H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n"

Transcript

1 3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος το οποίο µπορούµε να χωρίσουµε σε δύο επιµέρους προβλήµατα, ανάλογα µε το µέγεθος συνεισφοράς στην ενέργεια. Εχουµε ότι η συνολική χαµιλτονιανή του συστήµατος είναι H = H + V Υποθέτουµε πρώτον ότι µπορούµε να λύσουµε ακριβώς το πρόβληµα µε µόνο τον H και δεύτερον ότι η µεταβολή στις στάθµες ενέργειας E () του H λόγω του V είναι µικρότερη από τη διαφορά ενέργειας για οποιεσδήποτε δύο διαδοχικές στάθµες E () και E () ±. Σηµείωση : Τα προβλήµατα που λύνονται ακριβώς είναι ελάχιστα. Λύνουµε πρώτα το πρόβληµα ιδιοτιµών και ιδιοσυναρτήσεων του H. Ĥ Ψ () = E () Ψ () η χαµιλτονιανή H έχουµε υποθέσει ότι έχει ένα διακριτό µη εκφυλισµένο ϕάσµα ιδιοτιµών. Το σύνολο των ιδιοσυναρτήσεων είναι πλήρες και ορθοκανονικό. Ψ (), Ψ () m = δ m Η χαµιλτονιανή του πραγµατικού προβλήµατος είναι : Ĥ = Ĥ + ˆV Ο τελεστής ˆV της πρόσθετης δυναµικής ενέργειας ονοµάζεται τελεστής διαταραχής. πλήρους χαµιλτονιανής είναι : (H + V )Φ = E Φ Λύνουµε αυτήν την εξίσωση µε διαδοχικές προσεγγίσεις ϕθίνουσας σηµασίας : Η ιδιοσυνάρτηση της Φ = Ψ () + Ψ () + Ψ () +... E = E () + E () + E () +... όπου E () > E () > E (3) >.... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι Φ Ψ () και E E () διαταραχή µηδενικής τάξης. Για καλύτερη προσέγγιση µπορούµε να πάρουµε έναν ακόµη όρο στο ανάπτυγµα Φ Ψ () + Ψ ()

2 68 Θεωρία διαταραχών διαταραχή πρώτης τάξης ή E E () + E () Φ Ψ () + Ψ () + Ψ () E E () + E () + E () διαταραχή δεύτερης τάξης και συνεχίζουµε έτσι! Στην πράξη σταµατάµε όταν η µεταβολή δεν είναι πλέον αισθητή. Συνήθως έχουµε διαταραχή πρώτης τάξης µόνο. Εάν το E () = τότε παίρνουµε οπωσδήποτε το E (). Το µαθηµατικό πρό- ϐληµα γίνεται πολύ δύσκολο καθώς αυξάνουµε την τάξη προσέγγισης, και επειδή οι Ψ () του αδιατάραχτου συστήµατος ϕτιάχνουν ένα πλήρες σύνολο συναρτήσεων, οι προσεγγιστικές λύσεις λόγω της διαταραχής ϑα είναι γραµµικοί συνδυασµοί των Ψ (). Για να γίνει ποσοτική η προσεγγιστική αυτή µέθοδος εισάγουµε µια παράµετρο λ έτσι ώστε να παραµετροποιήσουµε την ένταση της πρόσθετης αλληλεπίδρασης. Η λύση λοιπόν του ϕυσικού προβλήµατος δίνεται από τις λύσεις της χαµιλτονιανής (H + λv )Φ = E Φ, για λ =, ενώ για λ = έχουµε και άρα οι Φ, E είναι συναρτήσεις του λ. H Ψ () = E () Ψ () Φ = Ψ () + C (λ)ψ () Αναπτύσουµε τους συντελεστές C (λ) σε σειρά ως προς λ και έχουµε Φ = Ψ () + λ α Ψ () + λ b Ψ () +... δηλαδή Αναπτύσουµε και την ενέργεια σε σειρά ως προς λ: Φ = Ψ () + λψ () + λ Ψ () +... E = E () + λe () + λ E () +... Υποθέτουµε ότι οι σειρές συγκλίνουν για κάθε λ. Άρα οι συντελεστές πρέπει να ελαττώνονται από τάξη σε τάξη. Υπολογισµός των διαδοχικών όρων στην προσέγγιση: Αντικαθιστούµε στην εξίσωση (H +λv )Φ = E Φ τις εκφράσεις των Φ και E και εξισώνουµε τους συντελεστές των ίδιων δυνάµεων του λ, διότι οι ισότητες ισχύουν για κάθε λ. (H + λv ) Ψ () + λψ () + λ Ψ () } E () + λe () + λ E () +... } +... = Ψ () + λψ () + λ Ψ () +... H Ψ () = E () Ψ () τάξης λ = V Ψ () + H Ψ () = E () Ψ () + E () Ψ () τάξης λ V Ψ () + H Ψ () = E () Ψ () + E () Ψ () + E () Ψ () τάξηςλ. } Σε πολλά ϕυσικά προβλήµατα έχουµε περισσότερες της µίας αλληλεπιδράσεις µε διαφορετική ισχύ π.χ. V = V + V µε V > V. Μπορούµε να συµπεριλάβουµε την V στην διαταραχή πρώτης τάξης, ενώ η V µπορεί να εµφανιστεί σαν διαταραχή δεύτερης τάξης για το V. Πρακτικά µπορούµε να αντιµετωπίσουµε το πρόβληµα ως εξής : V = λv + λ V

3 3. ιαταραχή µη εκφυλισµένων καταστάσεων ιαταραχή πρώτης τάξης Εχουµε να λύσουµε την εξίσωση : V Ψ () + H Ψ () = E () Ψ () + E () Ψ () όπου σύµφωνα µε όσα έχουµε πει για την πληρότητα του συστήµατος των αδιατάρακτων κυµατοσυναρτήσεων έχουµε : Ψ () = a Ψ (), µε V Ψ () + a E () Ψ() = E () Πολλαπλασιάζουµε από αριστερά την (3.) µε Ψ () αλλά Ψ (), Ψ () = και Ψ (), Ψ () = για Πολλαπλασιάζουµε από αριστερά την (3.) µε Ψ () m και ολοκληρώνουµε Ψ (), V Ψ () + = + E () Ψ (), Ψ () a Ψ () + E () Ψ () (3.) E () = Ψ (), V Ψ () (3.) µε m και ολοκληρώνουµε Ψ () m, V Ψ () + a m E m () = E () a m a m = Ψ() m, V Ψ () E () E m () Εάν υπολογίσουµε τον πίνακα που προκύπτει από τη διαταραχή V και τις ιδιοσυναρτήσεις Ψ () έχουµε (3.3) V = V = Ψ (), V Ψ() V V V N V V V N.. V N V N V NN και Η προσέγγιση έχει νόηµα όταν Φ = Ψ () + V Ψ () E () E () (3.4) E = E () + V (3.5) V E () E () + V E () E () Ο παρονοµαστής στα a δεν γίνεται ποτέ µηδέν διότι έχουµε πάντοτε E () E () για, µη εκφυλισµένες ιδιοτιµές ιαταραχή δεύτερης τάξης Για την επόµενης τάξης προσέγγιση της ενέργειας και της κυµατοσυνάρτησης του συστήµατος έχουµε να λύσουµε την εξίσωση : V Ψ () + H Ψ () = E () Ψ () + E () Ψ () + E () Ψ () (3.6) µε Ψ () = a Ψ (), a = γνωστό

4 7 Θεωρία διαταραχών και Ψ () = b Ψ (), E () = γνωστό Πολλαπλασιάζουµε από αριστερά την (3.6) µε Ψ () και ολοκληρώνουµε Ψ (), V Ψ () + = + + E () Ψ (), Ψ () E () E () = Ψ (), V Ψ () = a Ψ (), V Ψ () E () = E () Ψ (), V Ψ() Ψ (), V Ψ () E () E () = V V E () E () Υπολογισµός της κυµατοσυνάρτησης Πολλαπλασιάζουµε από αριστερά την (3.6) µε Ψ () για και ολοκληρώνουµε : = E () Ψ () Ψ (), V Ψ() + Ψ (), H Ψ () =, Ψ() + E () Ψ (), Ψ() + E () Ψ (), Ψ() a V + E () b = E () b + E () a + b (E () E () ) = a V E () a + µε και E () = Ψ (), V Ψ () = V a = Ψ(), V Ψ () E () E () = V E () E () b = V V E () )(E() E () ) V V (E () E () (E () ) Συνθήκη εφαρµογής της ϑεωρίας διαταραχών V E () E () για κάθε, Άρα η σειρά συγκλίνει, διότι οι όροι ελαττώνονται καθώς αυξάνουµε την τάξη προσέγγισης. Εναλλακτικός τρόπος υπολογισµού της Ψ () V Ψ () + H Ψ () = E () Ψ () + E () Ψ () (H E () )Ψ () = (E () V )Ψ () όπου H, E (), Ψ (), V, E () γνωστά. Άρα λύνουµε αυτή τη διαφορική εξίσωση ως προς Ψ (), και µετά υπολογίζουµε την E () = Ψ (), V Ψ ().

5 3. ιαταραχή µη εκφυλισµένων καταστάσεων Εφαρµογές. Η δυναµική ενέργεια ενός σωµατιδίου δίνεται από τις σχέσεις :, για x < και x > a V (x) = bx, για x a Να υπολογιστεί η ενέργεια E του σωµατιδίου σε πρώτη τάξη της ϑεωρίας διαταραχών. Για b = έχουµε το άπειρο πηγάδι δυναµικού µε E () = π ( πx ) 8ma και Ψ () = a si a. Αναρµονικός Ταλαντωτής E () = Ψ (), V Ψ () = b a = b 4a a π y si ydy = 4 π a y si ydy = ba ( x si πx ) dx a ( si y y si y cos y ) + y 4 Η δυναµική ενέργεια ενός σωµατιδίου µάζας m δίνεται από τις σχέσεις:, για x < V (x) = x + bx 3, για x > Να υπολογίσετε διαταρακτικά την ενέργεια της ϑεµελιώδους στάθµης σε πρώτη τάξη της ϑεωρίας διατα- ϱαχών. Θεωρούµε τον όρο U(x) = bx 3 σαν διαταραχή στον αρµονικό ταλαντωτή V (x) = x = mω x Οι κυµατοσυναρτήσεις του αρµονικού ταλαντωτή και οι ιδιοενέργειες είναι Ψ (x) = C! H (ξ)e ξ / όπου mω mω C = 4 και ξ = π x = ax ( µε ενέργειες E = ω + ). Επειδή η δυναµική ενέργεια απειρίζεται για x = εκεί η κυµατοσυ- νάρτηση µηδενίζεται. Τα πολυώνυµα του Hermite είναι άρτια για άρτιο και περιττά για περιττό και µηδενίζονται στο µηδέν. Οι λύσεις λοιπόν στο αδιατάρακτο πρόβληµα είναι οι λύσεις του αρµονικού ταλαντωτή για περιττό = + µε =,,,... Η ϑεµελιώδης στάθµη είναι για = Ψ (x) = 4 mω π ( ax)e ax / µε ενέργεια E = 3 ω.

6 7 Θεωρία διαταραχών Σε πρώτη τάξη της ϑεωρίας διαταραχών η διόρθωση της ενέργειας είναι : E = Ψ (x)u(x)ψ (x)dx = U = 4 mω mω π b x 5 e ax dx x e ax dx = Γ ( ) + a (+)/ όπου η συνάρτηση Γ(z) ορίζεται από τις σχέσεις : Γ(z + ) = zγ(z) και Γ x 5 e ax / dx = Γ(6/) a 6/ ( ) = π = Γ(3) a 3 =! a 3 = a 3 ( mω mω E = b π mω = b π ( mω ) 3/ ) 3 Για να ισχύει η προσέγγιση ϑα πρέπει : E ω 3b ( ) 3/ ω π mω 3. ιαταραχή εκφυλισµένων καταστάσεων Μέχρι τώρα υποθέσαµε ότι οι καταστάσεις του αρχικού (ϐασικού) αδιατάραχτου συστήµατος είναι µη εκφυλισµένες. Αλλά στη ϕύση συνήθως συναντάµε σε όλα τα κβαντικά συστήµατα εκφυλισµό. Τα πραγµατικά συστήµατα δεν είναι µονοδιάστατα. Οταν υπαρχει εκφυλισµός τότε σε διαταραχή ήδη πρώτης τάξης συναντάµε στον παρονοµαστή την ενεργειακή διαφορά E () E () όταν υπολογίζουµε τη διόρθωση στη στάθµη E. Εάν λοιπόν συµβαίνει η στάθµη να είναι εκφυλισµένη τότε κάποια στιγµή στο άθροισµα, έχουµε και τη συνεισφορά από την εκφυλισµένη κατάσταση E (), οπότε E() E () = και ο όρος αυτός απειρίζεται. Αλλά το πρόβληµα αυτό είναι τεχνικό οφείλεται δηλαδή σε παθογένεια της µεθόδου. Θα αναπτύξουµε λοιπόν µία µέθοδο για την άρση του εκφυλισµού. Θα υποθέσουµε ότι έχουµε στο αδιατάραχτο =, για ευκολία. Η µέθοδος σύστηµα δύο µόνο εκφυλισµένες καταστάσεις, την Ψ () = και την Ψ () γενικεύεται κατ ευθείαν για εκφυλισµό N. Η χαµιλτονιανή είναι H = H + V και H = E (), =,,...,, }} σε πρώτης τάξης προσέγγιση για αυτές τις δύο στάθµες έχουµε : Φ = Ψ () Φ = Ψ () E () =E (),... + a Ψ () = Ψ () + a Ψ () }} +Ψ() + a Ψ () = Ψ () + a Ψ () }} +Ψ() Ψ () =, a Ψ (), Ψ() =, a Ψ () a m = V m, V E m () E () m = Ψ () V Ψ() m

7 3. ιαταραχή εκφυλισµένων καταστάσεων 73 Εχουµε ξεχωρίσει λοιπόν τις εκφυλισµένες στάθµες Ψ (), Ψ () και ορίζουµε τώρα δύο νέες κανονικοποιηµένες καταστάσεις Ψ, Ψ σαν ιδιοσυναρτήσεις της συνολικής χαµιλτονιανής Ĥ σε προσέγγιση µέχρι πρώτης τάξης για την ενέργεια. ιαγωνιοποιούµε δηλαδή την Ĥ = Ĥ + ˆV στον διαστάσεων υποχώρο των κυµατοσυναρτήσεων της Ĥ. Εάν µπορούσαµε να το κάνουµε συνολικά ϑα λύναµε πλήρως το πρόβληµα. Ουσιαστικά αντί για Ψ () και Ψ () ϑα µπορούσαµε να πάρουµε οποιονδήποτε γραµµικό συνδυασµό : Ψ = c Ψ () + c Ψ () Ψ = c Ψ () + c Ψ () και εάν ο εκφυλισµός ϑεωρηθεί µεγαλύτερος τότε : (H + V )Ψ = E Ψ, (H + V )Ψ = E Ψ Ψ = N i= c i Ψ () i, =,,..., N Ολες οι καταστάσεις Ψ () i έχουν την ίδια ενέργεια. Αντικαθιστώντας στην εξίσωση ιδιοτιµών (H + V )Ψ = E Ψ έχουµε, αφού πολλαπλασιάσουµε από αριστερά µε την Ψ () και ολοκληρώσουµε : i H Ψ + V Ψ = E Ψ E () c i i + c i V i = E c i i i i E () c E c = i c i V i c (E E () ) = i c i V i = c V + i c i V i c V + E () E + c i V i = i όπου =,,..., N και =,,..., N. Κρατώντας σταθερό το για = έχουµε τη σχέση : Για = έχουµε τη σχέση : Για = 3 έχουµε τη σχέση :. Για = N έχουµε τη σχέση : c V + E () E + c V + c 3 V C N V N = c V + c V E () E + c 3 V c N V = c V 3 + c V 3 + c 3 V 33 E () E c N V 3N = c V N + c V N + c 3 V N C N V NN + E () E = V + E () E V V 3... V N V V + E () c E V 3... V N c V 3 V 3 V 33 + E () E... V 3N c 3 =.. V N V N V N3 V NN + E () c N E

8 74 Θεωρία διαταραχών Εχουµε λοιπόν ένα σύστηµα N N οµογενές, µε N + αγνώστους τους E, c,..., c N. Για να έχει µια µη-τετριµµένη λύση το σύστηµα, ϑα πρέπει η ορίζουσά του να είναι µηδέν : det V + (E () E ) = N ιδιοτιµές για την ενέργεια E N ιδιοδιανύσµατα. Τα c είναι ορθογώνια µεταξύ τους, µε µία απροσδιόριστη σταθερά, τη ϐρίσκουµε κανονικοποιώντας. Επιστρέφουµε τώρα στο διδιάστατο αρχικό πρόβληµα. όπου H Ψ + V Ψ = E Ψ c E () + c V + c V = c E H Ψ + V Ψ = E Ψ c E () + c V + c V = E c c V + c V = c (E E () ) c V + c V = c (E E () ) ( ) ( ) ( ) V V c c = W V c c V W = E E () Εξίσωση ιδιοτιµών W και ιδιοσυναρτήσεων (ιδιοδιανυσµάτων) για τον πίνακα V του διαταρακτικού δυναµικού. Το σύστηµα έχει µη µηδενική λύση εάν η ορίζουσα είναι µηδέν : det V W V V V W = δύο ιδιοτιµές δύο ιδιοδιανύσµατα (V + E () E )(V + E () E ) V V = Εχουµε ένα τριώνυµο δευτέρου ϐαθµού, άρα έχουµε δύο λύσεις. E (±) = E () + (V + V ) ± / (V V ) + 4V V Η ενεργειακή ιδιοτιµή E (+) αντιστοιχεί στην κυµατοσυνάρτηση Ψ = c Ψ () + c Ψ () και η ενεργειακή ιδιοτιµή E ( ) αντιστοιχεί στην κυµατοσυνάρτηση Ψ = c Ψ () + c Ψ () Τα διανύσµατα (c, c ) και (c, c ) είναι ιδιοδιανύσµατα του πίνακα V µε τιµές του E ίσον µε E (+) και E ( ) αντίστοιχα. Επειδή το σύστηµα είναι οµογενές, προσδιορίζουµε το c µέσω του c κάθε ϕορά. Κανονικοποιώντας στη µονάδα, ϐρίσκουµε και το c. Θέτουµε E = E (+) και E = E ( ) Οι δύο κυµατοσυναρτήσεις Ψ, Ψ που προκύπτουν είναι µεταξύ τους ορθογώνιες. (H + V )Ψ = E Ψ V Ψ = E Ψ H Ψ = E Ψ E () Ψ = W Ψ και V Ψ = W Ψ αντίστοιχα, όπου W = E E (), W = E E (). Εχουµε λοιπόν : V Ψ = W Ψ, V Ψ = W Ψ και Ψ V = W Ψ, V ερµιτιανός W Ψ Ψ Ψ V Ψ = W Ψ Ψ W W Ψ Ψ = Άρα η διαταραχή V είναι διάγωνια σε αυτή τη ϐάση. Και E () E () = W = Ψ V Ψ = V = W = Ψ V Ψ = V

9 3. ιαταραχή εκφυλισµένων καταστάσεων 75 Εφαρµογή ( ) H = m x + y + mω (x + y ) + cxy, c mω (α) Να υπολογιστούν οι ενέργειες E και οι κυµατοσυναρτήσεις Ψ του σωµατιδίου για c =. (ϐ) Αν c, να υπολογιστούν σε πρώτη τάξη της ϑεωρίας διαταραχών οι ενέργειες και σε µηδενική τάξη οι κυµατοσυναρτήσεις για τη µικρότερη ενέργεια µε εκφυλισµό. Λύση: (α) Ψ (x, y) = Ψ (x)ψ (y) όπου E = E + E Ψ m x + mω x Ψ = E Ψ και ( E = ω + ) (, E = ω + ) Ψ m y + mω y Ψ = E Ψ και E = ω( + ) = +, =,,... =,,,... =,,,... Για την ενέργεια E = ω, έχουµε µόνο µία ιδιοσυνάρτηση, την Ψ (x, y) = Ψ (x)ψ (y). Για την ενέργεια E = ω έχουµε δύο ιδιοσυναρτήσεις Ψ (x, y) = Ψ (x)ψ (y) = Φ εκφυλισµός Ψ (x, y) = Ψ (x)ψ (y) = Φ Για ορισµένο µε ενέργεια E () = ω( + ), το µπορεί να πάρει τις τιµές =,,,...,, δηλαδή έχουµε + διαφορετικές καταστάσεις µε την ίδια ενέργεια. (ϐ) Ιδιοτιµές της ενέργειας και ιδιοσυναρτήσεις V = Φ V Φ = Ψ (x)ψ (y)cxyψ (x)ψ (y)dxdy V = Φ V Φ = c V =, V = Ψ (x)ψ (y)xyψ (x)ψ (y)dxdy ( + ( + = c Ψ (x)xψ (x)dx) = c Ψ (x) mω Ψ (x)dx = c mω = V ) διότι ( ω E ) c xψ (x) = mω Ψ (x) c ω E det mω c = ω E mω ω E 4m ω = c ω E + mω c = mω

10 76 Θεωρία διαταραχών E (+) = ω + c mω E ( ) = ω c mω Φ (+) = c (+) Φ + c (+) Φ, E (+) = E () + W Φ ( ) = c ( ) Φ + c ( ) Φ, E ( ) = E () W c mω Οµοίως για την αρνητική ιδιοτιµή έχουµε : c mω c ( ) ( ) mω c (+) c (+) c (+) = W c (+), W = c mω c mω c(+) = c mω c(+) c (+) = c (+) c ( ) ( ) mω c ( ) c ( ) c ( ) = W c ( ) Κανονικοποιώντας c + c = παίρνουµε c = c = /. c ( ) = c ( ) 3.3 Θεωρία διαταραχών εξαρτώµενη από το χρόνο Η διαταραχή στο σύστηµα γίνεται από ένα πεδίο που εξαρτάται από το χρόνο. Ĥ = Ĥ + V (r, t) = Ĥ + V (t) Υποθέτουµε ότι η εξωτερική διαταραχή V (t) είναι περαστική στο χρόνο, δηλαδή έχει ένα πεπερασµένο χρονικά διάστηµα εφαρµογής. Πριν και µετά από τη διαταραχή το σύστηµα ϑα περιγράφεται από την αδιατάρακτη χαµιλτονιανή H, την οποία µπορούµε να λύσουµε ακριβώς µε ιδιοσυναρτήσεις Ψ (), ιδιοτιµές E(). Υποθέτουµε για απλότητα ότι η διαταραχή αρχίζει να δρα για t =, οπότε το σύστηµα ήταν στην κατάσταση Ψ () = Ψ() και Ϲητάµε την Ψ(t) για t >, δηλαδή το πλάτος µετάβασης του συστήµατος από την m. Εχουµε γενικά, εφόσον τα Ψ () ϕτιάχνουν ένα πλήρες σύστηµα ιδιοσυναρτήσεων, ότι : Ψ(t) = m c m (t)ψ () m Εάν δεν είχαµε τη διαταραχή ϑα ϐρίσκουµε c m (t) = e ie() m t/ δ m. Με τη διαταραχή στη χαµιλτονιανή, τα c m (t) ϑα έχουν µια άλλη χρονική εξάρτηση, την οποία γράφουµε ως εξής : και Ψ(t) = m a m (t)e ie() m t/ Ψ () m ( ) H + V (t) Ψ = i Ψ t µε αρχική συνθήκη : a () =, a () = για. Πλάτος µετάβασης : c m (t) = Ψ () m Ψ(t) Πιθανότητα µετάβασης στην κατάσταση m, αρχίζοντας από τη, σε χρόνο t: P m (t) = Ψ () m Ψ(t)

11 3.3 Θεωρία διαταραχών εξαρτώµενη από το χρόνο Προσεγγιστικός υπολογισµός της πιθανότητας µετάβασης διαταρακτικά σε πρώτης τάξης προσέγγιση, διακριτό ϕάσµα dc m c m (t) = Ψ () m, Ψ(t) = Ψ () m, Ψ t = i Ψ() m, HΨ i dc m = c (t) Ψ () m HΨ () = c (t)e () Ψ() m Ψ () + c (t) Ψ () m V (t)ψ () i dc m = E () m c m (t) + V m c (t) i da m () e ie m t/ + (i ) c (t) = a (t)e ie() t/ ( ) i E() m c m (t) = E m () c m (t) + V m c (t) i da m(t) = V m a (t)e i(e() m E() )t/ Αναπτύσουµε διαταρακτικά : Αρχικές συνθήκες : και i da() m a m (t) = a () m (t) + a () m (t) + a () m (t) +... a () (t) =, a () (t) = για a () m (t = ) =, a () m (t = ) = i da() m = a () m = m = σταθερά =, m V m e iwmt a (), w m = E() m E () Από την εξίσωση για τους συντελεστές σε πρώτης τάξης διαταραχή έχουµε : i da() m = V m (t)e iwmt Πιθανότητα µετάβασης : V m (t) = a () m (t) = i t V m (t )e iwmt Ψ () m (r)v (r, t)ψ () (r)d 3 x = Ψ () m V (t) Ψ () P m = t V m (t )e iwmt Παράδειγµα : Η διαταραχή διαρκεί χρονικό διάστηµα T και είναι σταθερή για < t < T. V m (t) = V m = Ψ () m V (r) Ψ () P m = a () m (t) = a () m (t) = V m w m ( e iw mt ) (E () 4 V m m E () ) si E () m E () t

12 78 Θεωρία διαταραχών

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες. ΘΕΜΑ [5575] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Αυγούστου ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης,5 ώρες (α) Να αποδειχθεί ότι για οποιοδήποτε µη εξαρτώµενο από τον χρόνο τελεστή Α, ισχύει d A / dt = A,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

n = < n a a n > = a < n a n > = C C = n (1.13) n-1 n-1

n = < n a a n > = a < n a n > = C C = n (1.13) n-1 n-1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Στα πλαίσια του Μεταπτυχιακού προγράµµατος σπουδών. ΙΩΑΝΝΗΣ Ε. ΣΦΑΕΛΟΣ 004 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ορισµός των τελεστών δηµιουργίας καταστροφής. Ο γραµµικός αρµονικός

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 12 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Δομή Διάλεξης Ανασκόπηση συμβολισμού Dirac Διαταραχές σε σύστημα δύο καταστάσεων Η γενική μέθοδος μη-εκφυλισμένης θεωρίας διαταραχών Εφαρμογή: Διαταραχή

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι

Διαβάστε περισσότερα

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ Άσκηση 4. Έστω σωμάτιο με spin /. Να προσδιορίσετε την κατάστασή του αν είναι γνωστές οι S ˆ, S ˆ και μόνο το πρόσημο της S ˆ. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α ψ = α

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L. Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού

Διαβάστε περισσότερα

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger

υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger 4 υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger 4.1 Κλασσική µηχανική - το πρόβληµα των δύο σωµάτων Θεωρούµε την αλληλεπίδραση ενός ηλεκτρονίου µε µάζα m e και ϕορτίο q e = e µε έναν πυρήνα µε ϕορτίο

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες. ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση

Διαβάστε περισσότερα

Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1 Χειμερινό εξάμηνο 016-017 Κβαντομηχανική Ι 3o Σετ Ασκήσεων Άσκηση 1 Οι λύσεις του αρμονικού ταλαντωτή, με V = x είναι της μορφής ψ n (x) = ( mω π )1/4 1 n n! H n (x)e x /, n = 0,1, (1) Με Η n τα πολυώνυμα

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί

Διαβάστε περισσότερα

[A I 3 ] [I 3 A 1 ].

[A I 3 ] [I 3 A 1 ]. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 9 (α) Να ϐρεθεί ο αντίστροφος του πίνακα A = 6 4 (ϐ) Εστω b, b, b στο R Να λύθεί το σύστηµα x = b 6x + x + x = b x

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x) ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στην παράγραφο αυτή θα εξετάσουµε την ολοκλήρωση ρητών συναρτήσεων, δηλαδή συναρτήσεων της µορφής p f ( ( q(, όπου p( και q ( είναι πολυώνυµα µιας µεταβλητής του µε συντελεστές

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα Σελίδα από 5 Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα 9. Ορισµοί... 9. Ιδιότητες...7 9. Θεώρηµα Cayley-Hamilto...4 9.. Εφαρµογές του Θεωρήµατος Cayley-Hamilto...6 9.4 Ελάχιστο Πολυώνυµο...5 Ασκήσεις του

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

Εφαρµογές της εξίσωσης Schrödinger - Μονοδιάστατα προβλήµατα

Εφαρµογές της εξίσωσης Schrödinger - Μονοδιάστατα προβλήµατα Εφαρµογές της εξίσωσης Schrödinger - Μονοδιάστατα προβλήµατα.1 Συνεχές Ενεργειακό Φάσµα.1.1 Ελεύθερο Σωµάτιο Εχουµε σε αυτή την περίπτωση F = 0, δηλαδή V (x, t) = σταθερό και τη σταθερή αυτή τιµή τη ϐάζουµε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 8 Ιουνίου 005 Από τα κάτωι Θέµατα καλείσε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις.

Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις. Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα), < Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( ) = VΘ( ), Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις V Ε Ι ΙΙ Σχήµα ΑΚΠα1

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 00) Η Εργασία χωρίζεται σε µέρη: Το πρώτο Ασκήσεις - περιλαµβάνει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

Â. Θέλουμε να βρούμε τη μέση τιμή

Â. Θέλουμε να βρούμε τη μέση τιμή ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου

Διαβάστε περισσότερα

Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι

Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Disclaimer: Οι δυο ασκήσεις ζητούν τις κυματοσυναρτήσεις, τις ενέργειες, τις τιμές (x 1 x 2 ) 2 των διαφόρων καταστάσεων και τη διόρθωση από διαταραχή, για μποζόνια

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερµότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερµότητας. Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερµότητας Εστω Ω είναι ανοικτό σύνολο του µε γνωστή θερµοκρασία στο σύνορό του Ω κάθε χρονική στιγµή και γνωστή αρχική θερµοκρασία σε κάθε σηµείο του Ω Τότε οι φυσικοί νόµοι

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1 Χειμερινό εξάμηνο 16-17 Κβαντομηχανική Ι 1o Σετ Ασκήσεων ) ψ(x) dx Άσκηση 1 ψ ο (x) = Α (α x ), < x < = A (α x ) dx = 1 (α x ) dx = (α 4 x + x 4 )dx = α 4 dx x dx = 5 45 3 A ( 5 45 + 5 3 5 + x 4 dx + 5

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Αναπαράσταση τελεστών µε πίνακα

Αναπαράσταση τελεστών µε πίνακα Μάθηµα 7 ο, 8 Νοεµβρίου 008 (9:00-:00) Άσκηση Bonus[+05 στον τελικό βαθμό] Για ένα μονοδιάστατο κβαντικό σύστημα που περιγράφεται από τρεις καταστάσεις με ενέργεια Ε, Ε και Ε3 και αντίστοιχες ιδιοσυναρτήσεις

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της

Διαβάστε περισσότερα

18 ΟΡΘΟΓΩΝΙΑ ΠΟΛΥΩΝΥΜΑ

18 ΟΡΘΟΓΩΝΙΑ ΠΟΛΥΩΝΥΜΑ SECTION 8 ΟΡΘΟΓΩΝΙΑ ΠΟΛΥΩΝΥΜΑ 8. Ορθογώνια Σύνολα Συναρτήσεων Ορθοκανονικό σύνολο συναρτήσεων Θεωρούµε δύο πραγµατικές συναρτήσεις f () και g() ορισµένες, διαφορετικές και όχι ταυτοτικά µηδέν, σε ένα διάστηµα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann 3 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemnn 3. Μέθοδος αντικατάστασης ή αλλαγής µεταβλητής Πρόταση 3.. Εστω ότι η u = f (y) είναι συνεχής στο διάστηµα I, η y = g() έχει συνεχή παράγωγο στο διάστηµα Ι και

Διαβάστε περισσότερα

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2 Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ (Ηµεροµηνία αποστολής στον φοιτητή: Νοεµβρίου 4. Τελική ηµεροµηνία αποστολής από τον φοιτητή: εκεµβρίου 4)

Διαβάστε περισσότερα

3.3 ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ

3.3 ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ . ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΘΕΩΡΙΑ. Μέθοδοι επίλυσης : Οι βασικές µέθοδοι αλγεβρικής επίλυσης ενός γραµµικού συστήµατος δύο εξισώσεων µε δύο αγνώστους είναι δύο η µέθοδος της αντικατάστασης

Διαβάστε περισσότερα

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί SECTION 7 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE 7. Ορισµοί Οι συναρτήσεις που ικανοποιούν τη διαφορική εξίσωση Legere ( )y'' y' + ( + )y καλούνται συναρτήσεις Legere τάξης. Η γενική λύση της διαφορικής εξίσωσης του Legere

Διαβάστε περισσότερα

Το θεώρηµα Hellmann- Feynman

Το θεώρηµα Hellmann- Feynman Παράρτηµα Αποδείξεις Βασικών Θεωρηµάτων της Κβαντικής Μηχανικής Το θεώρηµα Hellma- Feyma Έστω ένα κβαντικό σύστηµα που περιγράφεται από τη Χαµιλτωνιανή Ĥ. Έστω ότι η Ĥ εξαρτάται από Hˆ Hˆ λ. Από την ίδια

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει

Διαβάστε περισσότερα

[ ] και το διάνυσµα των συντελεστών:

[ ] και το διάνυσµα των συντελεστών: Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Κβαντική Φυσική Ι Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι

Διαβάστε περισσότερα

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα KΕΦΑΛΑΙΟ 3 Πλεγµένες συναρτήσεις- Ανάπτυγµα Talor-Aκρότατα 3 Πλεγµένες συναρτήσεις Σε πολλές περιπτώσεις συναντούµε µία (ή και περισσότερες) εξισώσεις µεταξύ διαφόρων µεταβλητών πχ της µορφής e + συν (

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { }

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { } http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα