6.1 Καθαρή κατάσταση και μικτή κατάσταση. c k (t)φ k ( r). (6.1)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6.1 Καθαρή κατάσταση και μικτή κατάσταση. c k (t)φ k ( r). (6.1)"

Transcript

1 Κεϕάλαιο 6 Πινακας πυκνοτητας. 6.1 Καθαρή κατάσταση και μικτή κατάσταση. Ισως σε όλη τη κβαντική μηχανική που έχει μελετήσει ο αναγνώστης ή η αναγνώστρια έως τώρα, εξετάστηκαν περιπτώσεις όπου υπάρχει μία κυματοσυνάρτηση, ας την πούμε σχηματικά Ψ( r, t), η οποία περιγράϕει το εξεταζόμενο σύστημα. Τότε, το Ψ( r, t) 2 δίνει την πιθανότητα οι συντεταγμένες να βρίσκονται κοντά στην τιμή r τη χρονική στιγμή t. Αυτή η κυματοσυνάρτηση μπορεί να βρεθεί, τουλάχιστον κατ αρχήν, από την εξίσωση Schrödinger. Από τη στιγμή που την έχουμε, μπορούμε να υπολογίσουμε την αναμενόμενη τιμή οιουδήποτε τελεστή Â, ως Â = Ψ Â Ψ. Συνήθως αυτό γίνεται βρίσκοντας μία πλήρη βάση, ας την ονομάσουμε {Φ k ( r)}, όπου k είναι κάποιος συλλογικός κβαντικός αριθμός ικανός να περιγράψει το σύστημα. Επειδή συνήθως μελετάμε συστήματα πεπερασμένου μεγέθους, μπορούμε να λάβουμε τον k διακριτό, οπότε θα χρησιμοποιούμε αθροίσματα k, αλλά σε άλλες περιπτώσεις θα μπορούσε ο k να είναι συνεχής, οπότε θα χρησιμοποιούσαμε ολοκληρώματα dk. Αν η βάση μας είναι πλήρης, τότε η κυματοσυνάρτηση μπορεί να γραϕεί ως γραμμικός συνδυασμός Ψ( r, t) = k c k (t)φ k ( r). (6.1) Άρα, το πρόβλημα ανάγεται στην εύρεση των συντελεστών c k (t). Από τη στιγμή που τους υπολογίσουμε, η αναμενόμενη τιμή του τελεστή Â είναι (για πράξεις δείτε το Παράρτημα Βʹ.8) Â = Ψ(t) Â Ψ(t) = k,k c k (t)c k (t)a k k (6.2) 214

2 215 Â = k,k ρ kk (t)a k k (6.3) όπου A kk είναι το στοιχείο πίνακα του τελεστή Â μεταξύ των καταστάσεων Φ k και Φ k και ορίσαμε ρ kk (t) = c k (t)c k (t) (6.4) Άρα, κατ αρχήν, όλα μπορούν να υπολογιστούν. Μια τέτοια περίπτωση όπου το σύστημα περιγράϕεται από μία κυματοσυνάρτηση, ονομάζεται καθαρή κατάσταση (pure state) [50]. Ομως, δεν είναι πάντοτε εϕικτό ένα σύστημα να περιγράϕεται από μία κυματοσυνάρτηση. Σε πολλές περιπτώσεις. το... σύστημα για..... το... οποίο ενδιαϕερόμαστε είναι συζευγμένο με μια δεξαμενή (reservoir, R) με την οποία μπορεί να ανταλλάσσει θερμότητα, σωματίδια κ.ά.. Εάν το ολικό (total, T) σύστημα, δηλαδή το σύστημα για το οποίο ενδιαϕερόμαστε και η δεξαμενή είναι απομονωμένο, μπορούμε να ορίσουμε μία κυματοσυνάρτηση για το ολικό σύστημα, ας την πούμε σχηματικά Ψ T ( r, r R, t). Εάν δεν υπάρχουν αλληλεπιδράσεις, θα μπορούσαμε να την διαχωρίσουμε σε ένα γινόμενο Ψ( r, t)ψ R ( r R, t) πράγμα που δείχνει ότι το τι κάνει το σύστημα για το οποίο ενδιαϕερόμαστε είναι ανεξάρτητο από το τι κάνει η δεξαμενή, αϕού δεν υπάρχουν αλληλεπιδράσεις μεταξύ τους. Τότε μπορούμε να διακρίνουμε την Ψ( r, t) σαν την κυματοσυνάρτηση του συστήματος που μας ενδιαϕέρει. Αλλά εάν το σύστημα που μας ενδιαϕέρει αλληλεπιδρά με τη δεξαμενή, τότε δεν μπορούμε να διαχωρίσουμε μια κυματοσυνάρτηση του συστήματος που μας ενδιαϕέρει και μια κυματοσυνάρτηση της δεξαμενής θερμότητας. Από την άλλη μεριά, μπορεί να μην θέλουμε να εργαστούμε με την Ψ T ( r, r R, t), επειδή αυτή περιέχει όλη την πληροϕορία για το τι κάνει η δεξαμενή και αυτό μπορεί να μην μας ενδιαϕέρει ή να μην το χρειαζόμαστε ή να είναι εξαιρετικά πολύπλοκο. Οπότε, τίθεται το ερώτημα: πως αντιμετωπίζουμε τέτοιες περιπτώσεις όπου δεν υπάρχει καλά ορισμένη κυματοσυνάρτηση για το σύστημα για το οποίο ενδιαϕερόμαστε; Μια τέτοια περίπτωση όπου δεν υπάρχει μια καλά ορισμένη κυματοσυνάρτηση για το σύστημα για το οποίο ενδιαϕερόμαστε ονομάζεται μικτή κατάσταση (mixed state) [50]. Παρ όλα αυτά, και σε αυτές τις περιπτώσεις, υπάρχει οδός να ακολουθήσουμε. Θα υποθέσουμε ότι το σύστημα για το οποίο ενδιαϕερόμαστε έχει πιθανότητα w i να βρίσκεται σε στην κατάσταση που περιγράϕεται από την κυματοσυνάρτηση Ψ i ( r, t). Δηλαδή, αντί να λέμε ότι το σύστημα για το οποίο ενδιαϕερόμαστε βρίσκεται με βεβαιότητα με μια κατάσταση η οποία περιγράϕεται από μια κυματοσυνάρτηση, το επιτρέπουμε να βρίσκεται, με διαϕορετικές πιθανότητες, σε διαϕορετικές καταστάσεις

3 216 οι οποίες περιγράϕονται από διαϕορετικές κυματοσυναρτήσεις. Φυσικά θα πρέπει η ολική πιθανότητα να ισούται με τη μονάδα w i = 1. (6.5) Σε αυτή τη μικτή κατάσταση, η αναμενόμενη τιμή ενός τελεστή Â θα είναι i  = i w i  i (6.6) αϕού το σύστημα βρίσκεται με πιθανότητα w i στην κατάσταση Ψ i ( r, t), στην οποία η αναμενόμενη τιμή του τελεστή Â είναι  i = Ψ i (t) Â Ψ i(t) = d 3 rψ i ( r, t)âψ i( r, t). (6.7) Αναλυτικότερες πράξεις στο Παράρτημα Βʹ.8. Ομως, κάθε μία από τις πιθανές κυματοσυναρτήσεις Ψ i ( r, t) μπορεί να αναλυθεί με τη βοήθεια της πλήρους βάσεως {Φ k ( r)} ως Ψ i ( r, t) = c i k(t)φ k ( r), (6.8) k με c i k(t) 2 = 1. (6.9) k Επομένως, εάν γνωρίζουμε αυτούς τους συντελεστές c i k (t) και τις πιθανότητες w i, μπορούμε να γράψουμε  = w i d 3 r c i k (t)φ k ( r)â c i k(t)φ k ( r) i k k = w i k (t)c i k(t) d 3 rφ k ( r)âφ k( r) i = i k,k c i w i k,k c i k (t)c i k(t)a k k = k,k [ i w i c i k(t)c i k (t)]a k k  = k,k ρ kk (t)a k k (6.10)

4 217 όπου ορίσαμε ρ kk (t) = i w i c i k(t)c i k (t) (6.11) Παρατηρούμε ότι η Εξ. 6.4, η οποία ισχύει για μια καθαρή κατάσταση, είναι μια μερική περίπτωση της Εξ. 6.11, η οποία ισχύει γενικά για μια μικτή κατάσταση. Δηλαδή, όταν είμαστε σε καθαρή κατάσταση, τότε έχουμε μόνο ένα πιθανό i με πιθανότητα w i = 1, οπότε η Εξ ταυτοποιείται με την Εξ Λαμβάνοντας υπ όψιν την προηγούμενη παρατήρηση, οι εκϕράσεις των Εξ. 6.3, 6.10, οι οποίες δίνουν την αναμενόμενη τιμή του τελεστή Â, ταυτίζονται. Ο πίνακας ρ του οποίου τα στοιχεία δίνονται από τις Εξ. 6.4, 6.11 ονομάζεται πίνακας πυκνότητας (density matrix). Βλέπουμε λοιπόν ότι με τη βοήθεια του πίνακα πυκνότητας μπορούμε να περιγράψουμε καθαρές αλλά και μικτές καταστάσεις. 6.2 Πίνακας πυκνότητας και τελεστής πυκνότητας. Επομένως, ο πίνακας πυκνότητας (density matrix) ρ, ο οποίος είναι μια α- ναπαράσταση του τελεστή πυκνότητας (density operator) ˆρ, αποτελεί μία πιο γενική περιγραϕή ενός κβαντικού συστήματος από την περιγραϕή που κάνουμε με τη βοήθεια των κυματοσυναρτήσεων Ψ( r, t) ή των καταστατικών ανυσμάτων Ψ(t). Συχνά, με κάποια χαλαρότητα, χρησιμοποιούνται αδιακρίτως οι όροι πίνακας πυκνότητας και τελεστής πυκνότητας. Ο πίνακας πυκνότητας και ο τελεστής πυκνότητας, ως ϕορμαλισμός, εισήχθησαν ανεξάρτητα από τους John von Neumann [51] και Lev Landau [52] το Τόσο ο πίνακας όσο και ο τελεστής είναι ερμιτιανοί και ίχνους ίσου με τη μονάδα [53]. Ενώ μία κυματοσυνάρτηση (wave function) ή ένα καταστατικό διάνυσμα (state vector) αρκούν για να περιγραϕεί ένα κβαντικό σύστημα σε μια καθαρή κβαντική κατάσταση, ο πίνακας πυκνότητας μπορεί να περιγράψει ένα κβαντικό σύστημα και σε μια μικτή κβαντική κατάσταση. Είναι για παράδειγμα χρήσιμος και σε περιπτώσεις απώλειας συνοχής (decoherence) λόγω αλληλεπιδράσεως του συστήματος για το οποίο ενδιαϕερόμαστε με δεξαμενή με την οποία μπορεί να ανταλλάσσει θερμότητα ή σωματίδια. Οι Εξ. 6.3, 6.10 δείχνουν ότι για να υπολογίσουμε αναμενόμενες τιμές τελεστών χρειαζόμαστε μόνο τις ποσότητες ρ kk (t) των Εξ. 6.4, 6.11 αντί για όλα τα Ψ i και w i. Εϕ όσον αναμενόμενες τιμές είναι εν τέλει αυτό που προσδοκούμε, όλη η χρήσιμη

5 218 πληροϕορία για το σύστημα που μας ενδιαϕέρει κωδικοποιείται στα στοιχεία του πίνακα πυκνότητας ρ kk (t). Επομένως ο τελεστής πυκνότητας ˆρ μπορεί να οριστεί τέτοιος ώστε Φ k ( r) ˆρ(t) Φ k ( r) = ρ kk (t) (6.12) Με αυτό τον ορισμό, οι Εξ. 6.3, 6.10 γράϕονται Â = k,k ρ kk (t)a k k = tr(ρ(t) A) (6.13) Συμβολίζουμε με tr και ονομάζουμε ίχνος (trace) ενός τετραγωνικού πίνακα το ά- θροισμα των διαγωνίων στοιχείων του. Η Εξ ισχύει διότι k ρ kk (t)a k k είναι το διαγώνιο kk στοιχείο του πίνακα που προκύπτει από τον πολλαπλασιασμό των πινάκων ρ(t) και A. Οπότε, αν αθροίσουμε αυτά τα διαγώνια στοιχεία, δηλαδή α- θροίσουμε και στα k, παίρνουμε το ίχνος του πίνακα ρ(t) A, το οποίο συμβολίζουμε tr(ρ(t) A). Το ίχνος ενός πίνακα ισούται με το άθροισμα των ιδιοτιμών του και παραμένει αναλλοίωτο εάν αλλάξουμε βάση. Ας δούμε μερικές ιδιότητες του τελεστή πυκνότητας. (1) Μπορούμε να δώσουμε έναν εναλλακτικό ορισμό του τελεστή πυκνότητας για καθαρή κατάσταση, δηλαδή η Εξ. 6.4 μπορεί να γραϕτεί και ως αϕού αναπαραστήσουμε και άρα οπότε c 1 (t) [ Ψ Ψ = c 2 (t) c 1 (t) c 2(t). ˆρ = Ψ Ψ (6.14) c 1 (t) Ψ = c 2 (t). (6.15) Ψ = [ c 1(t) c 2(t) ], (6.16) c ] 1 (t)c 1(t) c 1 (t)c 2(t) = c 2 (t)c 1(t) c 2 (t)c 2(t) = ρ (6.17)..

6 (2) Η πιθανότητα να βρεθεί το σύστημα στην κατάσταση l της βάσεως {Φ k (r)} είναι ρ ll (t). Αυτό προκύπτει από τον ορισμό της Εξ για k = k = l. Δηλαδή, 219 ρ ll (t) = i w i c i l(t)c i l (t) = i w i c i l(t) 2. (6.18) Κάθε όρος του αθροίσματος αυτού είναι η πιθανότητα να βρίσκεται το σύστημα στην κατάσταση i επί την πιθανότητα όντας στην i να βρίσκεται στην κατάσταση l της βάσεως {Φ k (r)}. Άρα, το άθροισμα είναι η συνολική πιθανότητα να βρίσκεται το σύστημα στην κατάσταση l της βάσεως {Φ k (r)}. (3) Το ίχνος του πίνακα πυκνότητας είναι ίσο με τη μονάδα, δηλαδή tr(ρ(t)) = 1. (6.19) Αυτό προκύπτει από την Εξ αθροίζοντας στα l, δηλαδή ρ ll (t) = l l w i c i l(t) 2 = i i w i c i l(t) 2 = i l w i = 1 (6.20) διότι l ci l (t) 2 = 1 (Εξ. 6.9) και i w i = 1 (Εξ. 6.5). Εναλλακτικά, μπορούμε να πάρουμε την Εξ για Â = ˆ1, όπου ˆ1 είναι ο μοναδιαίος τελεστής, οπότε ˆ1 = tr(ρ(t) 1) = tr(ρ(t)) (6.21) και να παρατηρήσουμε ότι η αναμενόμενη τιμή του μοναδιαίου τελεστή είναι 1. Αυτή η ιδιότητα ουσιαστικά αντικαθιστά τη συνθήκη κανονικοποιήσεως της κυματοσυναρτήσεως ενός συστήματος που βρίσκεται σε μια καθαρή κατάσταση. (4) Ο τελεστής πυκνότητας είναι ερμιτιανός, ˆρ = ˆρ, δηλαδή για τα στοιχεία του πίνακα πυκνότητας ισχύει ρ kk = ρ k k, το οποίο προκύπτει κατευθείαν παίρνοντας το μιγαδικό συζυγές των Εξ. 6.4, (5) Ο τελεστής πυκνότητας ˆρ είναι θετικά ορισμένος, δηλαδή οι ιδιοτιμές του ϱ είναι 0. Αυτό προκύπτει ως εξής: Αϕού ο τελεστής ˆρ είναι ερμιτιανός, υπάρχει μία πλήρης βάση {Φ n ( r)} στην οποία ο πίνακας ρ είναι διαγώνιος. Αϕού ο τελεστής ˆρ είναι ερμιτιανός, οι ιδιοτιμές του πρέπει να είναι πραγματικές. Από την ιδιότητα (2) γνωρίζουμε ότι αυτές οι ιδιοτιμές, οι οποίες είναι τα διαγώνια στοιχεία του πίνακα ρ στη βάση {Φ n ( r)}, αντιπροσωπεύουν πιθανότητες, οπότε θα είναι όχι μόνο πραγματικές αλλά και θετικές ή μηδενικές. Επειδή ο πίνακας ρ είναι διαγώνιος σε αυτή τη

7 220 βάση, ρ n,n = δ n,n ϱ n, ϱ n είναι η αντίστοιχη ιδιοτιμή, η οποία από την ιδιότητα (2), είναι και η πιθανότητα να βρεθεί το σύστημα στη βασική κατάσταση n. (6) tr(ρ 2 ) 1. Αυτό αποδεικνύεται ως εξής: Αϕού το ίχνος δεν εξαρτάται από τη βάση στην οποία το υπολογίζουμε, ας το υπολογίσουμε στη βάση όπου ο πίνακας ρ είναι διαγώνιος, {Φ n ( r)}. Οπότε, tr(ρ 2 ) = n ϱ2 n. Τα ϱ n όμως είναι πιθανότητες, οπότε 0 ϱ n 1, άρα n ϱ2 n ( n ϱ n) 2 = (tr(ρ)) 2 = 1 2 = 1. (7) Οταν το σύστημα βρίσκεται σε καθαρή κατάσταση, τότε tr(ρ 2 ) = 1. Αυτό ισχύει λόγω της ιδιότητας (1). Δηλαδή για καθαρή κατάσταση, ισχύει η Εξ ˆρ = Ψ Ψ, οπότε ˆρ 2 = Ψ Ψ Ψ Ψ = Ψ Ψ = ˆρ, οπότε, tr(ρ 2 ) = tr(ρ) = 1, λόγω της ιδιότητας (3). Ετσι, η τιμή του tr(ρ 2 ) μας λέει αν το σύστημα βρίσκεται σε καθαρή κατάσταση (tr(ρ 2 ) = 1) ή σε μικτή κατάσταση (tr(ρ 2 ) < 1). Τέλος, χρειαζόμαστε κάτι ανάλογο με την εξίσωση Schrödinger. Οταν βρισκόμαστε σε καθαρή κατάσταση, η εξίσωση Schrödinger μας επιτρέπει να βρίσκουμε την κυματοσυνάρτηση σε οποιαδήποτε χρονική στιγμή, εϕ όσον τη γνωρίζουμε κατά την αρχική χρονική στιγμή. Θα επιθυμούσαμε μια παρόμοια εξίσωση που να μας δίνει τον ˆρ(t), εάν γνωρίζουμε τον ˆρ(0). Αυτή η εξίσωση ονομάζεται εξίσωση Liouville-von Neumann και είναι η i ˆρ(t) t = [Ĥ, ˆρ(t)], (6.22) όπου το [, ] δηλώνει μεταθέτη και Ĥ είναι η Χαμιλτονιανή του συστήματος. Δείτε παρακάτω τις Εξ ή Πρέπει να προσέξουμε ότι για να χρησιμοποιηθεί θα πρέπει να υπάρχει Χαμιλτονιανή του συστήματος (δηλαδή το σύστημα να είναι απομονωμένο). Εάν το σύστημα αλληλεπιδρά με δεξαμενή, τότε πρέπει να συμπεριλάβουμε το αποτέλεσμα της αλληλεπιδράσεως στην εξέλιξη του τελεστή πυκνότητας. Δείτε για παράδειγμα την Εξ

8 Πίνακας πυκνότητας και τελεστής πυκνότητας σε καθαρή κατάσταση δισταθμικού συστήματος. Κατά τους συμβολισμούς που χρησιμοποιήσαμε στα προηγούμενα κεϕάλαια, η κατάσταση ενός δισταθμικού συστήματος μπορεί να περιγραϕεί από την εξίσωση ή, πολλαπλασιάζοντας με r, Ψ(t) = c 1 (t) + c 2 (t) = c 1 (t) Φ 1 + c 2 (t) Φ 2, (6.23) r Ψ(t) = c 1 (t) r + c 2 (t) r = c 1 (t) r Φ 1 + c 2 (t) r Φ 2, παίρνουμε στην αναπαράσταση θέσεως Ψ( r, t) = c 1 (t)φ 1 ( r) + c 2 (t)φ 2 ( r). (6.24) Ετσι, η πιθανότητα να βρεθεί το ηλεκτρόνιο στη θεμελιώδη ή στη διεγερμένη στάθμη εκϕράζεται από τα c 1 (t) 2 = c 1 (t) c 1 (t) και c 2 (t) 2 = c 2 (t) c 2 (t) (6.25) Ας υπολογίσουμε τη μέση τιμή της διπολικής ροπής στην κατάσταση Επειδή ˆ p = eˆ r = e r, έχουμε ˆ p = dv (c 1 (t) Φ 1 ( r) + c 2 (t) Φ 2 ( r) ) ( e r) (c 1 (t)φ 1 ( r) + c 2 (t)φ 2 ( r)) = c 1 (t) 2 dv Φ 1 ( r) ( e r)φ 1 ( r) + c 1 (t) c 2 (t) dv Φ 1 ( r) ( e r)φ 2 ( r)+ c 2 (t) c 1 (t) dv Φ 2 ( r) ( e r)φ 1 ( r) + c 2 (t) 2 dv Φ 2 ( r) ( e r)φ 2 ( r). Άρα διότι ˆ p = c 1 (t) c 2 (t) p 12 + c 2 (t) c 1 (t) p 21 (6.26) dv Φ 1 ( r) ( e r)φ 1 ( r) = 0 και dv Φ 2 ( r) ( e r)φ 2 ( r) = 0

9 222 ενώ Κι επειδή p 12 = p 21 = dv Φ 1 ( r) ( e r)φ 2 ( r) dv Φ 2 ( r) ( e r)φ 1 ( r). p 21 = p 12, η μέση τιμή της διπολικής ροπής ˆ p είναι πραγματικός αριθμός, ως άθροισμα δύο συζυγών μιγαδικών αριθμών. Στην Εξ εμϕανίστηκαν οι ποσότητες c 1 (t) c 2 (t) και c 2 (t) c 1 (t) (6.27) Η Εξ είναι οι διαγώνιοι όροι και η Εξ είναι οι μη διαγώνιοι όροι του, στη συγκεκριμένη περίπτωση 2 2, πίνακα πυκνότητας. Είναι ρ = c 1c 1 c 1 c 2 = ρ 11 ρ 12 (6.28) c 2 c 1 c 2 c 2 ρ 21 ρ 22 όπου παραλείψαμε, διότι εννοείται, την εξάρτηση από το χρόνο. Δηλαδή το στοιχείο πίνακα του πίνακα πυκνότητας είναι το Κι επειδή μπορούμε να αναπαραστήσουμε και ρ nm := c n c m (6.29) Ψ = c 1 (6.30) c 2 Ψ = [ ] c 1 c 2 (6.31) Ψ Ψ = c 1 [ ] c 1 c 2 = c 1c 1 c 1 c 2 = ρ (6.32) c 2 c 2 c 1 c 2 c 2

10 6.4 Η χρονική εξέλιξη του πίνακα πυκνότητας: η εξίσωση von Neumann. Η εξίσωση von Neumann ή αλλιώς εξίσωση Liouville-von Neumann περιγράϕει τη χρονική εξέλιξη του πίνακα πυκνότητας. Εχει τη μορϕή i ˆρ t 223 = [Ĥ, ˆρ], (6.33) όπου το [, ] δηλώνει μεταθέτη. Ας αποδείξουμε τώρα την Εξ Από την Εξ προκύπτει ο ρυθμός μεταβολής ενός στοιχείου του πίνακα πυκνότητας ρ nm = ċ n c m + c n ċ m. (6.34) Εννοείται ότι τα και μπορούν να πραγματοποιηθούν με οιαδήποτε σειρά, διότι αν π.χ. z = α+iβ, z C, α, β R, τότε z = α iβ, ż = α+i β, και z = α i β = ż. Από την εξίσωση Schrödinger και την Εξ. 6.24, προκύπτει Ψ( r, t) i t i ċ n = k = ĤΨ( r, t) c k H nk (6.35) Χρησιμοποιήσαμε τον ορισμό του στοιχείου πίνακα ενός τελεστή (Εξ. 3.30) και την ορθοκανονικότητα των Φ k ( r), δηλαδή ότι dv Φ n ( r) Φ k ( r) = δ nk. Οπότε, i ċ n = k c kh nk. (6.36) H nk = H kn, αϕού η Χαμιλτονιανή είναι ερμιτιανός τελεστής. Συνδυάζοντας τα παραπάνω προκύπτει η χρονική εξέλιξη του στοιχείου πίνακα του πίνακα πυκνότητας i ρ nm = k (H nk ρ km ρ nk H km ) (6.37) Σε λίγο διαϕορετική διατύπωση, αν πάρουμε τη χρονική εξέλιξη στο γενικό ορισμό (Εξ. 6.14), προκύπτει ˆρ = Ψ Ψ + Ψ Ψ, (6.38)

11 224 ενώ από την εξίσωση Schrödinger προκύπτει i Ψ = Ĥ Ψ (6.39) i Ψ = Ψ Ĥ. (6.40) Ĥ = Ĥ, αϕού η Χαμιλτονιανή είναι ερμιτιανός τελεστής. Συνδυάζοντας τα παραπάνω προκύπτει η χρονική εξέλιξη του πίνακα πυκνότητας ήτοι συνοπτικότερα, i ˆρ = Ĥ Ψ Ψ Ψ Ψ Ĥ = Ĥ ˆρ ˆρĤ, i ˆρ = [Ĥ, ˆρ] (6.41) που είναι η Εξ Ας σημειωθεί ότι κατά τον ορισμό του στοιχείου πίνακα ενός τελεστή (Εξ. 3.30) H nk = dv Φ n ( r) ĤΦ k ( r). (6.42) Ας πούμε ότι έχουμε μια Χαμιλτονιανή διαταραγμένου δισταθμικού συστήματος όπως στην Εξ Ĥ = Ĥ0 + U E ( r, t), όπου U E ( r, t) είναι η δυναμική ενέργεια της διαταραχής και Ĥ 0 είναι η Χαμιλτονιανή του αδιατάρακτου δισταθμικού συστήματος. Τότε, από την Εξ και την Εξ. 3.21, προκύπτει H nk = dv Φ n ( r) Ĥ 0 Φ k ( r) + dv Φ n ( r) U E ( r, t)φ k ( r) Αν συνδυάσουμε τις Εξ και 6.43, προκύπτει H nk = E k δ nk + U Enk (t). (6.43) i ċ n = c n E n + k c k U Enk (t) (6.44) Σε δισταθμικό σύστημα, κι αν έχουμε προσέγγιση διπόλου οπότε τα διαγώνια U Ekk (t) μηδενίζονται (Ενότητα 3.3, Εξ. 3.45), προκύπτουν Για πραγματικές Φ k ( r), U E21 (t) = U E12 (t). i ċ 1 = E 1 c 1 + U E12 (t)c 2, (6.45) i ċ 2 = E 2 c 2 + U E21 (t)c 1. (6.46)

12 6.5 Η χρονική εξέλιξη του πίνακα πυκνότητας με μηχανισμούς αποδιεγέρσεως. 225 Οι Εξ και 6.46 που μόλις βρήκαμε στην Ενότητα 6.4 μπορούν να τροποποιηθούν ώστε να συμπεριληϕθούν οι αποδιεγέρσεις των ενεργειακών σταθμών 1 και 2, οι οποίες μπορεί να οϕείλονται είτε σε αυθόρμητη εκπομπή είτε σε άλλους πιθανούς μηχανισμούς όπως π.χ. σε συγκρούσεις με τα άτομα του αερίου μίγματος σε ένα laser αερίου. Οπως είδαμε στο Κεϕάλαιο 5, η γρήγορη αποδιέγερση της κατώτερης στάθμης (1) συμβάλει στην επίτευξη αναστροϕής πληθυσμού. Μάλιστα είδαμε (Εξ. 5.42) ότι για τη λειτουργία ενός laser θα πρέπει ο χρόνος ζωής της ανώτερης στάθμης (2) να είναι μεγαλύτερος του χρόνου ζωής της κατώτερης στάθμης (1), ήτοι t 2 > t 1. Η συμπερίληψη των αποδιεγέρσεων των ενεργειακών σταθμών 1 και 2 γίνεται προσθέτοντας στη Χαμιλτονιανή του διαταραγμένου δισταθμικού συστήματος, δηλαδή στην Εξ. 3.21, τον όρο i 2 ˆΓ, (6.47) όπου ο τελεστής ˆΓ έχει την ιδιότητα ˆΓΦ k ( r) = γ k Φ k ( r), γ k R. Δηλαδή Γ nk = γ k δ nk (6.48) ή σε μορϕή πίνακα ˆΓ = γ 1 0. (6.49) 0 γ 2 Ετσι η Χαμιλτονιανή γίνεται Τότε η Εξ τροποποιείται σε Ĥ = Ĥ0 i 2 ˆΓ + U E ( r, t). (6.50) H nk = E k δ nk + U Enk (t) i 2 γ kδ nk. (6.51) Επομένως, χρησιμοποιώντας την Εξ και την Εξ λαμβάνουμε i ċ n = c n E n + k c k U Enk (t) i 2 c nγ n (6.52)

13 226 Επομένως, αν λάβουμε υπ όψιν τους μηχανισμούς αποδιεγέρσεως, σε δισταθμικό σύστημα, οι Εξ και 6.46 αντικαθίστανται από τις i ċ 1 = E 1 c 1 + U E12 (t)c 2 i 2 γ 1c 1, (6.53) i ċ 2 = E 2 c 2 + U E21 (t)c 1 i 2 γ 2c 2. (6.54) Χρησιμοποιώντας τις Εξ και 6.54, κι υποθέτοντας ότι U E21 (t) = U E12 (t), μπορεί να αποδειχθεί ότι η χρονική εξέλιξη του πίνακα πυκνότητας με μηχανισμούς αποδιεγέρσεως, δίνεται από την εξίσωση i ˆρ = [Ĥ, ˆρ] i 2 {ˆΓ, ˆρ} (6.55) Υπενθυμίζεται ότι [, ] σημαίνει μεταθέτης και {, } αντιμεταθέτης. 6.6 Αναϕορές 6ου Κεϕαλαίου. Η αρίθμηση αναϕέρεται στη βιβλιογραϕία όπως αυτή παρατίθεται συνολικά πριν από τα Παραρτήματα. [50] M.I. Berciu, Notes on Statistical Mechanics (2007), Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada. [51] J. von Neumann, Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik, Gottinger Nachrichten 1 (1927) [52] L. Landau, Das Dampfungsproblem in der Wellenmechanik, Zeitschrift für Physik 45 (1927) [53] U. Fano, Description of States in Quantum Mechanics by Density Matrix and Operator Techniques, Reviews of Modern Physics 29 (1957)

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2. Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 Εκπομπή και απορρόφηση ακτινοβολίας ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ Στέλιος Τζωρτζάκης 1 3 4 Ηλεκτρομαγνητικά πεδία Απορρόφηση είναι Σε αυτή τη διαδικασία το ηλεκτρόνιο

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

Λυμένες ασκήσεις στροφορμής

Λυμένες ασκήσεις στροφορμής Λυμένες ασκήσεις στροφορμής Θα υπολογίσουμε τη δράση των τελεστών κλίμακας J ± σε μια τυχαία ιδιοκατάσταση j, m των τελεστών J και Jˆ. Λύση Δείξαμε ότι η κατάσταση Jˆ± j, m είναι επίσης ιδιοκατάσταση των

Διαβάστε περισσότερα

μαγνητικό πεδίο τυχαίας κατεύθυνσης

μαγνητικό πεδίο τυχαίας κατεύθυνσης Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή

Διαβάστε περισσότερα

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 39 Περιεχόµενα 1ης

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 11. ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 11. ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 11. ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ ΚΒΑΝΤΙΚΕΣ ΜΕΤΑΒΑΣΕΙΣ Στέλιος Τζωρτζάκης 1 3 4 Χρονεξαρτημένη χαμιλτονιανή Στα προβλήματα τα οποία εξετάσαμε μέχρι τώρα η

Διαβάστε περισσότερα

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Δομή Διάλεξης Ανασκόπηση συμβολισμού Dirac Διαταραχές σε σύστημα δύο καταστάσεων Η γενική μέθοδος μη-εκφυλισμένης θεωρίας διαταραχών Εφαρμογή: Διαταραχή

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική

Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσική Τανυστές στην Κβαντομηχανική Κβαντική Πληροφορική Το ζήτημα των τανυστών είναι πολύ σημαντικό τόσο για την Κβαντομηχανική, όσο και για τη Σχετικότητα. Οι δύο

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό

Διαβάστε περισσότερα

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας) Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Ατομική και Μοριακή Φυσική

Ατομική και Μοριακή Φυσική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Θεωρία Προσεγγίσεων Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Η άλγεβρα της στροφορμής

Η άλγεβρα της στροφορμής Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ορθογωνικότητα Ιδιομορφών Πολυβάθμια Συστήματα: Δ21-2 Μία από τις σπουδαιότερες ιδιότητες των ιδιομορφών είναι η ορθογωνικότητα τους ως προς τα μητρώα μάζας [m] και ακαμψίας

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόµοι Διατήρησης στις Θεµελειώδεις Αλληλειδράσεις 14-Jan-13 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 3

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναδείξει την ερμιτιανότητα

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Κβαντική Φυσική Ι Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι

Διαβάστε περισσότερα

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή

Διαβάστε περισσότερα

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου, Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ

Διαβάστε περισσότερα

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Στη Φυσική ενδιαφερόμαστε για την δυναμική εξέλιξη των διαφόρων συστημάτων. Καίριο

Διαβάστε περισσότερα

Το θεώρημα virial1 στην κβαντική μηχανική

Το θεώρημα virial1 στην κβαντική μηχανική Το θεώρημα val στην κβαντική μηχανική Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. sposkonsanoganns@gal.co 7 Φεβρουαρίου 08 Η λέξη val προέρχεται από το λατινικό vs, που σημαίνει «δύναμη», «ενέργεια», «ισχύς»

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

1. Μετάπτωση Larmor (γενικά)

1. Μετάπτωση Larmor (γενικά) . Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Α. Καρανίκας και Π. Σφήκας Σημειώσεις IX: Πρόσθεση στροφορμών Υπάρχουν πάμπολα φυσικά συστήματα στα οποία η κίνηση των επί μέρους σωματιδίων ή τα spin

Διαβάστε περισσότερα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις

Διαβάστε περισσότερα

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Η Εντροπία Δρ. Αθανάσιος Χρ. Τζέμος Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Θερμοδυναμική +Στατιστική Μηχανική= Θερμική Φυσική Η Θερμοδυναμική ασχολείται με τις μακροσκοπικές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.

Διαβάστε περισσότερα

Â. Θέλουμε να βρούμε τη μέση τιμή

Â. Θέλουμε να βρούμε τη μέση τιμή ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου

Διαβάστε περισσότερα

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n 3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης. Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,

Διαβάστε περισσότερα

Εύρεση των ιδιοτιμών της στροφορμής

Εύρεση των ιδιοτιμών της στροφορμής Εύρεση των ιδιοτιμών της στροφορμής Χρησιμοποιώντας την άλγεβρα της στροφορμής, θα υπολογίσουμε τις ιδιοτιμές του τετραγώνου της και της -συνιστώσας της. Μπορούμε, ωστόσο, να θέσουμε το πρόβλημα γενικότερα,

Διαβάστε περισσότερα

1. Στοιχεία κβαντικής μηχανικής

1. Στοιχεία κβαντικής μηχανικής . Στοιχεία κβαντικής μηχανικής Σύνοψη Στο κεφάλαιο αυτό, παρουσιάζονται τα κβαντικά συστήματα δύο καταστάσεων, οι βασικές τους καταστάσεις και η έννοια της υπέρθεσης καταστάσεων. Δίνονται ορισμοί και παραδείγματα

Διαβάστε περισσότερα

Παραμαγνητικός συντονισμός

Παραμαγνητικός συντονισμός Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη

Διαβάστε περισσότερα

Θεωρία Χρονοεξαρτώμενων Διαταραχών

Θεωρία Χρονοεξαρτώμενων Διαταραχών Θεωρία Χρονοεξαρτώμενων Διαταραχών Δομή Διάλεξης Γενική μέθοδος μελέτης συστημάτων με χρονοεξαρτώμενο μέρος Χαμιλτονιανής. Εύρεση πιθανότητας μετάβασης Απλό παράδειγμα με ακριβή λύση: Σύστημα δύο καταστάσεων

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων

Διαβάστε περισσότερα

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι

Δηλαδή. Η Χαμιλτονιανή του περιστροφέα μέσα στο μαγνητικό πεδίο είναι Κβαντικός περιστροφέας που J J J H y z τοποθετείται y z περιγράφεται μέσα σε από τη ομογενές, Χαμιλτονιανή χρονοανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα z, δηλαδή B B ez, με B >. Αν

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου

Διαβάστε περισσότερα

2. Αποθήκευση της κβαντικής πληροφορίας

2. Αποθήκευση της κβαντικής πληροφορίας . Αποθήκευση της κβαντικής πληροφορίας Σύνοψη Στο κεφάλαιο αυτό θα περιγραφεί η μονάδα της κβαντικής πληροφορίας που είναι το κβαντικό t (utum t). Θα περιγραφούν φυσικά συστήματα τα οποία μπορούν να χρησιμοποιηθούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

μαγνητικό πεδίο παράλληλο στον άξονα x

μαγνητικό πεδίο παράλληλο στον άξονα x Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

Κεφάλαιο 9: Συστήματα Πολλών σωματίων

Κεφάλαιο 9: Συστήματα Πολλών σωματίων Κεφάλαιο 9: Συστήματα Πολλών σωματίων Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό, είναι τα εξής (Βαγιονάκης, 1996 Μοδινός, 1994 Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων. Γραμμικοί Μετασχηματισμοί Ανυσμάτων Θεωρούμε χώρο δύο διαστάσεων και συμβατικά ένα ορθογώνιο σύστημα αξόνων για την περιγραφή κάθε ανύσματος του χώρου

Διαβάστε περισσότερα

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017 Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων

Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων Περιεχόμενα Κεφαλαίου 39 Τα άτομα από την σκοπιά της κβαντικής μηχανικής Το άτομο του Υδρογόνου: Η εξίσωση του Schrödinger και οι κβαντικοί αριθμοί ΟΙ κυματοσυναρτήσεις

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 25η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς

Διαβάστε περισσότερα

Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D)

Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D) Ατομική δομή Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (1D) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2 2m 2 ψ + V r ψ = Εψ Τελεστής Λαπλασιανής για σφαιρικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ο ΠΙΝΑΚΑΣ ΠΥΚΝΟΤΗΤΑΣ ΝΙΚΟΣ ΙΑΚΩΒΙ ΗΣ

Ο ΠΙΝΑΚΑΣ ΠΥΚΝΟΤΗΤΑΣ ΝΙΚΟΣ ΙΑΚΩΒΙ ΗΣ Ο ΠΙΝΑΚΑΣ ΠΥΚΝΟΤΗΤΑΣ ΝΙΚΟΣ ΙΑΚΩΒΙ ΗΣ Περιεχόµενα Καθαρές (pure) και Μεικτές (mixed) καταστάσεις συστήµατος 3. Καθαρές καταστάσεις σε σύστηµα µε σπιν........... 3. Μεικτές καταστάσεις σε σύστηµα µε σπιν...........

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μοριακή Κβαντική Χημεία. Ενότητα 9: Η κυματική εξίσωση Schrödinger Αριστείδης Μαυρίδης Τμήμα Χημείας

Τίτλος Μαθήματος: Μοριακή Κβαντική Χημεία. Ενότητα 9: Η κυματική εξίσωση Schrödinger Αριστείδης Μαυρίδης Τμήμα Χημείας Τίτλος Μαθήματος: Μοριακή Κβαντική Χημεία Ενότητα 9: Η κυματική εξίσωση Schrödinger Αριστείδης Μαυρίδης Τμήμα Χημείας 1. Η Κυματική Εξίσωση Schrödinger... 3 1.1 Χρονικώς εξηρτημένη εξίσωση Schrödinger...

Διαβάστε περισσότερα

V fn V ni 2πδ(E f E i )

V fn V ni 2πδ(E f E i ) Ο διαδότης Εχουμε δεί ήδη ότι στα διαγράμματα Feynman η γραμμή του εικονικού φωτονίου αντιστοιχεί στο όρο 1/q 2 με q η ορμή του εικονικού φωτονίου (q 2 0). Αν το εικονικό σωματίδιο έχει μάζα ο διαδότης

Διαβάστε περισσότερα

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μετασχηματισμοί Καταστάσεων και Τελεστών

Μετασχηματισμοί Καταστάσεων και Τελεστών Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ- ηµόκριτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΤΟ ΣΠΙΝ ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ Στέλιος Τζωρτζάκης 1 3 4 Εισαγωγή Η ενδογενής στροφορμή ή αλλιώς σπιν αποτελεί ένα θεμελιώδες χαρακτηριστικό των σωματιδίων διότι

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα