχείων του Α N( ) P( ) πλήθος δυνατών περιπτώσεων αριθμός στοιχείων του N( ) Για παράδειγμα, η πιθανοτητα να φερουμε τον ιδιο αριθμο και στις δυο ριψεις ενος ζαριου ειναι N( ) 6 P( ) 0, % N( ) 6 Θεωρουμε οτι ενα βέβαιο ενδεχόμενο έχει εξορισμου πιθανότητα P( ) 1 100% και ενα αδύνατο ενδεχόμενο έχει εξορισμου πιθανότητα P( ) 0%. Για καθε δυο ενδεχομενα, ενος δειγματικου χωρου ισχύουν τα εξής: 0 P( ) 1 Προσθετικος νομος: P( ) P( ) P( ) P( ) P( ) 1 P( ) Παραδειγμα Εξεταζουμε ενα συνολο μαθητων ως προς τις αθλητικες τους προτιμησεις. Το % παιζει ποδοσφαιρο, το 84 % δεν παιζει τεννις ενω το % παιζει και τα δυο. Διαλεγουμε στην τυχη εναν μαθητη. Ποια η πιθανοτητα να παιζει τεννις; Ποια η πιθανοτητα να παιζει τουλαχιστον ενα αθλημα; Ποια η πιθανοτητα να μην κανει κανενα απο τα δυο αθληματα; Αν οι μαθητες που παιζουν ποδοσφαιρο ειναι 18, ποιο ειναι το μεγεθος του δειγματος;

25 σελ. 5 απο 9 Β μερος: Γεωμετρια Τρίγωνα Ειδη τριγωνων Στοιχεια τριγωνου

26 σελ. 6 απο 9 Κριτήρια ισότητας τριγώνων Δυο τριγωνα λεγονται ισα αν το ενα ειναι ακριβης αντιγραφη του αλλου. Συνεπως, αν δυο τριγωνα ειναι ισα τοτε ολες οι αντιστοιχες γωνιες τους ειναι ισες και ολες οι αντιστοιχες πλευρες τους ειναι ισες. Παρακατω συνοψιζουμε τα τρια κριτηρια ισοτητας τριγωνων: Πλευρα Γωνια Πλευρα (ΠΓΠ) Αν δυο τριγωνα εχουν δυο αντιστοιχες πλευρες ισες και την περιεχομενη γωνια στις πλευρες αυτες ιση, τοτε ειναι ισα. Γωνια Πλευρα Γωνια (ΓΠΓ) Αν δυο τριγωνα εχουν μια πλευρα ιση και τις προσκειμενες στην πλευρα αυτη γωνιες ισες, τοτε ειναι ισα. Πλευρα Πλευρα Πλευρα (ΠΠΠ) Αν δυο τριγωνα εχουν και τις τρεις πλευρες τους ισες, τοτε ειναι ισα. Παρατηρηση: Αν δυο τριγωνα ειναι ισα τοτε απεναντι απο ισες γωνιες βρισκονται ισες πλευρες, και απεναντι απο ισες πλευρες βρισκονται ισες γωνιες. Ασκησεις στην ισοτητα τριγωνων Αποδειξτε οτι καθε σημειο της μεσοκαθετου ενος ευθυγραμμου τμηματος ΑΒ ισαπεχει αποτα σημεια Α και Β. Αποδειξτε οτι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει από τις πλευρές της γωνίας. Αποδειξτε οτι δυο ορθογωνια τριγωνα που εχουν δυο αντιστοιχες πλευρες ισες τοτε ειναι ισα. (1 ο κριτηριο ισοτητας ορθογωνιων τριγωνων) Αποδειξτε οτι δυο ορθογωνια τριγωνα που εχουν μια αντιστοιχη γωνια ιση και μια αντιστοιχη πλευρα ιση τοτε ειναι ισα. ( ο κριτηριο ισοτητας ορθογωνιων τριγωνων) Σε ενα ισοσκελες τριγωνο ειναι ΑΒ = ΑΓ και ΑΔ η διχοτομος της. Αποδειξτε οτι και οτι η ΑΔ ειναι διαμεσος και υψος. Αποδειξτε οτι οι απεναντι πλευρες ενος παραλληλογραμμου ειναι ισες. Αποδειξτε οτι οι διαγωνιοι ενος παραλληλογραμμου διχοτομουνται ( η μια κοβει την αλλη στη μεση).

27 σελ. 7 απο 9 Το θεωρημα του Θαλη Αν τρεις η περισσοτερες παραλληλες ευθειες τεμνονται απο δυο αλλες ευθειες,, τοτε τα τμηματα που οριζονται απο την ειναι αναλογα με τα αντιστοιχα τμηματα που οριζονται απο την : (1) Αντιστροφα, αν τρεις ευθειες μεταξυ των οποιων οι δυο ειναι παραλληλες τεμνονται απο δυο αλλες ευθειες ε,ε' και οι ε,ε' οριζουν στις τρεις ευθειες τμηματα αναλογα, ετσι ωστε να ισχυει η ισοτητα (1), τοτε οι τρεις ευθειες ειναι παραλληλες. Ως ασκηση, αποδειξτε οτι αν ισχυει η ισοτητα (1) τοτε ισχυουν και οι παρακατω: Εφαρμογη 1: Αν τρεις παραλληλες ευθειες οριζουν ισα τμηματα σε μια ευθεια που τις τεμνει, τοτε θα οριζουν ισα τμηματα και σε καθε αλλη ευθεια που τις τεμνει. Εφαρμογη : Το ευθυγραμμο τμημα που ενωνει τα μεσα δυο πλευρων ενος τριγωνου ειναι παραλληλο προς την τριτη πλευρα του και ισο με το μισο της: // Και αντιστροφα: Αν απο το μεσο μια πλευρας τριγωνου φερουμε παραλληλη ευθεια προς μια αλλη πλευρα, τοτε αυτη (η παραλληλη) διερχεται απο το μεσο της τριτης πλευρας του.

28 σελ. 8 απο 9 Ομοια σχηματα Δυο κλειστα πολυγωνα λεγονται ομοια αν το ενα ειναι σμικρυνση η μεγέθυνση του άλλου. Ισοδυναμα, δυο πολυγωνα ειναι ομοια αν οι αντιστοιχες πλευρες τους ειναι αναλογες και οι αντιστοιχες γωνιες τους ειναι ισες. Παρατηρησεις: Αν δυο πολυγωνα ειναι ομοια, τοτε οι αντιστοιχες πλευρες τους (ομολογες πλευρες) εχουν τον ιδιο συντελεστη αναλογιας (λογο ομοιοτητας). Επειδη ισχυει (αντιστοιχων) πλευρων., επεται οτι ο λογος των περιμετρων δυο ομοιων σχηματων ειναι ισος με το συντελεστη αναλογιας των Αποδεικνυεται οτι δυο κανονικα πολυγωνα με τον ιδιο αριθμο πλευρων ειναι ομοια. Αποδεικνυεται οτι ο λογος των εμβαδων δυο ομοιων πολυγωνων ισουται με το τετραγωνο του συντελεστη αναλογιας των (αντιστοιχων) πλευρων. Δυο τριγωνα ειναι ομοια αν εχουν δυο γωνιες ισες. Αν δυο τριγωνα ειναι ομοια τοτε απεναντι απο ισες γωνιες βρισκονται αναλογες πλευρες. Για τα διπλανα τριγωνα ειναι: πλευρα μεγαλου τριγωνου πλευρα μικρου τριγωνου 6 περιμετρος μεγαλου τριγωνου περιμετρος μικρου τριγωνου 11 μεγάλου τριγώνου μικρού τριγώνου Ασκησεις στην ομοιοτητα πολυγωνων Εστω τριγωνο ΑΒΓ ( 0 90 ) και ΑΔ το υψος του. o o o o o o Αποδειξτε οτι τα ΑΔΒ και ΑΒΓ ειναι ομοια. Αποδειξτε οτι τα ΑΔΒ και ΑΔΓ ειναι ομοια. Αν ΔΒ = 4, ΔΓ = 9, βρειτε το ΑΔ. Αφου υπολογισετε τις περιμετρους των ΑΔΒ, ΑΔΓ, επιβεβαιωστε οτι Υπολογιστε τον λογο Υπολογιστε τον λογο... Αποδειξτε οτι αν δυο τριγωνα ειναι ομοια με λογο ομοιοτητας λ, τοτε ο λογος των υψων, των διαμεσων και των διχοτομων τους ειναι επισης ισος με λ. Εστω ενα τριγωνο ΑΒΓ με ΑΒ = ΑΓ. Επεκτεινουμε την πλευρα ΑΓ προς το μερος του Γ και παιρνουμε ενα τμημα ΑΔ = ΑΒ. Το σημειο Λ ειναι το μεσο του ΑΔ και το σημειο Κ ειναι το μεσο του ΒΔ. o Αποδειξτε οτι ΑΒ = ΑΓ ΑΔ o Αποδειξτε οτι το τριγωνο ΑΒΛ ειναι ισοσκελες o Αποδειξτε οτι η ΒΛ ειναι διχοτοτομος της γωνιας o Αποδειξτε οτι τα τριγωνα ΑΒΔ και ΚΛΔ ειναι ομοια o Αποδειξτε οτι τα τριγωνα ΒΓΛ και ΒΚΛ ειναι ισα o Αποδειξτε οτι τα τριγωνα ΑΒΓ και ΑΒΔ ειναι ομοια. ^

29 σελ. 9 απο 9 Τριγωνομετρία Τριγωνομετρικοί αριθμοί γωνιών [ 0,180 0 ] Μπορούμε να γενικεύσουμε τους τριγωνομετρικούς αριθμούς και να τους ορίσουμε για κάθε γωνία 0 [0,180 ], ως εξής: y y y Πινακας βασικων τριγωνομετρικων αριθμων Γωνία σε μοίρες Ημίτονο Συνημίτονο Εφαπτομένη Νόμος ημιτόνων και νόμος συνημιτόνων Σε κάθε τρίγωνο ΑΒΓ ισχύουν οι παρακάτω ισοτητες: Νόμος ημιτόνων: ( ) ( ) ( ) Νόμος συνημιτόνων: Ιδιότητες τριγωνομετρικών αριθμών 0 0 0,90 ( ) 0, ( ) 0, ( ) ,180 ( ) 0, ( ) 0, ( ) 0 ( ) ( ) 1

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; 3xa,, 5, x 3, 5 x a (σελ.

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; xa,, 5, x, 5 x a (σελ. 6)

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Μαθημαηικά Γ Γυμμαζίου

Μαθημαηικά Γ Γυμμαζίου Μαθημαηικά Γ Γυμμαζίου Μεθοδική Επαμάληψη Σηέλιος Μιχαήλογλου 017-18 www.askisopolis.gr Η επαμάληψη ηωμ Μαθημαηικώμ βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις www.askisopolis.gr 1.1. Πράξεις

Διαβάστε περισσότερα

Μαθημαηικά Γ Γυμμαζίου

Μαθημαηικά Γ Γυμμαζίου Μαθημαηικά Γ Γυμμαζίου Μεθοδική Επαμάληψη Σηέλιος Μιχαήλογλου 017-18 www.askisopolis.gr Η επαμάληψη ηωμ Μαθημαηικώμ βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις www.askisopolis.gr 1.1. Πράξεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Πειραματικό υμνάσιο Αγίων Αναργύρων Τάξη Μάιος 8 ΘΕΜΑΤΑ ΡΑΠΤΩΝ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : ΘΕΩΡΙΑ Έστω η εξίσωση δευτέρου βαθμού : a με a β γ (). α) Ποια παράσταση λέγεται

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ» ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΥ ΜΕΡΣ ο «ΑΛΓΕΒΡΑ». Να υπολογίσετε την τιμή της παράστασης: Α = ( + ) 4( ) 8, όταν = 0,45. Απλοποιούμε πρώτα την παράσταση : Α = ( + ) 4( ) 8 = = + 6 4 + 4 8

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ 1. Να αναπτύξετε τις ταυτότητες: α. (α+8) β. (-) γ. (γ+k) δ. (+γ) ε. (3k-5λ) ζ. (5/κ - 4/λ) η. (/3-χ/4) θ. (χ - 3/χ) ι. (χ/3+3ψ/4) κ. (3χ+χ/) λ. (χ+8)(χ-8)

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ. Μαθηματικών Α Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου

ΕΠΑΝΑΛΗΨΗ. Μαθηματικών Α Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου ΕΠΑΝΑΛΗΨΗ Μαθηματικών Α Γυμνασίου ΑΡΙΘΜΟΙ Σύνολο είναι μια καλώς ορισμένη συλλογή διαφορετικών μεταξύ τους αντικειμένων. Τα αντικείμενα που αποτελούν ένα σύνολο λέγονται στοιχεία ή μέλη του συνόλου. Για

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ

Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου

Μαθηματικά Β Γυμνασίου Μαθηματικά Β Γυμνασίου Περιεχόμενα KEΦΑΛΑΙΟ 1 ΕΞΙΣΩΣΕΙΣ... 3 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ... 3 1.2 ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ... 3 1.3 ΕΠΙΛΥΣΗ ΤΥΠΩΝ... 4 1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1- 3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3 Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { -.-.0.,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z &

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης

Διαβάστε περισσότερα