Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις"

Transcript

1 ΠΑΡΑΡΤΗΜΑ Β: ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ µ ÂÓÈÎ ÓÓÔÈÂ Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση Έτσι οι εξισώσεις d = + t d = 5 (Β) (Β3) d e t = cos (Β) d d = 5 + (Β4) είναι όλες διαφορικές εξισώσεις Στις εξισώσεις αυτές το εξαρτάται από µία µόνο µεταβλητή, την t, γι αυτό και καλούνται συνήθεις διαφορικές εξισώσεις Υπάρχουν και οι διαφορικές εξισώσεις µε µερικές παραγώγους, στις οποίες το εξαρτάται από περισσότερες µεταβλητές Στο 6ο Κεφάλαιο επιλύουµε µια διαφορική εξίσωση µε µερικές παραγώγους Τάξη της διαφορικής εξίσωσης είναι η µέγιστη τάξη της παραγώγου που περιέχει Εποµένως οι εξισώσεις (Β) και (Β) είναι πρώτης τάξης και οι εξισώσεις (Β3) και (Β4) είναι δεύτερης τάξης Η λύση της διαφορικής εξίσωσης είναι σχέση, η οποία δεν περιέχει παραγώγους Για παράδειγµα η λύση της εξίσωσης είναι dυ = 5υ υ = Ce 5t (Β5) (Β6) όπως εύκολα επαληθεύεται Η σταθερά C είναι αυθαίρετη και η (Β6) αποτελεί την γενική λύση της (Β5) Στη Φυσική µας ενδιαφέρει η µερική λύση της διαφορικής εξίσωσης, η οποία εξαρτάται από τις αρχικές και τις συνοριακές συνθήκες Αν πχ, 0 - γνωρίζουµε ότι ισχύει υ = για t =, η (Β6) δίδει = Ce οπότε C = e 0 Εποµένως η µερική λύση της (Β5), η οποία ικανοποιεί τις συνθήκες που αναφέραµε είναι e t - = 5 0 Η ελεύθερη πτώση σώµατος στο κενό είναι διαφορική εξίσωση δεύτερης τάξης Αν y είναι η θέση του κινητού ως προς το σηµείο από όπου αφέθηκε ελεύθερο να πέσει, η διαφορική εξίσωση της κίνησης είναι η

2 48 ª à π ẏ = g, όπου g είναι η επιτάχυνση της βαρύτητας Η γενική λύση της είναι y = gt + At + C όπου A και C είναι σταθερές, οι οποίες θα προσδιοριστούν από τις αρχικές συνθήκες µ ÍÈÛÒÛÂÈ appleòùë Ù ÍË ÃˆÈ fiìâóâ ÌÂÙ ÏËÙ Η εξίσωση d = f (, t) είναι εξίσωση πρώτης τάξης Θεωρούµε ότι η f (, t) είναι δυνατό να γραφτεί ως Η διαφορική εξίσωση γράφεται εποµένως: Κάθε µέλος αυτής της εξίσωσης ολοκληρώνεται ως προς τη µεταβλητή από την οποία εξαρτάται Η γενική λύση της διαφορικής εξίσωσης είναι όπου τα ολοκληρώµατα είναι αόριστα και η σταθερά C αυθαίρετη Παράδειγµα : gt f, t h = hd = gt hd = gt + C Να λυθεί η εξίσωση: Από τη δοθείσα, λαµβάνουµε d d = sin t = sin t

3 ƒ ƒ ª µ: π º ƒπ π ø π 49 οπότε µε ολοκλήρωση Τελικά = - cost + C Παράδειγµα : Να λυθεί η εξίσωση d = sin t + C είναι η γενική λύση της εξίσωσης dn = -λ N Η εξίσωση αυτή περιγράφει τη διάσπαση των πυρήνων ενός ραδιενεργού υλικού Το αρνητικό πρόσηµο τίθεται επειδή ο αριθµός των πυρήνων ελαττώνεται λόγω διασπάσεως, οπότε το dn είναι αρνητικό Ακολουθώντας το παράδειγµα έχουµε dn N = - λ + C απ όπου προκύπτει: lnn = - λ t + C Έστω N 0 ο αριθµός των πυρήνων του υλικού κατά τη χρονική στιγµή t = 0 Εποµένως lnn0 = C Η γενική λύση γράφεται συνεπώς: ή - λ lnn = lnn + lne t 0 - N = N e t 0 λ µ 3 ÍÈÛÒÛÂÈ appleòùë Ù ÍË ÏÔÎÏˈÙÈÎfi apple ÁÔÓÙ Έστω η διαφορική εξίσωση dy d + Py = Q Η εξίσωση αυτή µπορεί να επιλυθεί µε τη µέθοδο των χωριζοµένων µεταβλητών, ως s d εξής Θεωρούµε ότι, οπότε s = e Pd P Η διαφορική s d lns = =

4 40 ª Ã π εξίσωση γράφεται ή ή όπου M = Qs dy d + s dy d s s y = Q ( ) + ds d y Q s = d [ d ys ] = M ( ) Η τελευταία διαφορική εξίσωση ολοκληρώνεται και έχει γενική λύση Παράδειγµα Να λυθεί η διαφορική εξίσωση = ys = M d + C y + y = = d = = / Στην εξίσωση αυτή P και Q Άρα s e e Η γενική λύση της διαφορικής εξίσωσης είναι Τελικά: οπότε ye = e d + C ye = C + e y = + Ce - µ 4 È ÊÔÈÎ ÂÍÈÛÒÛÂÈ Â ÙÂË Ù ÍË ÌÂ ÛÙ ıâô Û ÓÙÂÏÂ- ÛÙ ÌÔÁÂÓ ÂÍ ÛˆÛË Η διαφορική εξίσωση d y d + α dy + α ( y ) = f d 0 (Β4)

5 ƒ ƒ ª µ: π º ƒπ π ø π 4 είναι δεύτερης τάξης και οι συντελεστές α και είναι συναρτήσεις του Αν το δεξιό µέλος της (Β4) είναι µηδέν, η εξίσωση καλείται οµογενής Στην παράγραφο αυτή µας ενδιαφέρει η µελέτη της οµογενούς διαφορικής εξίσωσης δεύτερης τάξης µε σταθερούς συντελεστές ηλαδή η διαφορική εξίσωση είναι: α 0 d y dy + y d α + α = d 0 0 (Β4) α α 0 όπου και είναι σταθεροί αριθµοί Έστω πως οι λύσεις της (Β4) είναι οι y και y Εύκολα αποδεικνύεται ότι λύσεις είναι και οι Ay και By όπου A και B αυθαίρετες σταθερές Επίσης λύση είναι και η y = Ay + By (Β43) Κάθε άθροισµα δύο λύσεων, συνιστά και λύση της (Β4) Η γενική λύση της (Β4) προϋποθέτει την ανεξαρτησία των y και y ύο συναρτήσεις y και y είναι γραµµικώς ανεξάρτητες σε κάποια περιοχή τιµών της, αν στην περιοχή αυτή η σχέση Ay + Ay = 0 συνεπάγεται την A = A = 0, όπου ρ σταθερά Αντικαθι- Ας θεωρήσουµε ότι η (Β4) έχει λύση την στώντας στην (Β4) προκύπτει: ρ + α ρ+ α = 0 0 y = e ρ (Β44) Η εξίσωση (Β44) λέγεται χαρακτηριστική εξίσωση της (Β4) και έχει ρίζες ρ και ρ ιακρίνουµε τις ακόλουθες περιπτώσεις α) Αν ρ πρ, η γενική λύση της (Β4) είναι β) Αν ρ = ρ = ρ, η γενική λύση της (Β4) είναι ρ y = Ae + Be ρ y = ( A + B) e ρ

6 4 ª Ã π Παράδειγµα : Να λυθεί η διαφορική εξίσωση y + y = 0 Η χαρακτηριστική εξίσωση είναι ρ + = 0 µε ρίζες ρ= ± ι Άρα η γενική λύση είναι ι y = Ae + Be -ι Αλλά ι -ι e = cos + ιsin, e = cos -ιsin Άρα + ( - ) = + y = A + B cos A B sin C cos C sin ι µε πραγµατική µορφή Πράγµατι: Εύκολα µπορεί να επαληθευτεί ότι οι συναρτήσεις y = cos, y = sin είναι γραµµικώς ανεξάρτητες λύσεις της δοθείσας διαφορικής εξίσωσης Παράδειγµα : Να λυθεί η διαφορική εξίσωση y - y + y = 0 Η χαρακτηριστική εξίσωση είναι η ρ - ρ+ = 0 και έχει διπλή ρίζα, την ρ= Άρα η γενική λύση της διαφορικής εξίσωσης είναι η y = ( A + B) e Παράδειγµα 3: Να λυθεί η διαφορική εξίσωση y - y + y = 0 µε αρχικές συνθήκες t = 0: y = 0, y = Η χαρακτηριστική εξίσωση είναι η ρ - ρ+ = 0 µε ρίζες ρ, = ± ι Άρα η γενική λύση της διαφορικής εξίσωσης είναι ( + ι) ( -ι) y = Ae + Be

7 ƒ ƒ ª µ: π º ƒπ π ø π 43 Από τις αρχικές συνθήκες προκύπτει A + B =0 και A+ ι B ι Συνεπώς A = = - ι, B = ι Η γενική λύση είναι ι = - ι -ι y = -ιe e -e ιe ιsin + ( - ) = Τελικά: y = e sin µ 5 È ÊÔÈÎ ÂÍÈÛÒÛÂÈ Â ÙÂË Ù ÍË Ì ÛÙ ıâô Û ÓÙÂÏÂ- ÛÙ ªË ÔÌÔÁÂÓ ÂÍÈÛÒÛÂÈ Η διαφορική εξίσωση έχει τη µορφή y y f + α + α = (Β5) Αποδεικνύεται ότι η λύση της (Β5) είναι το άθροισµα δύο λύσεων Της οµογενούς, την οποία συµβολίζουµε µε y c, και της µερικής, την οποία συµβολίζουµε µε Η λύση της οµογενούς είναι η y * y * Η µορφή της µερικής λύσης εξαρτάται από το δεξιό µέλος της (Β5) Όταν προσδιορίσουµε τη µορφή της µερικής λύσης, θα την αντικαταστήσουµε στην (Β5) για να προσδιοριστούν οι σταθερές, που υπάρχουν στη µερική λύση Η γενική λύση είναι η Οι σταθερές A και B προσδιορίζονται από τις αρχικές συνθήκες Στα εγχειρίδια Μαθηµατικής Ανάλυσης περιγράφονται µέθοδοι για την ταχεία εύρεση της µερικής λύσης, όταν η f() έχει ειδικές µορφές Παράδειγµα : Να λυθεί η διαφορική εξίσωση: yc = Ay + By y = yc + y * - y + y = 5e t () µε συνθήκες t = 0: y =, y = 4 Η λύση της εξίσωσης αυτής είναι y = yc + y * Αναζητούµε µερική λύση της µορφής

8 44 ª Ã π y * = A + Bt e -t, οπότε y * = B - A -Bt e -t και y * = - B + A + Bt e -t Θέτουµε στην () όπου y το y * και έχουµε t B A Bt A Bte - t 5e Τελικά προκύπτει B+A = 5 και B = 0 5 Άρα B = 0, A = = Η µερική λύση είναι y * e -t = 5 Η οµογενής είναι η y + y = 0 µε λύση yc = Ccost + Dsin t Άρα η γενική λύση της () είναι * 5 -t y = yc + y = Ccost + Dsin t + e 3 Εφαρµόζουµε τις συνθήκες t = 0: y =, y = 4 και βρίσκουµε C = -, D = Άρα η γενική λύση της () είναι: y = - cost + sin t + e t Παράδειγµα : Να λυθεί η διαφορική εξίσωση: y + y + y = + + cos µε συνθήκες = 0: y =, y = - Η οµογενής έχει χαρακτηριστική εξίσωση την Άρα η λύση της οµογενούς είναι: ( ρ+ ) = 0 µε διπλή ρίζα την ρ= - y = A + B e c - Στην εύρεση της µερικής λύσης θα µας καθοδηγήσει η µορφή του δεξιού µέλους της διαφορικής εξίσωσης Το δεξιό µέλος είναι άθροισµα πολυωνύµου και τριγωνοµετρικής συνάρτησης Αναζητούµε εποµένως ως µερική λύση την

9 ƒ ƒ ª µ: π º ƒπ π ø π 45 * y = α + β + γ + δcos + εsin * y = α + β- δsin + εcos * y = α -δcos -εsin Αντικαθιστούµε το y * και τις παραγώγους του µε τα ίσα τους στην αρχική διαφορική εξίσωση οπότε λαµβάνουµε Άρα α =, β= - 8, γ = 3, δ = 0, ε = Η γενική λύση είναι α + 4α + β+ α + β + γ = +, εcos - δsin = cos y = A + B e 8 3 sin Σ αυτήν αν εφαρµόσουµε τις αρχικές συνθήκες θα προσδιοριστούν οι σταθερές A και B Από την συνθήκη = 0, y = βρίσκουµε A = Από την συνθήκη = 0, y = - βρίσκουµε B = - Άρα η γενική λύση είναι y = - Ê + ˆ - e sin Ë

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι

Διαβάστε περισσότερα

x y και να γίνει επαλήθευση. Βρείτε τη µερική λύση που για x=1 έχει κλίση 45 ο. Α τρόπος Η Ε γράφεται (1)

x y και να γίνει επαλήθευση. Βρείτε τη µερική λύση που για x=1 έχει κλίση 45 ο. Α τρόπος Η Ε γράφεται (1) Βουγιατζής Γ Παπαδόπουλος. Ε, Ιανουάριος 3 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΕΤ. ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 3 Θέµα. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης ' = + και να γίνει επαλήθευση. Βρείτε τη µερική λύση που

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Εισαγωγή στις Διαφορικές Εξισώσεις Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα . Σκοποί

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου.

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Ανδρέας Ζούπας 22 Ιανουαρίου 203 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-

Διαβάστε περισσότερα

Διαφορικές εξισώσεις

Διαφορικές εξισώσεις Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 0 / 0 6 εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ & ΘΕΜΑΤΑ: ΓΕΝΙΚΑ

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Διαφορικές εξισώσεις

Διαφορικές εξισώσεις Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglys.gr 1 1 / 1 / 0 1 8 εκδόσεις Καλό

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ

ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ ρ. Α. Μαγουλάς Οκτώβριος 4 Η συνάρτηση δ ( και η παράγωγός της Ορίζεται ως εξής: δ ( ανωµαλο

Διαβάστε περισσότερα

ΜΑΣ 203: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 2017 ΑΣΚΗΣΕΙΣ

ΜΑΣ 203: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 2017 ΑΣΚΗΣΕΙΣ ΜΑΣ 3: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 17 ΑΣΚΗΣΕΙΣ 1. Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή. Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές. 3 d

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Συνεχή στο χρόνο δυναμικά συστήματα. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Συνεχή στο χρόνο δυναμικά συστήματα. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά BIO-156 Συνεχή στο χρόνο δυναμικά συστήματα Ντίνα Λύκα Εαρινό Εξάμηνο, 2017 lika@biology.uoc.gr Συνεχή στο χρόνο δυναμικά συστήματα Τα συνεχή στο χρόνο δυναμικά συστήματα περιγράφουν φαινόμενα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΑΣ 3: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 4 ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να ταξινομηθούν οι πιο κάτω ΣΔΕ με βάση τα εξής: τάξη, γραμμική ή μή Να δοθούν επίσης οι ανεξάρτητες και εξαρτημένες μεταβλητές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ. u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει. df u x,y dx υ x,y dy. f u και. f y. 3 f. και

ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ. u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει. df u x,y dx υ x,y dy. f u και. f y. 3 f. και Το άθροισμα u,d διαφορίσιμη συνάρτηση f / A Παράδειγμα υ, d, με με Το άθροισμα ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει df u,d υ,d f u f υ 6 d 9 d είναι ακριβές διαφορικό, διότι

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραµµικές ιαφορικές Εξισώσεις 2 ης τάξης

Κεφάλαιο 3. Γραµµικές ιαφορικές Εξισώσεις 2 ης τάξης Κεφάλαιο 3 Γραµµικές ιαφορικές Εξισώσεις ης τάξης Στο Κεφάλαιο αυτό θα αναπτύξουµε κυρίως τη θεωρία των γραµµικών δ.ε. ης τάξης. Ο λόγος είναι τριπλός: (α) το γεγονός ότι οι γραµµικές δ.ε. ης τάξης έχουν

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου

Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Ακ. Ετος 2018-2019 Θεωρούµε µια συνάρτηση f : I R, όπου το I είναι διάστηµα του R. Ορισµός Μια συνάρτηση F : I R λέγεται αντιπαράγωγος ή αρχική συνάρτηση

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2016 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0 Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( ) Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20 Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Εισαγωγικές έννοιες και ταξινόμηση Σ.Δ.Ε. Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann 3 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemnn 3. Μέθοδος αντικατάστασης ή αλλαγής µεταβλητής Πρόταση 3.. Εστω ότι η u = f (y) είναι συνεχής στο διάστηµα I, η y = g() έχει συνεχή παράγωγο στο διάστηµα Ι και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y

α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y Ασκήσεις στα Μαθηματικά ΙΙΙ Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 2018-2019 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΙΣΑΓΩΓΗ 1. Στις παρακάτω Δ.Ε. να προσδιορίσετε: α) την ανεξάρτητη και την εξαρτημένη

Διαβάστε περισσότερα

Συνεχή στο χρόνο δυναμικά συστήματα Διαφορικές εξισώσεις

Συνεχή στο χρόνο δυναμικά συστήματα Διαφορικές εξισώσεις Βιομαθηματικά BIO-156 Συνεχή στο χρόνο δυναμικά συστήματα Διαφορικές εξισώσεις Ντίνα Λύκα Εαρινό Εξάμηνο, 2018 lika@uoc.gr Συνεχή στο χρόνο δυναμικά συστήματα Τα συνεχή στο χρόνο δυναμικά συστήματα περιγράφουν

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006

1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006 η Εργασία Ηµεροµηνία αποστολής: 9 Νοεµβρίου 6. α. Να βρεθεί η γωνία µεταξύ των διανυσµάτων a = i + j k και b = 6 i j + k. β. Να δείξετε ότι τα διανύσµατα a, b, c είναι ορθογώνια και µοναδιαία. a = ( i

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 8 Παραβολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Παραβολή είναι ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου τα οποία ισαπέχουν από µια σταθερή ευθεία (δ) που λέγεται διευθετούσα της παραβολής και από

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους.

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους. Άσκηση. Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους. α) y, β) y, γ) y, δ) y, ε) y ( ) Να προσδιοριστούν γραφικά και µε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΛΓΙ ΜΑΘΗΜΑΤΙΚΩΝ Βασικά σύνολα Σύνολο φυσικών: Í {,,,L} Σύνολο ακεραίων: Æ { L,,,,,, L} Σύνολο ρητών: Q / Æ, ë Æ * ë Άρρητος λέγεται ένας αριθµός που δεν µπορεί να γραφτεί µε τη µορφή κλάσµατος ακεραίων.

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

Kεφάλαιο 5. µετασχηµατισµού Laplace.

Kεφάλαιο 5. µετασχηµατισµού Laplace. 5 Εισαγωγή Kεφάλαιο 5 Ο µετασχηµατισµός Lplce Τόσο οι συνήθεις όσο και οι µερικές διαφορικές εξισώσεις περιγράφουν νόµους µε τους οποίους κάποιες ποσότητες µεταβάλλονται σε σχέση µε το χρόνο, όπως το ρεύµα

Διαβάστε περισσότερα

Η Ευκλείδεια διαίρεση

Η Ευκλείδεια διαίρεση 1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28 Αριθµητική Ανάλυση Κεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 Αριθµητική ΑνάλυσηΚεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 1 / 28 Τα πολυώνυµα Chebyshev Αν η f (n+1) (x) είναι συνεχής, τότε υπάρχει ένας αριθµός

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31. 1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως

Διαβάστε περισσότερα

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε 1 ÈÖ Ð Ñ Για να είναι εφαρμόσιμη η μέθοδος της συνάρτησης Green, θαπρέπειηομογενής εξίσωση Ly =+ Ο.Σ.Σ. να έχει ως μοναδική λύση τη μηδενική. α) Η ομογενής εξίσωση y =έχει λύση y = A + B, από τις δεδομένες

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι

x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα : Λύση διαφορικών εξισώσεων & εξισώσεων διαφορών Μελέτη Ισορροπίας Στέφανος Σγαρδέλης Άδειες

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! ookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N.

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N. Αναδροµικές Σχέσεις Αναδροµικές Σχέσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αναδροµική Σχέση για την ακολουθία a n } είναι: - εξίσωση που εκφράζει τον n-οστό

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 5 Παράγωγος Παράγωγος Η παράγωγος της συνάρτησης f f () στο σηµείο f ( ) lim 0 ορίζεται ως f ( + ) f ( ) () Παράγωγοι ανώτερης

Διαβάστε περισσότερα

ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ

ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ Συµπλήρωµα στα παραδείγµατα που υπάρχουν στο Εγχειρίδιο του Μαθήµατος ρ. Α. Μαγουλάς

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Ενότητα: Επίλυση διαφορικών εξισώσεων με τη βοήθεια των συναρτήσεων Bessel Όνομα Καθηγήτριας: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού //04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί

Διαβάστε περισσότερα