ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος"

Transcript

1 ΤΑ ΠΟΣΟΣΤΑ 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ν Από συνήθεια λέµε «80 τοις εκατό» και γράφουµε 80% αντί για Ποσοστό επί τοις χιλίοις, χρησιµοποιούµε το σύµβολο ν 0 / 00, που σηµαίνει ν Το κλάσµα, πχ / 00 = = 3,4% Τα ποσοστά µπορούν να παρασταθούν σε σχηµατική µορφή α) µε πίνακα, β) µε ραβδογράµµατα, γ) µε ορθογώνια διαγράµµατα δ) µε κυκλικά διαγράµµατα. Φ. Π. Α - Φόρος Προστιθέµενης Αξίας Ο Φ. Π. Α είναι ένας γενικός φόρος που τον επέβαλλε το κράτος σε όλα τα πωλούµενα αγαθά και τις παρεχόµενες υπηρεσίες προς τους πολίτες του. Τα ποσοστά του Φ.Π.Α. ποικίλουν ανά οµάδες αγαθών π.χ.: 4% για βιβλία, 18% για τα περισσότερα αγαθά και υπηρεσίες. Εισπράττεται από τους επαγγελµατίες και αποδίδεται ανά τρίµηνο στο ηµόσιο. Εµπορικές και Τραπεζικές Συναλλαγές 1. Τόκος είναι ένα νοµισµατικό ενοίκιο για παραχώρηση χρηµάτων προς χρήση σε άλλο πρόσωπο και για ορισµένο χρονικό διάστηµα. 2. Επιτόκιο (%), είναι ο τόκος για τις 100 νοµισµατικές µονάδες και για χρονική διάρκεια ενός έ- τους. Έχοµε δύο µορφές: Καταθεση. ίνουµε τα χρήµατά µας (π.χ ) στην τράπεζα για ένα χρόνο µε επιτόκιο 2%, αυτό σηµαίνει: «παραχωρώ την περιουσία µου στην τράπεζα για ένα χρόνο να την εκµεταλλεύεται αυτή. Στο τέλος του έτους θα µου την επιστρέψει ( τα ), επιπλέον θα µε πληρώσει 3.000*2% = 60 για την ευκολία που της έκανα». ανεισµός. Είναι το αντίθετο της κατάθεσης. Ζητάµε χρήµατα από την τράπεζα και πληρώνουµε επί πλέον του αρχικού ποσού για την διευκόλυνση. 3. Εκπτώσεις. Μείωση της αρχικής προς πώληση αξίας ενός προϊόντος µε σκοπό να αυξηθεί η κατανάλωση. π.χ. Έκπτωση 15% σηµαίνει ότι, κάποιο καταναλωτικό αγαθό που κοστίζει 100, 15 δεν θα πληρώσω και θα πληρώσω µόνο τα 85. Παράδειγµα: αγοράσαµε ένα ψυγείο 500 µε έκπτωση 15%. Ποια η έκπτωση (κέρδος µου), ποια η νέα τι- µή; Λύση: 500*15% = 500 * 15/100 = 75 το κέρδος άρα = 425 η τιµή που πληρώσαµε. Την τιµή που πληρώσαµε την βρίσκουµε πιο γρήγορα, µε 500*85%=425 γιατί σε κάθε κερδίζουµε και 85πληρώνουµε. 4. Κέρδος. Είναι η Αριθµητική διαφορά Τιµής πώλησης Τιµή αγοράς. 5. Ζηµιά. Είναι η παραπάνω διαφορά µε την προϋπόθεση η τιµή πώλησης να είµαι µικρότερη τις τιµής αγοράς. 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 25

2 Ανάλογα ποσά Ορισµοί: 1. ύο ποσά λέµε ότι είναι ανάλογα, όταν πολλαπλασιάζοντας τις τιµές του ενός ποσού επί έναν αριθµό, πολλαπλασιάζονται και οι αντίστοιχες τιµές του άλλου µε τον ίδιο αριθµό. Τα ποσά χ και ψ θα είναι ανάλογα αν υπάρχει σταθερός αριθµός α διάφορος του µηδενός ώστε ψ = α χ Π.χ. λίτρα βενζίνης και ποσό πληρωµής, αν το λίτρο έχει 0,8 = 80 λεπτά Λίτρα ,8 2 0,8 3 0,8 4 0,8 5 0,8 6 0,8 7 0,8 Ποσό πληρωµής 0,8 1,6 2,4 3,2 4 4,8 5,6 Λίτρα Παρατηρούµε ότι ο λόγος κλάσµα, σε κάθε περίπτωση είναι σταθερός. Ο παρα- Ποσό πάνω πίνακας λέγεται πίνακας τιµών. 2. Υπάρχουν και ποσά που δεν είναι ανάλογα. Για να ελέγξουµε αν τα ποσά είναι ανάλογα πρέπει να σχηµατίσουµε πίνακα όπως στο παράδειγµα µας. Τέτοια ποσά είναι τα: Βάρος και αξία αγροτικών προϊόντων. Λίτρα και κόστος καυσίµων. Χρόνος και αµοιβή εργαζοµένου. Ενώ Ηλικία και βάρος ανθρώπου, ταχύτητα και κατανάλωση καυσίµου σε αυτοκίνητο δεν είναι ανάλογα. 3. Αν παραστήσουµε τα ζεύγη τιµών, δύο ανάλογων ποσών µε σηµεία του επίπεδου σ' ένα σύστηµα ορθογωνίων αξόνων και τα ενώσουµε διαδοχικά, τότε θα σχηµατιστεί µία ευθεία γραµµή που περνά από την αρχή των αξόνων. Το 1 λίτρο λάδι κοστίζει 4,5 Λάδι σε λίτρα Ποσό πληρωµής 0 4,5 9 13, , , ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 26

3 Ασκήσεις:1. ίνονται οι παρακάτω πίνακες. Να εξετάσετε αν τα ποσά χ κα y είναι ανάλογα. x y x y x y x y x y x y 14,0 17,5 24,5 28,0 45,5 19. Ποία από τα παρακάτω ποσά είναι ανάλογα; Το µήκος ενός υφάσµατος και η τιµή του Η περίµετρος ενός τετραγώνου και η πλευρά του Ο αριθµός των εργατών και ο χρόνος που απαιτείται για την ολοκλήρωση ενός έργου Ο αριθµός των εργατών και το έργο που εκτελούν στον ίδιο χρόνο Η παροχή νερού και ο χρόνος για το γέµισµα µιας δεξαµενής Απλή µέθοδος των τριών. Πρόβληµα 1: Τα 6 αυγά κοστίζουν 1. Τα 24 πόσο; Κατασκευάζουµε τον παρακάτω πίνακα τιµών (κατάταξη). Αυγά Ίσοι λόγοι =, εξίσωση - λύση Αξία 1 Χ; 1 x; 6 χ = 24 1 ή 6 χ = 24 ή χ= 24 : 6 ή χ = 4 άρα τα 24 αυγά κοστίζουν 4 Ασκήσεις από το Σχολικό Βιβλίο α Γυµνασίου: 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 27

4 Κλίµακες Κλίµακα ενός χάρτη ή ενός σχεδίου λέµε το σταθερό λόγο της απόστασης δύο σηµείων του χάρτη ή του σχεδίου, προς την πραγµατική απόσταση των σηµείων αυτών, όταν οι α- ποστάσεις αυτές µετρηθούν µε την ίδια µονάδα. Μεγέθυνση. Αν η κλίµακα είναι µεγαλύτερη του 1, λέµε ότι έχουµε µεγέθυνση. Σµίκρυνση. Αν η κλίµακα είναι µικρότερη του 1, λέµε ότι έχουµε σµίκρυνση. Π.χ. κλίµακα 1: σηµαίνει: απόσταση στο χάρτη 1 µονάδας αντιστοιχεί στην γη µε πραγµατική απόσταση ίδιων µονάδων. Έννοια µερισµού 1. Όταν λέµε να µεριστεί ένας αριθµός ν σε µέρη ανάλογα των αριθµών χ, ψ, ω εννοούµε να βρούµε αριθµούς α, β, γ αντιστοίχως ανάλογα των χ, ψ, ω, ώστε να ισχύει: α + β + γ = ν 2. Αν οι αριθµοί α, β, γ είναι ανάλογοι προς τους αριθµούς χ, ψ, ω αντίστοιχα, τότε και οι αριθ- µοί α, β, γ, α+β+γ θα είναι ανάλογοι προς τους αριθµούς χ, ψ, ω, χ+ψ+ω. ηλαδή ισχύει: χ α = ψ β = ω γ = χ + ψ + ω α + β + γ Παρατηρήσεις: Τα δύο ίσα κλάσµατα λέµε ότι κάνουν µία αναλογία. χ ψ Αν έχω µία αναλογία = τότε ισχύει χ β = ψ α (χιαστί γινόµενο ισοδύναµα κλάσµατα) α β Α Σ Κ Η Σ Ε Ι Σ 1. ύο αθλητές θα µοιραστούν ένα έπαθλο ανάλογα µε το χρόνο που έκαναν µια διαδροµή. Αν ο πρώτος έκανε τη διαδροµή σε 20 min και ο δεύτερος σε 25 min, να βρείτε πόσα χρήµατα θα πάρει ο καθένας. 2. Να µεριστεί ο αριθµός 950 σε µέρη ανάλογα προς τους αριθµούς 2, 3 και Να βρείτε δύο αριθµούς που να έχουν άθροισµα 65 και να είναι ανάλογοι προς τους αριθµούς 5 και Η περίµετρος ενός ορθογωνίου είναι 140 m, ενώ οι διαστάσεις του είναι ανάλογες προς τους αριθµούς 5 και 2. Να υπολογίσετε τα µήκη των πλευρών του. 5. Ένας πατέρας µοίρασε την περιουσία του ανάλογα µε την ηλικία τους, στα τρία παιδιά του. Ο πρώτος είναι 40 ετών, ο 2 ος 35 και ο τρίτος 32. Αν η περιουσία είναι από πόσα θα πάρει ο καθένας; 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 28

5 ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ 1. Να γραφτούν µε µορφή ποσοστών τα παρακάτω κλάσµατα ,,,,,,, Να γραφτούν σαν κλάσµατα τα ποσοστά 7%, 25% 12,6%, 37,3% 128%, 134% 135,8% 3. Να υπολογιστεί: α. το 16% του β. το 0,7% του γ. 6,2% του 320 δ. το 3% του ε. το 9% του στ. το 7,3% του Να υπολογιστεί: α) το 14% των β) το 2,6% των 9 στρεµµάτων σε m 2 γ) το11% των 28 κιλών σε γραµµάρια δ) το 13,25% των 100 τόνων σε κιλά 5. Η Νίκη αγόρασε ένα παλτό αξίας 280 και ο καταστηµατάρχης της έκανε έκπτωση το 80. Τι ποσοστό έκπτωσης της έγινε; 6. Το εισιτήριο µε το τρένο από Αθήνα για Θεσσαλονίκη είναι 25. Αν για τρία εισιτήρια πληρώσει κάποιος 60 τι ποσοστό έκπτωσης του έγινε; 7. Ο παρακάτω πίνακας περιέχει ηλικίες και αριθµό µαθητών κατά ηλικία, ενός γυµνασίου. Να βρεθούν τα χ, φ, ω, ψ Ηλικία Αρ. µαθητών % χ φ ω ψ 8. Ένας µανάβης αγόρασε 1800 κιλά πατάτες και πλήρωσε 396. Τα 1000 κιλά τα πούλησε µε κέρδος 45% και τα υπόλοιπα µε κέρδος 30%. Να βρεθεί αν κέρδισε ή ζηµίωσε και πόσο. 9. Ένας εκδότης πούλησε βιβλία µε κέρδος 35% και κέρδισε 1,05 το βιβλίο. Πόσο ήταν το κόστος του ενός βιβλίου και πόσα έδωσε για όλα; 10. Ένας εκδότης πούλησε βιβλία µε ζηµιά Αν το βιβλίο είχε κόστος κατασκευής 7,5 πόσο πούλησε το ένα βιβλίο και ποιο το ποσοστό της ζηµιάς του; 11. Ο ακαθάριστος µισθός ενός υπαλλήλου είναι Στο µισθό του γίνονται κρατήσεις για τα διάφορα ασφαλιστικά ταµεία 24%. Ποιος είναι ο καθαρός µισθός του υπαλλήλου; 12. Ένας έµπορος αγόρασε ένα πλυντήριο που επιβαρύνθηκε για την ταχύτερη µεταφορά µε 15% και έπειτα το πούλησε αντί 650 κερδίζοντας το 20% τις τιµής πώλησης. Πόσο το αγόρασε, πόσα κέρδισε και πόσα πλήρωσε στη µεταφορά; 13. Μία ηλεκτρική συσκευή πουλήθηκε τελικά 450 µε έκπτωση 10% πάνω στην αναγραφόµενη τιµή. Να βρεθεί η έκπτωση σε. Πόσο θα πουλιόταν αν γινόταν έκπτωση 25%; 14. Ένας επιπλοποιός πούλησε ένα σαλόνι µε κέρδος 12% και εισέπραξε 1250 δρχ. Αν το πουλούσε 1500 τι % θα κέρδιζε ενώ αν το πωλούσε 1050 τι % θα ζηµιωνόταν; 15. Ένα διαµέρισµα 75 τετραγωνικών µέτρων κοστίζει κατασκευαστικά στον εργολάβο , ο οποίος κερδίζει το 40% του κόστους κατασκευής. Πόσο κοστίζει στον αγοραστή το διαµερίσµα ανά τετραγωνικό µέτρο; 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 29

6 16. Ένα προϊόν πουλήθηκε επί του κόστους. Αν πουλιόταν 240 ακριβότερα, τότε το κέρδος θα ήταν 18%. Πόσο αξίζει το προϊόν; 17. Ένας έµπορος αγόρασε κιλά καφέ και κατά το καβούρδισµα έχασε το 20% από το αρχικό βάρος του. Πόσο πρέπει να πουλάει το κιλό τον καβουρδισµένο καφέ γιο να κερδίζει 1550 ; 18. Μία οθόνη υπολογιστή κοστίζει 450, η κεντρική µονάδα 690 και ένας εκτυπωτής180. Αν τα παραπάνω προϊόντα υπόκεινται σε Φ.Π Α. 18% πόσα θα πληρώσουµε συνολικά; 19. Να βρεθεί ο Φ.Π.Α. που αντιστοιχεί σε είδη αξίας και µε συντελεστές α) 4% β) 18%. 20. Ένα αυτοκίνητο πουλιόταν Η τιµή του πρώτα αυξήθηκε 14% και µετά µειώθηκε κατά 14%. Αν πιστεύεται ότι δεν παρέµεινε ίδια ποια είναι ή νέα τιµή του αυτοκινήτου µετά την αυξο- µείωση; 21. Η τιµή ενός αυτοκινήτου αυξήθηκε κατά 32% και κοστίζει τώρα Ποια ήταν η αρχική τιµή του αυτοκινήτου. 22. Η τιµή ενός ποδηλάτου µειώθηκε κατά 17% και κοστίζει τώρα 128. Ποια ήταν η αρχική τιµή του ποδηλάτου; 23. Ένα µηχάνηµα πληρώθηκε αντί όπου αγοράστηκε µε έκπτωση 25%. Αν πληρώσου- µε και συµπληρωµατικό φόρο 3% στην αρχική αξία πόσο θα µας κοστίσει τελικά; 24. Ένας έµπορος πούλησε ηλεκτρικές συσκευές µε 70 τη µία, µε κέρδος 25%. Να βρεθεί α) το κέρδος του για κάθε µία β] η αρχική τιµή γ) το συνολικό κέρδος από την πώληση 30 συσκευών. 25. Ένας γεωργός προµηθεύτηκε µια θεριζοαλωνιστική µηχανή αξίας Στο ποσό αυτό έγιναν κρατήσεις χαρτοσήµου 3% και στην κράτηση χαρτοσήµου έγινε νέα κράτηση 2,4% υπέρ Ο.Γ.Α. Να βρεθεί τι ποσό θα εισπράξει ο προµηθευτής και τι κρατήσεις θα αποδώσει; 26. Ο πληθυσµός µιας πόλης ήταν το έτος 2000 ήταν κάτοικοι. Το 2001 αυξήθηκε κατά 8%, το2002 κατά 3% και το 2003 µειώθηκε κατά 1,5%. Να βρεθεί ο τελικός πληθυσµός το Ένας έµπορος αγοράζει προϊόντα αξίας και πληρώνει το 30% µετρητά και τα υ- πόλοιπα αυξηµένα µε τόκο 7,5% σε 8 ισόποσες µηνιαίες δόσεις. Να βρεθεί α) το ποσό κάθε δόσης β) Αν πλήρωσε Φ.Π.Α 18% επί της τιµής αγοράς ( ), πόσο το ποσό κάθε νέας δόσης; 28. Ο παραπάνω έµπορος πούλησε τα εµπορεύµατα µε κέρδος 15%. Κέρδισε, έχασε και πόσο; (Κόστος αγοράς περίπτωση Ι: , περ. ΙΙ: ΦΠΑ 18% ) 1 ο ΓΥΜΝΑΣΙΟ ΝΑΥΠΛΙΟΥ 30

5.2 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ

5.2 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ 1 5. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ ΑΣΚΗΣΕΙΣ 1. ύο υπάλληλοι έχουν µηνιαίο µισθό 1500. Στον έναν από τους δύο έγινε αύξηση % και στον άλλο µείωση 5% πάνω στις αποδοχές του πρώτου υπαλλήλου όπως αυτές διαµορφώθηκαν

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ

Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Στην καθημερινή ζωή μας ακούμε φράσεις όπως: Ο έμπορος κερδίζει 30% (τριάντα τοις εκατό ή τριάντα στα εκατό) στην τιμή της αγοράς Τι σημαίνει ο έμπορος κερδίζει 30%; Αν

Διαβάστε περισσότερα

6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ

6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ 1 6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ ΘΕΩΡΙΑ 1. Ανάλογα ποσά : ύο ποσά τα λέµε ανάλογα όταν µεταβάλονται µε τέτοιο τρόπο ώστε όταν πολλαπλασιάζεται (διαιρείται) το ένα µε έναν αριθµό να πολλαπλασιάζεται (διαιρείται)

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου Κεφ 5 ο - Ποσοστά. Μέρος Α Θεωρία 1. Πως ονομάζεται το σύμβολο α% και με τι είναι ίσο; 2. Πως μπορούμε να υπολογίσουμε το α% του β; 3. Τι είναι ο ΦΠΑ και πως τον υπολογίζουμε; Μέρος

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. **

Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** Ερωτήσεις ανάπτυξης 1. ** Αυτοκίνητο καταναλώνει βενζίνη 6,7 lit/100 km. Στο πρατήριο Α η βενζίνη κοστίζει 213 δρχ/lit. Στο πρατήριο Β η βενζίνη κοστίζει 229 δρχ/lit, αλλά η εταιρεία ισχυρίζεται ότι η

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ

6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ 1 6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ ΘΕΩΡΙΑ 1. Τρόποι ελέγχου αν δύο ποσά είναι ανάλογα α) Εξετάζουµε αν µεταβάλλονται µε τον ίδιο τρόπο. ηλαδή, όταν πολλαπλασιάζεται (διαιρείται) η τιµή του ενός µε έναν αριθµό,

Διαβάστε περισσότερα

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ 1 1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για τη λύση του προβλήµατος : ιαβάζουµε µε µεγάλη προσοχή το πρόβληµα Ξεχωρίζουµε τα δεδοµένα από τα ζητούµενα Συµβολίζουµε τον άγνωστο µε µία µεταβλητή

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ Ε

ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ Ε ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ Ε ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «ΜΑΘΗΜΑΤΙΚΕΣ

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π.

Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012. 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. Επαναληπτικές ασκήσεις Β κοινού κορμού 2011-2012 Πρόοδοι 1. Να βρείτε το χ ώστε οι αριθμοί χ+14, 2χ+2, -4 να είναι διαδοχικοί όροι Α.Π. 2. Να σχηματίσετε την Α.Π. που έχει α 8 =30 και α 12 =46 3. Σε Α.Π.

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το

Διαβάστε περισσότερα

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 1 4. 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 3

ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 3 THE G C SCHOOL OF CAREERS UΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 3 Χρόνος: 1 ώρα και 30 λεπτά UΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 25 ερωτήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στο

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ÊåöÜëáéï 3 ï. Ôá êëüóìáôá. -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí

ÊåöÜëáéï 3 ï. Ôá êëüóìáôá. -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí ÊåöÜëáéï ï Ôá êëüóìáôá âéâëéïììüèçìá : -Ç Ýííïéá ôïõ êëüóìáôïò -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí âéâëéïììüèçìá 2: -Ðñüóèåóç êëáóìüôùí -Áöáßñåóç êëáóìüôùí

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ Κεφάλαιο 1: Το θεωρητικό υπόβαθρο της διαδικασίας λήψεως αποφάσεων και η χρονική αξία του χρήµατος Κεφάλαιο 2: Η καθαρή παρούσα αξία ως κριτήριο επενδυτικών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα: ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Κλάσματα Η έννοια του κλάσματος. Να γραφούν σαν κλάσματα τα πηλίκα των διαιρέσεων 0 δ.. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα δ.. Ένα σχολείο

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΜΗΧΑΝΙΚΟΥ ΚΕΦΑΛΑΙΟ 8 ΦΟΡΟΣ ΠΡΟΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ (Φ.Π.Α.)

ΟΙΚΟΝΟΜΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΜΗΧΑΝΙΚΟΥ ΚΕΦΑΛΑΙΟ 8 ΦΟΡΟΣ ΠΡΟΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ (Φ.Π.Α.) ΟΙΚΟΝΟΜΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΜΗΧΑΝΙΚΟΥ ΚΕΦΑΛΑΙΟ 8 ΦΟΡΟΣ ΠΡΟΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ (Φ.Π.Α.) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Προστιθέμενη αξία προϊόντος Ορισμός ΦΠΑ Εφαρμογή ΦΠΑ Απαλλασσόμενες συναλλαγές Συντελεστές ΦΠΑ

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 43ο. Από πού έρχοµαι; Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 43ο. Από πού έρχοµαι; Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 43ο Σίγουρα την αρχική τιµή! Λύνω προβλήµατα µε ποσοστά: Βρίσκω την αρχική τιµή Από πού έρχοµαι; Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να µάθεις να λύνεις προβλήµατα

Διαβάστε περισσότερα

Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C.

Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C. Ασκήσεις Μάθημα 25 ο 1. Ένα προϊόν πωλείται σε 3 διαφορετικά καταστήματα στις παρακάτω τιμές : 18, 20 και 22. Ποια είναι η μέση τιμή πώλησης του προϊόντος ; Κατάστημα Α Β Γ Τιμές 18 20 22 Μ.Ο. 18 20 22

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

β β β ή ή γ Ορισμοί Έννοιες Ρίζος Γιώργος «επιστρέφοντας στην άσκηση του διαγωνισμού, διαβάζουμε πως ο λόγος τον διεθνή Μαθηματικό Διαγωνισμό 4».

β β β ή ή γ Ορισμοί Έννοιες Ρίζος Γιώργος «επιστρέφοντας στην άσκηση του διαγωνισμού, διαβάζουμε πως ο λόγος τον διεθνή Μαθηματικό Διαγωνισμό 4». Χρησιμοποιώντας τις αναλογίες σε προβλήματα της καθημερινής ζωής Ρίζος Γιώργος Ορισμοί Έννοιες Σ τον διεθνή Μαθηματικό Διαγωνισμό TIMSS δόθηκε η παρακάτω ά- σκηση: Μία τάξη έχει 28 μαθητές. Αν ο λόγος

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν Ερωτήσεις ανάπτυξης 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + 3 β) α = + ( 1) ν ν γ) α ν = 1 1 1 1 + + + L + 1 3 34 ν ν + 1 δ) α1 = 0, αν+ 1 = 3α + 1 ν ( ). ** Να

Διαβάστε περισσότερα

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα.

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. THE GRAMMAR SCHOOL ΑΡΙΘΜΟΣ: ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011 ΘΕΜΑ : ΧΡΟΝΟΣ : ΜΑΘΗΜΑΤΙΚΑ 1 ΩΡΑ ΚΑΙ 30 ΛΕΠΤΑ Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. 2. Απαγορεύεται

Διαβάστε περισσότερα

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5 Μαθηματικά Α' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 5 να διαιρείται ακριβώς με το, το και το 5 (β)

Διαβάστε περισσότερα

Ασκήσεις. Πρέπει να ξέρω ότι: Οτιδήποτε χωρίζεται σε ίσα μέρη είναι μια ακέραιη μονάδα.

Ασκήσεις. Πρέπει να ξέρω ότι: Οτιδήποτε χωρίζεται σε ίσα μέρη είναι μια ακέραιη μονάδα. Μάθημα 8 ο Ασκήσεις. Συμπλήρωσε τα παρακάτω κενά : Η Κυριακή έκοψε ένα μήλο σε ίσα μέρη Το μήλο είναι η ακέραιη μονάδα. Χωρίστηκε σε τέσσερα () ίσα μέρη. Τι μέρος του μήλου αντιπροσωπεύει κάθε κομμάτι

Διαβάστε περισσότερα

Λογιστική ιαθεσίµων 144

Λογιστική ιαθεσίµων 144 Λογιστική ιαθεσίµων 144 Χρηµατικά ιαθέσιµα Τα άµεσα µέσα πληρωµών της οικονοµικής µονάδας Μετρητά 145 Επιταγές εισπρακτέες επί λογαριασµών όψεως Ληξιπρόθεσµα τοκοµερίδια Καταθέσεις όψεως Καταθέσεις προθεσµίας

Διαβάστε περισσότερα

6.6 ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ

6.6 ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ 1 6.6 ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ ΠΟΣΑ ΘΕΩΡΙΑ Ποσά αντιστρόφως ανάλογα : Είναι τα ποσά για τα οποία ισχύει το παρακάτω. Όταν πολλαπλασιάζεται ή διαιρείται η τιµή του ενός µε έναν αριθµό να διαιρείται αντίστοιχα

Διαβάστε περισσότερα

1 2,55 1.250 3,19 0,870 2,78 2 2,55 1.562 3,98 0,756 3,01 3 2,55 1.953 4,98 0,658 3,28

1 2,55 1.250 3,19 0,870 2,78 2 2,55 1.562 3,98 0,756 3,01 3 2,55 1.953 4,98 0,658 3,28 Άσκηση 1 Η κατασκευαστική εταιρία Κ εξετάζει την περίπτωση αγοράς μετοχών της εταιρίας «Ε» με πληρωμή σε μετρητά. Κατά τη διάρκεια της χρήσης που μόλις ολοκληρώθηκε, η «Ε» είχε κέρδη ανά μετοχή 4,25 και

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ Γ' ΛΥΕΙΟΥ ΕΠΙΛΟΓΗΣ 2006 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η

Διαβάστε περισσότερα

α) να βρείτε το άθροισµα των τεσσάρων πρώτων όρων της S 4 και β) το άθροισµα των άπειρων όρων της.

α) να βρείτε το άθροισµα των τεσσάρων πρώτων όρων της S 4 και β) το άθροισµα των άπειρων όρων της. Ερωτήσεις ανάπτυξης 1. * Να σχηµατίσετε τις γεωµετρικές προόδους µε: α) α 1 = 5 και λ = 3 2 1 β) α 1 = και λ = 3 1 γ) α 1 = - 20 και λ = 2 2. * Ποιον αριθµό πρέπει να προσθέσουµε στους αριθµούς 2, 16,

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 31. Μία κυλινδρική δεξαµενή έχει µήκος βάσης 1,56 m. Η δεξαµενή είναι γεµάτη κατά τα 6 7 και περιέχει 75,36 m3 νερό. Να υπολογίσετε το βάθος της δεξαµενής. Να υπολογίσετε

Διαβάστε περισσότερα

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ . Η ΕΝΝΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ. Εξίσωση πρώτου βαθµού µε αγνώστους και νοµάζεται κάθε εξίσωση της µορφής α + β = γ. Άγνωστοι είναι το και το. Τα α, β και γ λέγοντα συντελεστές. Ειδικότερα το γ

Διαβάστε περισσότερα

7. Ποιο είναι το άθροισμα των ψηφίων του (δεκαδικού) αριθμού ; Α: 4 Β: 6 Γ: 7 Δ: 10

7. Ποιο είναι το άθροισμα των ψηφίων του (δεκαδικού) αριθμού ; Α: 4 Β: 6 Γ: 7 Δ: 10 20 Φεβρουαρίου 2010 1. Σ ένα ημερολόγιο διαγράφουμε τις ημερομηνίες του μηνός Ιουλίου 2004 οι οποίες περιέχουν ένα τουλάχιστον περιττό ψηφίο. Ποιος είναι ο αριθμός των ημερών που μένουν; Α: 9 Β: 10 Γ:

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Σελίδα 5: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 4, Εξισώσεις και προβλήματα

Σελίδα 5: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 4, Εξισώσεις και προβλήματα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 3 Περιεχόμενα Σελίδα 5: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 4, Εξισώσεις και προβλήματα Σελίδα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 Μάθημα: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ Ημερομηνία και ώρα εξέτασης: Τρίτη, 10 Ιουνίου 2014

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ Α.1. Να γράψετε τις παρακάτω εκφράσεις με τη βοήθεια μιας μεταβλητής: i) Το πενταπλάσιο ενός αριθμού. ii) Το διπλάσιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Κ. Τζιρώνης, Θ. Τζουβάρας ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Συµπλήρωµα στις λύσεις των ασκήσεων του βιβλίου Περιλαµβάνει λύσεις ή υποδείξεις για ασκήσεις του βιβλίου που αφορούν κυρίως προβλήµατα των οποίων η επίλυση

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ.

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ. ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : ΣΥΝΔΥΑΣΜΟΙ P Α 24 80 Β 35 64 Γ 45 50 Δ 55 36 Ε 60 29 Ζ 70 14 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Α. Να σχεδιάσετε την καμπύλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 0 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής). THE G

Διαβάστε περισσότερα

Πίνακας Ηµερών. ikd 360. Kd 360

Πίνακας Ηµερών. ikd 360. Kd 360 Λογαριασµοί Απλού Τόκου (Αλληλόχρεοι Τοκοφόροι Λογαριασµοί) Παραδοχές Ελεύθερες καταθέσεις Αναλήψεις µέχρι το υπόλοιπο, δηλαδή το αλγεβρικό άθροισµα προηγούµενων καταθέσεων, αναλήψεων σε λογαριασµούς υπερανάληψης

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ 1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Α Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 3 η έκδοση 29/04/15

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 Ε_3.Αλ3Ε(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Κυριακή 4 Μαΐου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Πότε δύο ποσά λέγονται ανάλογα; Ποια είναι η σχέση που συνδέει δύο ανάλογα ποσά x, y; Τι είναι ο συντελεστής αναλογίας; Πάνω σε τι σχήµα βρίσκονται τα ζεύγη (x, y) για δύο ανάλογα ποσά x, y; Πότε δύο ποσά

Διαβάστε περισσότερα

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή.

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή. Ερωτήσεις ανάπτυξης 1. * Παρατηρούµε ότι: 1 11 ( + = 1 ) 1+ = ( + 1) 1 3 33 ( + + + = 1 ) Ποιο νοµίζετε ότι θα είναι το άθροισµα 1 + + 3 +... + ν; Αποδείξτε την ισότητα που συµπεράνατε µε επαγωγή.. * Μετράµε

Διαβάστε περισσότερα

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες ΣΥΝΑΡΤΗΣΗ y=αx+β Η ευθεία με εξίσωση y=αx+β. ΣΥΝΑΡΤΗΣΗ y=αx+β Η γραφική παράσταση της y = αx + β, β 0 είναι µια ευθεία παράλληλη της ευθείας µε εξίσωση y = αx, που διέρχεται από το σημείο β του άξονα y'y.

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου) Kangourou Sans Frontières αγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό έντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα αγκουρό 007 Επίπεδο: 4 (για

Διαβάστε περισσότερα

Ο χρόνος αρχίζει να µετράει στις 8 το πρωί, και µονάδα µέτρησης του είναι το δεκάλεπτο. Η µονάδα µέτρησης της απόστασης είναι τα 10 χιλιόµετρα.

Ο χρόνος αρχίζει να µετράει στις 8 το πρωί, και µονάδα µέτρησης του είναι το δεκάλεπτο. Η µονάδα µέτρησης της απόστασης είναι τα 10 χιλιόµετρα. ΑΣΚΗΣΕΙΣ Μια µέρα µια παρέα έκανε µια εκδροµή από την πόλη Α προς την πόλη Β. Στην παρακάτω γραφική παράσταση στον οριζόντιο άξονα σηµειώνεται ο χρόνος, και στον κατακόρυφο η απόσταση από την πόλη Α. Ο

Διαβάστε περισσότερα

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ ΑΘΗΝΑ ΙΑΝΟΥΑΡΙΟΣ 2014 ΕΠΙΜΕΛΕΙΑ - ΣΥΝΤΑΞΗ ΠΑΝΤΕΛΗΣ ΝΙΚΟΣ 1 ΜAΚΡΟΟΙΚΟΝΟΜΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΕΠ ΑΠΟ ΤΗΝ ΠΛΕΥΡΑ ΤΗΣ ΤΕΛΙΚΗΣ ΔΑΠΑΝΗΣ Y = C + I + G + ( X M) Y

Διαβάστε περισσότερα

µε το µέτρο του µεγέθους. ii. Στη γλώσσα που χρησιµοποιούµε στην καθηµερινή µας ζωή ορίζουµε ως µέση ταχύτητα το

µε το µέτρο του µεγέθους. ii. Στη γλώσσα που χρησιµοποιούµε στην καθηµερινή µας ζωή ορίζουµε ως µέση ταχύτητα το Ερωτήσεις βιβλίου. Συµπλήρωσε τις λέξεις που λείπουν από το παρακάτω κείµενο έτσι ώστε οι προτάσεις που προκύπτουν να είναι επιστηµονικά ορθές: i. Η θέση ενός σώµατος καθορίζεται σε σχέση µε ένα σηµείο

Διαβάστε περισσότερα

εκτοκιζόµενοι τόκοι ενσωµατώνονται στο κεφάλαιο και ανατοκίζονται. Εφαρµόζεται τ και 4 1=

εκτοκιζόµενοι τόκοι ενσωµατώνονται στο κεφάλαιο και ανατοκίζονται. Εφαρµόζεται τ και 4 1= ΑΣΚΗΣΗ Έστω τραπεζική κατάθεση ταµιευτηρίου µε ετήσιο επιτόκιο 8%. Ποιο είναι το πραγµατικό (effective) ετήσιο επιτόκιο, αν ο εκτοκισµός γίνεται κάθε τρίµηνο (εξάµηνο); Το πραγµατικό επιτόκιο είναι η ετήσια

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ 9 40 4 ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 4 4 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ. Να βρείτε την αριθµητική τιµή των παραστάσεων. i) α -α 6α, ii) 4α, για α iii) αβ α β (αβ),

Διαβάστε περισσότερα

Α) 474,3 : 18,6 = Β) 394,8 : 15 = Γ) 999,4 : 26,3 = ) 28748,96 : 752 = Ε) 5,88 : 0,245 = Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν 85,25 : 6,2 = 8 5, 2 5 6, 2 0

Α) 474,3 : 18,6 = Β) 394,8 : 15 = Γ) 999,4 : 26,3 = ) 28748,96 : 752 = Ε) 5,88 : 0,245 = Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν 85,25 : 6,2 = 8 5, 2 5 6, 2 0 Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν Να λύσετε τις παρακάτω πράξεις σύµφωνα µε τo παράδειγµα : 85,25 : 6,2 = 8 5, 2 5 6, 2 0 8 5 2 ' 5 ' 6 2 0 6 2 0 2 1 3 1 2 5 1 3, 7 5 1 8 6 0 = 4 6 5 0 4 3 4 0 = 3 1 0 0

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»

ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH» ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 ΟΜΑ Α Α Στις προτάσεις, από Α.1. µέχρι και Α.6, να γράψετε τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό την ένδειξη Σωστό, αν η πρόταση είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο

Διαβάστε περισσότερα

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Στις προτάσεις, από Α.1. µέχρι και Α.6, να γράψετε τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό την ένδειξη Σωστό, αν η

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

1.1 Ακαθάριστο Εθνικό Προϊόν (Α.Ε.Π.) - Καθαρό Εθνικό Προϊόν

1.1 Ακαθάριστο Εθνικό Προϊόν (Α.Ε.Π.) - Καθαρό Εθνικό Προϊόν ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΔΙΔΑΣΚΟΥΣΑ : ΑΡΓΥΡΏ ΜΟΥΔΑΤΣΟΥ 1. ΕΘΝΙΚΟΙ ΛΟΓΑΡΙΑΣΜΟΙ 1.0 Γενικά Αντικείµενο της Μακροοικονοµικής είναι ο καθορισµός (υπολογισµός) των συνολικών µεγεθών της οικονοµίας, πχ. της συνολικής

Διαβάστε περισσότερα

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ . ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Κλασµατική εξίσωση : Ονοµάζουµε κλασµατική εξίσωση κάθε εξίσωση η οποία έχει τον άγνωστο σ έναν τουλάχιστον παρονοµαστή. ΣΧΟΛΙΟ ιαδικασία επίλυσης : i) Αναλύουµε τους παρονοµαστές

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2010 Χρόνος: 60 λεπτά Δ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Ποια από τις ακόλουθες παραστάσεις έχει το ίδιο αποτέλεσμα με (15-5) + 6 ; Α) (15-6)

Διαβάστε περισσότερα

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών

Διαβάστε περισσότερα

Ανατοκισμός. -Χρόνος (συμβολισμός n Ακέραιες περιόδους, μ/ρ κλάσμα χρονικών περιόδων)

Ανατοκισμός. -Χρόνος (συμβολισμός n Ακέραιες περιόδους, μ/ρ κλάσμα χρονικών περιόδων) Ανατοκισμός Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχικό κεφάλαιο ή παρούσα αξία (συμβολισμός Κ ο ή PV) -Τελικό κεφάλαιο ή μελλοντική αξία (συμβολισμός Κ n ή FV) -Επιτόκιο (συμβολισμός

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 20 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ

ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ Άσκηση 3 Η ζήτηση τυριού τύπου δίνεται από τη συνάρτηση: Q 300 35P 14PB 24 20B όπου: Q η ζητούμενη ποσότητα τυριού τύπου P η τιμή τυριού τύπου P B η τιμή τυριού τύπου B η δαπάνη

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 9 ο, Τμήμα Α Γιατί νομίζετε ότι η άλγεβρα είναι το πιο σημαντικό εργαλείο που έχουμε στα μαθηματικά; Είναι ένα από τα λίγα εργαλεία των μαθηματικών που το χρησιμοποιούνε

Διαβάστε περισσότερα

Μάθηµα Τρίτο -Ασκήσεις Μικροοικονοµικής (Ζήτηση)

Μάθηµα Τρίτο -Ασκήσεις Μικροοικονοµικής (Ζήτηση) Μάθηµα Τρίτο -Ασκήσεις Μικροοικονοµικής (Ζήτηση) Όταν σχεδιάζουµε την ατοµική καµπύλη ζήτησης ενός αγαθού, ποιο από τα παρακάτω δε διατηρείται σταθερό: Α. Το ατοµικό χρηµατικό εισόδηµα Β Οι τιµές των άλλων

Διαβάστε περισσότερα

Ασκήσεις στη οµή Επανάληψης

Ασκήσεις στη οµή Επανάληψης Άσκηση 1 Ασκήσεις στη οµή Επανάληψης Ένα τρένο ξεκινάει από Αθήνα για Θεσσαλονίκη έχοντας να κάνει στάση σε 12 ενδιάµεσους σταθµούς. Το τρένο έχει µέγιστη χωρητικότητα επιβατών 780 άτοµα. Να γραφεί αλγόριθµος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α 11. Στο λογαριασµό του ΟΤΕ πληρώνουµε πάγιο τέλος κάθε µήνα 1 και για κάθε µονάδα οµιλίας 0,09. Να βρείτε έναν τύπο που να µας δίνει το ποσό των χρηµάτων y που θα πληρώσουµε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης)

2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης) 2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης) 1. Χρησιμοποιώντας τα στοιχεία του παρακάτω πίνακα που δείχνουν τις ζητούμενες ποσότητες του αγαθού Χ από τρεις διαφορετικούς καταναλωτές, οι οποίες

Διαβάστε περισσότερα

Εξετάσεις Η επιβολή από το κράτος κατώτατης τιμής στα αγροτικά προϊόντα έχει ως σκοπό την προστασία του εισοδήματος των αγροτών.

Εξετάσεις Η επιβολή από το κράτος κατώτατης τιμής στα αγροτικά προϊόντα έχει ως σκοπό την προστασία του εισοδήματος των αγροτών. ΚΕΦΑΛΑΙΟ 5: Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΤΙΜΩΝ Να σημειώσετε με Σ (σωστό) ή Λ (λάθος) στο τέλος των προτάσεων: 1. Η επιβολή από το κράτος ανώτατης τιμής σε ένα προϊόν δημιουργεί συνήθως «μαύρη αγορά». Εξετάσεις

Διαβάστε περισσότερα