Μαθηματικα Γ Γυμνασιου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηματικα Γ Γυμνασιου"

Transcript

1 Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu

2 σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΜΟΝΩΝΥΜΩΝ 6 ΠΡΟΣΘΕΣΗ ΜΟΝΩΝΥΜΩΝ 6 ΓΕΝΙΚΕΣ ΠΡΑΞΕΙΣ ΜΕΤΑΞΥ ΠΟΛΥΩΝΥΜΩΝ 7 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 8 ΕΚΠ ΚΑΙ ΜΚΔ ΠΟΛΥΩΝΥΜΩΝ 9 ΤΑΥΤΟΤΗΤΕΣ 10 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ (1) 10 ΣΗΜΑΝΤΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 10 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ () 10 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ () 10 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ (4) 11 ΕΞΑΣΚΗΣΗ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ (5) 1 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ 1 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΜΕ ΧΡΗΣΗ ΤΑΥΤΟΤΗΤΩΝ 1 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΜΕ ΚΟΙΝΟΥΣ ΠΑΡΑΓΟΝΤΕΣ 14 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΠΟΛΥΩΝΥΜΟΥ ΤΗΣ ΜΟΡΦΗΣ 15 ΡΗΤΕΣ (ΚΛΑΣΜΑΤΙΚΕΣ) ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 16 ΠΡΑΞΕΙΣ ΜΕ ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 16 ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ (ΔΙΑΚΡΙΝΟΥΣΑ) 17 ΑΣΚΗΣΕΙΣ ΣΤΗ ΔΙΑΚΡΙΝΟΥΣΑ (1) 18 ΑΣΚΗΣΕΙΣ ΣΤΗ ΔΙΑΚΡΙΝΟΥΣΑ () 19 ΠΑΡΑΒΟΛΗ 0 ΠΙΘΑΝΟΤΗΤΕΣ 1 ΣΥΝΟΛΑ 1 ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΟΛΑ ΠΕΙΡΑΜΑ ΤΥΧΗΣ - ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ ΚΛΑΣΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ 4 Β ΜΕΡΟΣ: ΓΕΩΜΕΤΡΙΑ 5 ΤΡΙΓΩΝΑ 5 ΕΙΔΗ ΤΡΙΓΩΝΩΝ 5 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ 5 ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ 6 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 6 ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 7 ΟΜΟΙΑ ΣΧΗΜΑΤΑ 8 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΟΙΟΤΗΤΑ ΠΟΛΥΓΩΝΩΝ 8 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 9 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ [ 0,180 0 ] 9 ΙΔΙΟΤΗΤΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ 9

3 σελ. απο 9 ΝΟΜΟΣ ΗΜΙΤΟΝΩΝ ΚΑΙ ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ 9

4 σελ. 4 απο 9 Α μερος: Αλγεβρα και πιθανοτητες Συστήματα Χ Ενα τετοιο συστημα αποτελειται απο δυο εξισωσεις, καθε μια απο τις οποιες περιεχει δυο μεταβλητες y, υψωμενες στην 1 η δυναμη (γραμμικο συστημα). Για παραδειγμα οι παρακατω δυο εξισωσεις αποτελουν συστημα: Λύση του συστήματος είναι ενα ζευγάρι αριθμών 0, 0 y5 y8 y που επαληθεύει και τις δύο εξισώσεις ταυτόχρονα. Εφοσον καθε μια απο τις δυο εξισωσεις αναπαριστα μια ευθεια στους αξονες, ενα σύστημα εξισώσεων μπορεί να έχει: Ακριβώς μια λύση, πράγμα που σημαίνει ότι οι δύο ευθείες τέμνονται σε ακριβώς ένα σημείο. Άπειρες λύσεις (αόριστο), πράγμα που σημαίνει ότι οι δύο ευθείες συμπίπτουν. Καμία λύση (αδύνατο), πράγμα που σημαίνει ότι οι δύο ευθείες είναι παράλληλες. Για να λύσουμε ένα σύστημα υπάρχουν δύο μέθοδοι. Ας τις δούμε λύνοντας το σύστημα Με αντικατάσταση y y5 y8 (1) : y 5 y 5 5 y. () : y 8 5 y y 8 10 y y 8 y (1) 5 Άρα το σύστημα μας έχει μια λύση, το σημείο,. Με απαλοιφή y (1) : y 5 y 5 y 10 y y 10 8 y () : y 8 () Άρα η λύση του συστήματος είναι το σημείο,. Τα συστηματα ειναι πολυ χρησιμα στη λυση καποιων προβληματων. Για παραδειγμα: Ενας παραγωγος ελαιολαδου συσκευασε 500 kg λαδι σε 800 δοχεια των kg και των 5 kg. Μπορειτε να βρειτε ποσα -κιλα και ποσα 5-κιλα δοχεια χρησιμοποιησε;

5 σελ. 5 απο 9 Μονώνυμα & πολυώνυμα Μονώνυμα Πολυώνυμα Μονώνυμο είναι κάθε γινομενο που περιεχει εναν πραγματικο αριθμο (συντελεστη) και διαφορες μεταβλητες υψωμενες σε δυναμεις. Για παραδειγμα η παρακατω παρασταση ειναι ενα μονωνυμο: 5 8 y z Η δυναμη της καθε μεταβλητης λεγεται βαθμος της μεταβλητης αυτης και πρεπει να ειναι θετικος φυσικος αριθμος ή 0. Το παραπανω μονωνυμο εχει βαθμο 5 ως προς, 1 ως προς y και 8 ως προς z. Ο συνολικος βαθμος ειναι ισος με το αθροισμα των βαθμων ολων των Πολυώνυμο είναι το άθροισμα δύο ή περισσότερων μονωνύμων. Για παράδειγμα, η παράσταση y z y z 9 y z 5 είναι ένα πολυώνυμο που αποτελειται απο 4 μονωνυμα. Ο βαθμος του πολυωνυμου ειναι 8 ως προς, 7 ως προς y και 10 ως προς z. Ο συνολικος βαθμος ειναι = 0. Δυο πολυωνυμα λεγονται ισα αν ολα τα μονωνυμα τους ειναι ισα. Ως ασκηση βρειτε τα,, ετσι ωστε τα παρακατω πολυωνυμα να ειναι ισα: μεταβλητων. Στο παραδειγμα μας ο συνολικος βαθμος ειναι = 14. Το κομματι που περιεχει μονο τις μεταβλητες, δηλαδη το ονομαζεται κυριο μερος του μονωνυμου. y z, 5 8 Ριζα πολυωνυμου Αν ενα πολυωνυμο περιεχει μονο μια μεταβλητη τοτε μπορουμε να το ονομασουμε δηλωνοντας τη μεταβλητη. Για παραδειγμα, το πολυωνυμο μπορουμε να το ονομασουμε Καθε μονωνυμο εχει και ενα αντιθετο μονωνυμο. Το αντιθετο μονωνυμο P( ) του 5 8 y z ειναι το 5 8 y z. Αυτο σημαινει οτι στη θεση του εχουμε το δικαιωμα να βαλουμε οποιον αριθμο θελουμε και να υπολογισουμε την τιμη του. Για παραδειγμα: Καθε πραγματικος αριθμος μπορει να θεωρηθει ως μονωνυμο (ολες οι μεταβλητες ειναι υψωμενες στη μηδενικη) και τον λεμε απλα σταθερο μονωνυμο. Το 0 λεγεται μηδενικό μονώνυμο. Πρεπει να ειναι ειναι σαφες οτι ο βαθμος ενος σταθερου μονωνυμου ειναι 0. Δυο μονωνυμα λεγονται ομοια αν εχουν το ιδιο κυριο μερος. Για παραδειγμα, τα παρακατω μονωνυμα ειναι ομοια: 4 y z, y z y, y y 5, 7y, P () P( ) P( 4) P 1 4 Ένας πραγματικός αριθμός που μηδενιζει ενα πολυωνυμο λεγεται ρίζα του πολυωνύμου. Ευκολα φαινεται οτι οι ριζες του παραπανω πολυωνυμου ειναι οι 0 και 1 : P P (0) (1) Δυο μονωνυμα λεγονται ισα αν εχουν τον ιδιο συντελεστη και το ιδιο κυριο μερος. Ως ασκηση, βρειτε τα,, ωστε τα παρακατω μονωνυμα να ειναι i) ομοια ii) ισα iii) αντιθετα: 10 a y, y Παραδειγματα: Εξεταστε αν το ειναι ριζα του πολυωνυμου: P ( ) 4 6 Αν δυο μονωνυμα ειναι ομοια τοτε μπορουμε να κανουμε τις μεταξυ τους πραξεις. Για παραδειγμα: Βρειτε τις ριζες του πολυωνυμου: 1 6.

6 σελ. 6 απο 9 Πολλαπλασιασμος μονωνυμων Αν μας δωθουν δυο η περισσοτερα μονωνυμα μπορουμε παντα να τα πολλαπλασιασουμε εκτελωντας τον πολλαπλασιασμο με τους συντεστες και ακολουθωντας τις ιδιοτητες των δυναμεων για τις μεταβλητες. Για παραδειγμα: Ως ασκηση, καντε τους παρακατω πολλαπλασιασμους μονωνυμων: yz 5 y 4 8y y y 5 y 4 5 y y y ( ) y y y 4 y y y y 6 y 5 Προσθεση μονωνυμων Αν μας δωθουν δυο η περισσοτερα ομοια μονωνυμα μπορουμε παντα να τα προσθεσουμε χρησιμοποιωντας την επιμεριστικη ιδιοτητα. Για παραδειγμα: Ως ασκηση, καντε τις παρακατω προσθεσεις μονωνυμων: y 10 y y 5y y y y y

7 σελ. 7 απο 9 Γενικες πραξεις μεταξυ πολυωνυμων Αν μας δωθει ενα μονωνυμο και ενα πολυωνυμο μπορουμε να τα πολλαπλασιασουμε χρησιμοποιωντας την επιμεριστικη ιδιοτητα. Για παραδειγμα: y y y y y y y y 6 y 4 4 Ομοιως, αν μας δωθουν δυο ή περισσοτερα πολυωνυμα μπορουμε να τα πολλαπλασιασουμε χρησιμοποιωντας την επιμεριστικη ιδιοτητα. Για παραδειγμα: Ως ασκηση καντε τις παρακατω πραξεις: ( 1) ( 1) ( ) ( ) ( ) ( ) ( 1) y y ( 1)( 5) ( 6) 4 y y 4y y y y 4 y y 4 5 y y y y y y y 4y y y y 5 y y y4 y y

8 σελ. 8 απο 9 Διαίρεση πολυωνύμων Στο σημειο αυτο θυμιζουμε την Ευκλειδεια διαιρεση φυσικων: Για καθε δυο φυσικους αριθμους, εναν διαιρετεο και εναν διαιρετη 0, υπαρχουν μοναδικοι φυσικοι, το πηλικο και το υπολοιπο, ετσι ωστε, 0 Μπορουμε να επεκτεινουμε την εννοια της Ευκλειδειας διαιρεσης και να την εφαρμοσουμε στα πολυωνυμα: Για κάθε πολυώνυμο διαιρετέο και πολυώνυμο - διαιρέτη 0 με βαθμος ( ) βαθμος ( ), υπάρχουν μοναδικά πολυώνυμα (πηλίκο) και ώστε 0 βαθμος ( ) βαθμος ( ) (υπόλοιπο) έτσι Ειναι προφανες οτι αν το ( ) ειναι παραγοντας του ( ) (εχουμε δηλαδη τελεια Ευκλειδεια διαιρεση πολυωνυμων) τοτε ( ) 0. Υπάρχουν δύο τρόποι για να βρουμε την εξίσωση τηε Ευκλειδειας διαίρεσης πολυωνύμων. Ας τους δούμε με παραδείγματα: Αναγωγή σε σύστημα Έστω ( ) 5 1, ( ). Απο την ισοτητα της διαιρεσης πολυωνυμων εχουμε: 5 1 ( ) ( ) με βαθμος ( ) βαθμος ( ) 1 πραγμα που σημαινει οτι βαθμος ( ) 0 ( ) και βαθμος ( ) Αν θεσουμε ( ), τοτε η ισοτητα ξαναγραφεται ως 5 1. Εκτελουμε τις πραξεις στο δεξι μελος και εχουμε: 5 1 ( ) ( ) ( ) Στο τελικο βημα λυνουμε το απλο συστημα που προκυπτει: 1, 5,, 1 1,, 4, 1 Χρηση του αλγοριθμου Ευκλείδειας διαίρεσης Εστω οτι θελουμε να διαιρεσουμε το πολυωνυμο 4 ( ) 4 1 με το ( ) : 4 ( ) ( ) 4 4 = 1 ( ) = 1 ( ) 1 = 4 1 H διαδικασια τερματιζεται διοτι βαθμος ( 4 1) βαθμος ( ). Υπολοιπο: ( ) 4 1 Πηλικο: ( ) 1

9 σελ. 9 απο 9 ΕΚΠ και ΜΚΔ πολυωνυμων Στο σημειο αυτο θυμιζουμε τη διαδικασια ευρεσης ΜΚΔ και ΕΚΠ δυο ή περισσοτερων φυσικων αριθμων. Έστω ότι μας δίνονται δύο ή περισσότεροι φυσικοι αριθμοί, π.χ. οι 1800 και Για να βρούμε το ΜΚΔ και το ΕΚΠ τους ακολουθούμε τα παρακάτω βήματα: 1. Αναλύουμε τους αριθμούς σε πρώτους παράγοντες: Για να βρούμε το ΜΚΔ διαλέγουμε μόνο τους κοινούς παράγοντες (που στο παράδειγμά μας είναι οι, και 5) και τους υψώνουμε στη μικρότερη δύναμη στην οποία εμφανίζονται: 1800, Για να βρούμε το ΕΚΠ διαλέγουμε όλους τους παράγοντες (κοινούς και μη κοινούς) και τους υψώνουμε στη μεγαλύτερη δύναμη στην οποία εμφανίζονται: 1800, Μπορουμε να επεκτεινουμε την παραπανω διαδικασια και να την εφαρμοσουμε στα πολυωνυμα. Για παραδειγμα, εστω οτι θελουμε να βρουμε το ΜΚΔ και το ΕΚΠ των μονωνυμων : Βρισκουμε πρωτα το ΜΚΔ και το ΕΚΠ των συντελεστων: 4 1 y, 4 y z, 6 y (1,4,6) 6, (1,4,6) 4 Ο συντελεστης του ΜΚΔ των πολυωνυμων θα ειναι το ΜΚΔ των συντεστων τους και το κυριο μερος του ΜΚΔ θα προκυψει αν επιλεξουμε μονο τις κοινες μεταβλητες και τις υψωσουμε στη μικροτερη δυναμη που εμφανιζονται. Αρα λοιπον ο ΜΚΔ των τριων μονωνυμων θα ειναι το μονωνυμο 6 y Ο συντελεστης του ΕΚΠ των πολυωνυμων θα ειναι το ΕΚΠ των συντεστων τους και το κυριο μερος του ΕΚΠ θα προκυψει αν επιλεξουμε ολες τις μεταβλητες (κοινες και μη κοινες) και τις υψωσουμε στη μεγαλυτερη δυναμη που εμφανιζονται. Αρα λοιπον το ΕΚΠ των τριων μονωνυμων θα ειναι το μονωνυμο 4 4 y z Ως ασκηση βρειτε το ΜΚΔ και το ΕΚΠ των παρακατω μονωνυμων και πολυωνυμων: 1 y z, 18 z, 4y 15 y z, 10 y z, 5y z y y y y, 18, 9 ( ),, 8 y y y y y y

10 σελ. 10 απο 9 Ταυτοτητες Σημαντικες ταυτοτητες Ταυτοτητα ειναι μια εξισωση που περιεχει μεταβλητες και ισχυει οποιες τιμες και αν παρουν οι μεταβλητες. Οι πιο σημαντικες ταυτοτητες ειναι οι παρακατω: y y y ( )( ) y y y y y y y y y y y y y y 1 4y ( y) (9 5 y)(9 5 y) y Εξασκηση στις ταυτοτητες (1) y9 5y 6y 6y y y y y ( 7)( 7) ( ) y y 5 ( ( )) ( 4 ) Εξασκηση στις ταυτοτητες () Εξασκηση στις ταυτοτητες ()

11 σελ. 11 απο 9 Εξασκηση στις ταυτοτητες (4) y y y νδο ( ) ( ) νδο για καθε ισχυει νδο y y ( y) ( y) ( )( ) 8 y y y y y y y y 4 ( 1)( 1) ( 1)( 1) 1 y y y y 1 y y y y y y y y 4y 4

12 σελ. 1 απο 9 Εξασκηση στις ταυτοτητες (5) Συμπληρωστε τα παρακατω κενα: y y 6y 4 5 y 6 y 4

13 σελ. 1 απο 9 Παραγοντοποιηση Παραγοντοποίηση με χρήση ταυτοτήτων Παραγοντοποιηση ειναι η διαδικασια με την οποια μετατρεπουμε ενα πολυωνυμο σε γινομενο πολυωνυμων (1 ) y ( 15) ( 15) y y y ( ) 6( )

14 σελ. 14 απο y 6y 4 6y 8y y yz y 16 y 7y 14 y 8 y ( 1) 4 ( 1) ( 1)( ) ( 4)( ) ( 1) (1 )( ) ( 1)( 1) ( 1) ( 1) 4 ( 1) 1 ( ) ( 1) ( 1) y y ( 1) ( 1) ( 1) 4( 1) ( y) ( y) Παραγοντοποίηση με κοινούς παράγοντες ( 1) y y y y z yz yz y z yz yz 6 4 y y y 5 4 1

15 σελ. 15 απο 9 Παραγοντοποιηση πολυωνυμου της μορφης Ενα τετοιο πολυωνυμο παραγοντοποιειται ως εξης: a a Για παραδειγμα, για να παραγοντοποιησουμε το πολυωνυμο 8 1 ψαχνουμε δυο αριθμους με αθροισμα 8 και γινομενο 1. Με δοκιμες βρισκουμε οτι 6 8, 6 1, αρα το πολυωνυμο γραφεται ως: ( ) 6( ) ( )( 6) Ως ασκηση παραγοντοποιειστε τα παρακατω πολυωνυμα: 54 1y ( 5 8) 5 8 ( 6 ) 1 4 4

16 σελ. 16 απο 9 Ρητες (κλασματικες) αλγεβρικες παραστασεις 10 5y z 5 y z 5 y y y 6 4 ( 4) y y y y y y y y y y y y y y 1 y 1 y y y y y y y y y 1 y y y Πραξεις με ρητες αλγεβρικες παραστασεις

17 σελ. 17 απο 9 Εξισώσεις ου βαθμού με έναν άγνωστο (διακρίνουσα) Εξίσωση ου βαθμού με έναν άγνωστο είναι κάθε εξίσωση που μπορεί να έρθει στη μορφή P * ( ) 0 (,, ) Η εξίσωση αυτή είναι επιλύσιμη σε κάθε περίπτωση. Για να τη λύσουμε υπολογίζουμε τη διακρίνουσα της διακρίνουμε τις παρακάτω περιπτώσεις: 4 και ανάλογα με το πρόσημό Αν 0 τότε η εξίσωση έχει δύο λύσεις διαφορετικές μεταξύ τους: Αν 0 τότε η εξίσωση έχει μια (διπλή) λύση: Αν 0 τότε η εξίσωση είναι αδύνατη (δεν έχει καμία λύση στους πραγματικούς). 1 Επιπλέον, το πολυώνυμο παραγοντοποιείται και γράφεται ως 1 Επιπλέον, το πολυώνυμο παραγοντοποιείται και γράφεται ως Παραδείγματα: P 1 P 1 Παραδείγματα: Παραδείγματα:

18 σελ. 18 απο 9 Ασκησεις στη διακρινουσα (1) ( 1) (1 )( ) 0 ( ) 4 ( 1) 1 0 ( ) 6 ( ) 1 ( )( 4) ( 1) ( 1)( ) ( ( ) ( 4) ( 1) ( )( ) 1 ) 8 ( 1) (5 ) (1 4 )

19 σελ. 19 απο 9 Ασκησεις στη διακρινουσα () Απλοποιειστε τα παρακατω κλασματα: Δινονται οι παραστασεις: A 4 6, B o Να βρειτε για ποιες τιμες του οριζονται οι παραστασεις. o Να λυσετε την εξισωση A B 0. Ποιοί πρέπει να είναι οι συντελεστές β,γ μιας εξίσωσης ου βαθμού για να έχει ρίζες το 10 και το -0; Να βρειτε που τεμνονται (αν τεμνονται) ο κυκλος y 5 και η ευθεια y1. Δινεται το πολυωνυμο P( ). o Να βρειτε τις ριζες του πολυωνυμου και να το παραγοντοποιησετε. o Να λυσετε την εξισωση 1 0 P( ). Λυστε την εξισωση 16y 0 y y ( y)( y). Δινονται οι παραστασεις: A ( 1)( ) 9( 1) B o Να απλοποιηθει η παρασταση A B o Να λυθει η εξισωση AB 0 o Αν η εξισωση AB εχει μια ριζα, να υπολογισετε την παραμετρο.

20 σελ. 0 απο 9 Παραβολή Κάθε συνάρτηση με γενική μορφή y P ( ),,,, 0 ονομάζεται παραβολή. Η γραφική παράσταση της παραβολής στη γενική μορφή της είναι μια καμπύλη που μοιάζει με κύπελο. Για τη γραφική παράσταση της παραβολής ισχύουν τα εξής: Η κορυφή της παραβολής είναι το σημείο K, Η παραβολή είναι συμμετρική ως προς την ευθεία Αν 0 προς τα πάνω (το κυπελλο ειναι αναποδα). 4 όπου η διακρίνουσα του τριωνύμου.. τότε η κορυφή της παραβολής «κοιτάει» προς τα κάτω (το κυπελλο ειναι ορθιο). Αν 0 τότε η κορυφή της παραβολής «κοιτάει» Όσο μεγαλύτερη η απόλυτη τιμή του τόσο πιο «κλειστή» ή «απότομη» η παραβολή. Ανεξάρτητα από το πρόσημο του, αν η διακρίνουσα είναι: θετική, τότε η παραβολή τέμνει τον άξονα σε δύο διαφορετικά σημεία. μηδέν, τότε η παραβολή τέμνει τον άξονα σε ακριβώς ένα σημείο. αρνητική, τότε η παραβολή δεν τέμνει τον άξονα. Όλα τα παραπάνω συνοψίζονται γραφικά στα παρακάτω σχήματα:

21 σελ. 1 απο 9 Πιθανότητες Σύνολα Σύνολο είναι μια ομάδα που περιέχει διάφορα στοιχεία το καθενα διαφορετικο απο το αλλο. Για παράδειγμα: {οι θετικοι ακεραιοι αριθμοι μαζι με το 0} {0,1,,,4,5,...} {οι ακεραιοι αριθμοι} {...,,, 1, 0, 1,,,...} {οι πραγματικοι αριθμοι} {ολοι οι ρητοι και ολοι οι αρρητοι} Α {οι αρτιοι αριθμοι} Β {οι διαιρετες του 16} {τα ψηφια του αριθμου 45808}= {τα γραμματα της λεξης "γαλαξιας"}= Αν ένα στοιχείο ανήκει σε ένα σύνολο X, αυτό το συμβολίζουμε ως X. Αν ένα στοιχείο δεν ανήκει σε ένα σύνολο X, τότε μπορούμε να χρησιμοποιήσουμε το συμβολισμό X. Ο συμβολισμός αυτός είναι πολύ χρήσιμος ως προς την εκφραση συνολων: { : 6 4} { : διαιρετης του 0} {ρητοι αριθμοι} :,, 0 {αρρητοι αριθμοι} { } Ένα σύνολο που δεν περιέχει κανένα στοιχείο λέγεται κενό σύνολο και συμβολίζεται ως {}. Εξεταστε αν τα παρακατω συνολα ειναι κενα: {οι ανθρωποι που κατοικουν στη σεληνη} {οι αρτιοι διαιρετες του 15}={ : αρτιος και διαιρετης του 15} { : 0} { : 0} Δύο σύνολα λέγονται ίσα αν περιέχουν ακριβώς τα ίδια στοιχεία, ανεξαρτητα απο τη σειρα με την οποια εμφανιζονται. Εξεταστε αν τα παρακατω συνολα ειναι ισα:?? {αρτιοι αριθμοι} = {οι φυσικοι που διαιρουνται ακριβως με το } = {οι φυσικοι που τελειωνουν σε 0,,4,6 ή 8}? {τα ψηφια του αριθμου 76} = {τα ψηφια του αριθμου 677} Αν ενα συνολο εμπεριεχεται εξολοκληρου μεσα σε ενα συνολο τοτε λεμε οτι το ειναι υποσυνολο του και το γραφουμε ως. Αυτο σημαινει οτι καθε στοιχειο του ειναι και στοιχειο του. Για παραδειγμα, το είναι υποσύνολο του :. Μπορούμε να αναπαραστήσουμε όλα τα γνωστά σύνολα με ένα κατατοπιστικό διάγραμμα Venn. Ως ασκηση, βαλτε το σωστο συμβολο ( ή ) στα παρακατω συνολα: {περιττοι αριθμοι} {περιττοι αριθμοι} { : 9} { : } {διαιρετες του 16} {αρτιοι αριθμοι}

22 σελ. απο 9 Πράξεις με σύνολα Ας πάρουμε το συνολο {1,,, 4,5,6,7,8,9,10} και τα υποσύνολα του {1,,}, {,, 4,5,10} Η ένωση των, είναι ένα καινούργιο σύνολο που περιέχει τα στοιχεια που ανηκουν ή στο ή στο. Με άλλα λόγια, η ένωση περιεχει όλα τα κοινά στοιχεία και όλα τα μη κοινά στοιχεία: {1,,,4,5,10} Η τομή των, είναι ένα καινούργιο σύνολο που περιέχει όλα εκείνα τα στοιχεία που ανήκουν και στο Α και στο Β. Με άλλα λόγια, η τομή περιέχει (μόνο) τα κοινά στοιχεία των συνόλων και συμβολίζεται ως {,} Το συμπλήρωμα (ή αντίθετο) του Α θα είναι εκείνο το σύνολο που περιέχει όλα τα στοιχεία του που δεν ανήκουν στο : {4,5,6,7,8,9,10} Το ειναι εκεινο το συνολο που περιεχει ολα τα στοιχεια που ανηκουν στο εκτος απο εκεινα που ανηκουν στο : {1} Το συμπληρωμα της ενωσης ειναι εκεινο το συνολο που περιεχει ολα τα στοιχεια του που δεν ανηκουν στην ενωση: {6,7,8,9} Το συμπληρωμα της τομης ειναι το συνολο που περιεχει ολα τα στοιχεια του που δεν ανηκουν στην τομη: {1,4,5,6,7,8,9,10} Αν επιπλεον {,5,7,9,10}, εξεταστε αν ισχυουν οι παρακατω ιδιοτητες:

23 σελ. απο 9 Πείραμα τύχης - δειγματικός χώρος - ενδεχόμενα Σε καθε πείραμα τύχης, δειγματικός χώρος ονομάζεται το σύνολο όλων των δυνατών αποτελεσμάτων. Για παράδειγμα αν ρίξουμε ένα ζάρι μια φορά ο δειγματικός χώρος ειναι {1,,, 4,5,6}. Ομοίως, αν ριξουμε ενα κερμα ο δειγματικος χωρος θα ειναι το συνολο {, }. Ο δειγματικος χωρος των αποτελεσματων ενος ποδοσφαιρικου αγωνα ειναι {1,, }. Αν ριξουμε το ζαρι δυο φορες τοτε ο δειγματικος χωρος περιεχει 6 ζευγαρια αποτελεσματων: Κάθε υποσύνολο του δειγματικού χώρου ονομάζεται ενδεχόμενο. Για παράδειγμα το ενδεχόμενο Α = { να φέρουμε τον ίδιο αριθμό και στις δυο ρίψεις } είναι το υποσύνολο Α = { (1,1), (,), (,), (4,4), (5,5), (6,6) }. Αν λοιπον φερουμε 6 και στα δυο ζαρια τοτε το ενδεχομενο Α πραγματοποιειται. Αν φερουμε 4 στο ενα ζαρι και 5 στο αλλο τοτε το ενδεχομενο Α δεν πραγματοποιειται. Οι ευνοικες περιπτωσεις ωστε να πραγματοποιηθει ενα ενδεχομενο ειναι ο αριθμος των στοιχειων του ενδεχομενου. Για παράδειγμα, οι ευνοικες περιπτωσεις ώστε να πραγματοποιηθεί το ενδεχόμενο Α είναι 6. Γραφουμε λοιπον ( ) 6. Ένα ενδεχόμενο που είναι απίθανο να πραγματοποιηθεί (πχ το ενδεχόμενο να φέρουμε αθροισμα 14) λέγεται αδύνατο. Ένα αδύνατο ενδεχόμενο είναι ίσο με το κενό σύνολο. Ένα ενδεχόμενο που είναι σιγουρο οτι θα πραγματοποιηθει (πχ να φέρουμε αθροισμα απο και πανω) ονομάζεται βέβαιο. Ενα βέβαιο ενδεχόμενο ισούται με το δειγματικό χώρο. Δύο ενδεχόμενα που δεν έχουν κανένα κοινό στοιχείο (η τομή τους είναι το ) ονομάζονται ασυμβίσβαστα ή ξένα μεταξυ τους. Δύο ασυμβίβαστα ενδεχόμενα είναι αδύνατον να συμβούν ταυτόχρονα. Για παραδειγμα, τα ενδεχομενα Α = { (1,1), (,), (,), (4,4), (5,5), (6,6) } και Β = { να φερουμε αθροισμα περιττο αριθμο } ειναι ασυμβιβαστα. Ενα ενδεχομενο λεγεται υποσυνολο ενος ενδεχομενου ( ) αν η πραγματοποιηση του συνεπαγεται την πραγματοποιηση του. Για παράδειγμα, τα ενδεχομενα = { να φέρουμε τον ίδιο αριθμό και στις δυο ρίψεις } και = { το ενδεχομενο να φερουμε αθροισμα ζυγο αριθμο } τοτε προφανως ισχυει. Εφόσον τα ενδεχόμενα είναι σύνολα, μπορούμε να εφαρμοσουμε ολες τις γνωστες πραξεις μεταξυ συνολων. Πιο συγκεκριμενα, για καθε δυο ενδεχομενα, ενος δειγματικου χωρου ισχυουν τα εξης: Το ενδεχομενο να συμβει τουλαχιστον ενα απο τα, Β( ή το ή το ) ισουται με. Το ενδεχομενο να συμβει ταυτοχρονα και το και το ισουται με. Το ενδεχομενο να μην συμβει το ισουται με. Αν ειναι ο δειγματικος χωρος της ριψης δυο ζαριων να γραψετε τα παρακατω ενδεχομενα και να υπολογισετε τις ευνοικες περιπτωσεις για το καθενα: { να φερουμε τον ιδιο αριθμο } { να φερουμε αθροισμα 9 } { να φερουμε τον ιδιο αριθμο ή αθροισμα 9 } { να φερουμε τον ιδιο αριθμο και αθροισμα 9 } { να φερουμε αθροισμα 8 } { να φερουμε γινομενο 1 } { να φερουμε τουλαχιστον μια φορα 1 } { να φερουμε διαδοχικους αριθμους } { να φερουμε γινομενο 1 }

24 σελ. 4 απο 9 Κλασσικός ορισμός πιθανότητας Σε ένα πείραμα τύχης ορίζουμε την πιθανότητα ενός ενδεχομένου ως εξής: πλήθος ευνοϊκών περιπτώσεων αριθμός στοιχείων του Α N( ) P( ) πλήθος δυνατών περιπτώσεων αριθμός στοιχείων του N( ) Για παράδειγμα, η πιθανοτητα να φερουμε τον ιδιο αριθμο και στις δυο ριψεις ενος ζαριου ειναι N( ) 6 P( ) 0, % N( ) 6 Θεωρουμε οτι ενα βέβαιο ενδεχόμενο έχει εξορισμου πιθανότητα P( ) 1 100% και ενα αδύνατο ενδεχόμενο έχει εξορισμου πιθανότητα P( ) 0%. Για καθε δυο ενδεχομενα, ενος δειγματικου χωρου ισχύουν τα εξής: 0 P( ) 1 Προσθετικος νομος: P( ) P( ) P( ) P( ) P( ) 1 P( ) Παραδειγμα Εξεταζουμε ενα συνολο μαθητων ως προς τις αθλητικες τους προτιμησεις. Το % παιζει ποδοσφαιρο, το 84 % δεν παιζει τεννις ενω το % παιζει και τα δυο. Διαλεγουμε στην τυχη εναν μαθητη. Ποια η πιθανοτητα να παιζει τεννις; Ποια η πιθανοτητα να παιζει τουλαχιστον ενα αθλημα; Ποια η πιθανοτητα να μην κανει κανενα απο τα δυο αθληματα; Αν οι μαθητες που παιζουν ποδοσφαιρο ειναι 18, ποιο ειναι το μεγεθος του δειγματος;

25 σελ. 5 απο 9 Β μερος: Γεωμετρια Τρίγωνα Ειδη τριγωνων Στοιχεια τριγωνου

26 σελ. 6 απο 9 Κριτήρια ισότητας τριγώνων Δυο τριγωνα λεγονται ισα αν το ενα ειναι ακριβης αντιγραφη του αλλου. Συνεπως, αν δυο τριγωνα ειναι ισα τοτε ολες οι αντιστοιχες γωνιες τους ειναι ισες και ολες οι αντιστοιχες πλευρες τους ειναι ισες. Παρακατω συνοψιζουμε τα τρια κριτηρια ισοτητας τριγωνων: Πλευρα Γωνια Πλευρα (ΠΓΠ) Αν δυο τριγωνα εχουν δυο αντιστοιχες πλευρες ισες και την περιεχομενη γωνια στις πλευρες αυτες ιση, τοτε ειναι ισα. Γωνια Πλευρα Γωνια (ΓΠΓ) Αν δυο τριγωνα εχουν μια πλευρα ιση και τις προσκειμενες στην πλευρα αυτη γωνιες ισες, τοτε ειναι ισα. Πλευρα Πλευρα Πλευρα (ΠΠΠ) Αν δυο τριγωνα εχουν και τις τρεις πλευρες τους ισες, τοτε ειναι ισα. Παρατηρηση: Αν δυο τριγωνα ειναι ισα τοτε απεναντι απο ισες γωνιες βρισκονται ισες πλευρες, και απεναντι απο ισες πλευρες βρισκονται ισες γωνιες. Ασκησεις στην ισοτητα τριγωνων Αποδειξτε οτι καθε σημειο της μεσοκαθετου ενος ευθυγραμμου τμηματος ΑΒ ισαπεχει αποτα σημεια Α και Β. Αποδειξτε οτι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει από τις πλευρές της γωνίας. Αποδειξτε οτι δυο ορθογωνια τριγωνα που εχουν δυο αντιστοιχες πλευρες ισες τοτε ειναι ισα. (1 ο κριτηριο ισοτητας ορθογωνιων τριγωνων) Αποδειξτε οτι δυο ορθογωνια τριγωνα που εχουν μια αντιστοιχη γωνια ιση και μια αντιστοιχη πλευρα ιση τοτε ειναι ισα. ( ο κριτηριο ισοτητας ορθογωνιων τριγωνων) Σε ενα ισοσκελες τριγωνο ειναι ΑΒ = ΑΓ και ΑΔ η διχοτομος της. Αποδειξτε οτι και οτι η ΑΔ ειναι διαμεσος και υψος. Αποδειξτε οτι οι απεναντι πλευρες ενος παραλληλογραμμου ειναι ισες. Αποδειξτε οτι οι διαγωνιοι ενος παραλληλογραμμου διχοτομουνται ( η μια κοβει την αλλη στη μεση).

27 σελ. 7 απο 9 Το θεωρημα του Θαλη Αν τρεις η περισσοτερες παραλληλες ευθειες τεμνονται απο δυο αλλες ευθειες,, τοτε τα τμηματα που οριζονται απο την ειναι αναλογα με τα αντιστοιχα τμηματα που οριζονται απο την : (1) Αντιστροφα, αν τρεις ευθειες μεταξυ των οποιων οι δυο ειναι παραλληλες τεμνονται απο δυο αλλες ευθειες ε,ε' και οι ε,ε' οριζουν στις τρεις ευθειες τμηματα αναλογα, ετσι ωστε να ισχυει η ισοτητα (1), τοτε οι τρεις ευθειες ειναι παραλληλες. Ως ασκηση, αποδειξτε οτι αν ισχυει η ισοτητα (1) τοτε ισχυουν και οι παρακατω: Εφαρμογη 1: Αν τρεις παραλληλες ευθειες οριζουν ισα τμηματα σε μια ευθεια που τις τεμνει, τοτε θα οριζουν ισα τμηματα και σε καθε αλλη ευθεια που τις τεμνει. Εφαρμογη : Το ευθυγραμμο τμημα που ενωνει τα μεσα δυο πλευρων ενος τριγωνου ειναι παραλληλο προς την τριτη πλευρα του και ισο με το μισο της: // Και αντιστροφα: Αν απο το μεσο μια πλευρας τριγωνου φερουμε παραλληλη ευθεια προς μια αλλη πλευρα, τοτε αυτη (η παραλληλη) διερχεται απο το μεσο της τριτης πλευρας του.

28 σελ. 8 απο 9 Ομοια σχηματα Δυο κλειστα πολυγωνα λεγονται ομοια αν το ενα ειναι σμικρυνση η μεγέθυνση του άλλου. Ισοδυναμα, δυο πολυγωνα ειναι ομοια αν οι αντιστοιχες πλευρες τους ειναι αναλογες και οι αντιστοιχες γωνιες τους ειναι ισες. Παρατηρησεις: Αν δυο πολυγωνα ειναι ομοια, τοτε οι αντιστοιχες πλευρες τους (ομολογες πλευρες) εχουν τον ιδιο συντελεστη αναλογιας (λογο ομοιοτητας). Επειδη ισχυει (αντιστοιχων) πλευρων., επεται οτι ο λογος των περιμετρων δυο ομοιων σχηματων ειναι ισος με το συντελεστη αναλογιας των Αποδεικνυεται οτι δυο κανονικα πολυγωνα με τον ιδιο αριθμο πλευρων ειναι ομοια. Αποδεικνυεται οτι ο λογος των εμβαδων δυο ομοιων πολυγωνων ισουται με το τετραγωνο του συντελεστη αναλογιας των (αντιστοιχων) πλευρων. Δυο τριγωνα ειναι ομοια αν εχουν δυο γωνιες ισες. Αν δυο τριγωνα ειναι ομοια τοτε απεναντι απο ισες γωνιες βρισκονται αναλογες πλευρες. Για τα διπλανα τριγωνα ειναι: πλευρα μεγαλου τριγωνου πλευρα μικρου τριγωνου 6 περιμετρος μεγαλου τριγωνου περιμετρος μικρου τριγωνου 11 μεγάλου τριγώνου μικρού τριγώνου Ασκησεις στην ομοιοτητα πολυγωνων Εστω τριγωνο ΑΒΓ ( 0 90 ) και ΑΔ το υψος του. o o o o o o Αποδειξτε οτι τα ΑΔΒ και ΑΒΓ ειναι ομοια. Αποδειξτε οτι τα ΑΔΒ και ΑΔΓ ειναι ομοια. Αν ΔΒ = 4, ΔΓ = 9, βρειτε το ΑΔ. Αφου υπολογισετε τις περιμετρους των ΑΔΒ, ΑΔΓ, επιβεβαιωστε οτι Υπολογιστε τον λογο Υπολογιστε τον λογο... Αποδειξτε οτι αν δυο τριγωνα ειναι ομοια με λογο ομοιοτητας λ, τοτε ο λογος των υψων, των διαμεσων και των διχοτομων τους ειναι επισης ισος με λ. Εστω ενα τριγωνο ΑΒΓ με ΑΒ = ΑΓ. Επεκτεινουμε την πλευρα ΑΓ προς το μερος του Γ και παιρνουμε ενα τμημα ΑΔ = ΑΒ. Το σημειο Λ ειναι το μεσο του ΑΔ και το σημειο Κ ειναι το μεσο του ΒΔ. o Αποδειξτε οτι ΑΒ = ΑΓ ΑΔ o Αποδειξτε οτι το τριγωνο ΑΒΛ ειναι ισοσκελες o Αποδειξτε οτι η ΒΛ ειναι διχοτοτομος της γωνιας o Αποδειξτε οτι τα τριγωνα ΑΒΔ και ΚΛΔ ειναι ομοια o Αποδειξτε οτι τα τριγωνα ΒΓΛ και ΒΚΛ ειναι ισα o Αποδειξτε οτι τα τριγωνα ΑΒΓ και ΑΒΔ ειναι ομοια. ^

29 σελ. 9 απο 9 Τριγωνομετρία Τριγωνομετρικοί αριθμοί γωνιών [ 0,180 0 ] Μπορούμε να γενικεύσουμε τους τριγωνομετρικούς αριθμούς και να τους ορίσουμε για κάθε γωνία 0 [0,180 ], ως εξής: y y y Πινακας βασικων τριγωνομετρικων αριθμων Γωνία σε μοίρες Ημίτονο Συνημίτονο Εφαπτομένη Νόμος ημιτόνων και νόμος συνημιτόνων Σε κάθε τρίγωνο ΑΒΓ ισχύουν οι παρακάτω ισοτητες: Νόμος ημιτόνων: ( ) ( ) ( ) Νόμος συνημιτόνων: Ιδιότητες τριγωνομετρικών αριθμών 0 0 0,90 ( ) 0, ( ) 0, ( ) ,180 ( ) 0, ( ) 0, ( ) 0 ( ) ( ) 1

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ. ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός. ςεδς 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια στους

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Τελευταία ενημέρωση: 21 Φεβρουαρίου 2015 w w w. c o m m o n m a t h s. w e e b l y. c o m A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: α) Δεν επιτρέπεται η χρήση υπολογιστικής μηχανής. β) Δεν επιτρέπεται η χρήση διορθωτικού. γ) Να γράφετε μόνο με μπλε μελάνι. (Για τα σχήματα μπορείτε να χρησιμοποιήσετε

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα