Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ"

Transcript

1 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα

2 μα προσφορά του blοg lisari.blogspot.com Lents

3 Θέμα Α. Έστω οι συναρτήσεις,g : R R h g είναι γνησίως αύξουσα.. Αν οι,g είναι γνησίως αύξουσες, να δείξετε ότι και η Β. Έστω η συνάρτηση () e. α. Να δείξετε ότι η είναι γνησίως αύξουσα. β. Να λύσετε την εξίσωση: e. γ. Να λύσετε την ανίσωση: ln. Α. Έστω οι συναρτήσεις,g : R R, R με ( ) ( ) και g( ) g( ) ( ) g( ) ( ) g( ) ( g)( ) ( g)( ) h( ) h( ) δηλαδή η h g είναι γνησίως αύξουσα.. Επειδή οι,g είναι γνησίως αύξουσες τότε για Β. Έστω η συνάρτηση () e. α. Θέτω g() e και h(), οπότε () g() h(). Οι συναρτήσεις g,h είναι γνησίως αύξουσες, οπότε σύμφωνα με το Α ερώτημα και η συνάρτηση () g() h() είναι γνησίως αύξουσα. β. e e ( ) () και επειδή η είναι «-» έπεται ότι γ. ln. Θεωρώ τη συνάρτηση () g() h() με, όπου g() ln και h(). Η συνάρτηση () g() h() είναι γνησίως αύξουσα σύμφωνα με το Α ερώτημα, οπότε η δοθείσα ανίσωση γράφεται g() h() () () Θέμα Α. Αν οι συναρτήσεις,g είναι γνησίως αύξουσες σε ένα διάστημα Δ, να δείξετε ότι και η h g είναι γνησίως αύξουσα στο Δ. Β. Έστω η συνάρτηση () ln( ). α. Να δείξετε ότι η είναι γνησίως αύξουσα. β. Να λύσετε την εξίσωση: (). γ. Να λύσετε την ανίσωση: (). Α. Έστω οι συναρτήσεις,g : A R. Επειδή οι,g είναι γνησίως αύξουσες στο Δ A,τότε Lents 3

4 , Δ με ( ) ( ) και g( ) g( ) ( ) g( ) ( ) g( ) ( g)( ) ( g)( ) h( ) h( ) δηλαδή η h g είναι γνησίως αύξουσα στο Δ A. Β. Έστω η συνάρτηση () ln( ). α. Η είναι γνησίως αύξουσα στο (, ), ως άθροισμα των συναρτήσεων και ln( ) που είναι γνησίως αύξουσες στο (, ) σύμφωνα με το Α ερώτημα. β. Είναι () ln( ), οπότε () () () και επειδή η είναι γνησίως αύξουσα στο (, ), αυτή είναι μοναδική. γ. Η είναι γνησίως αύξουσα στο (, ) και () () () και επειδή (, ) (, ) Θέμα 3 Έστω η συνάρτηση () ln. α. Να δείξετε ότι η είναι γνησίως αύξουσα. β. Να λύσετε την εξίσωση: ln. γ. Να λύσετε την ανίσωση: Η συνάρτηση ln 3 3. () ln ορίζεται για (, ) α. Η είναι γνησίως αύξουσα στο (, ), ως άθροισμα των συναρτήσεων g() ln και h() που είναι γνησίως αύξουσες στο (, ), σύμφωνα με το Α ερώτημα του υ θέματος. β. Είναι () ln. οπότε ln () () (). Η ρίζα αυτή είναι μοναδική, γιατί η είναι γνησίως αύξουσα. γ. Να λύσετε την ανίσωση: Θέτω y 3 με y, οπότε ln y και η δοθείσα ανίσωση γράφεται: 3 3 y y ln ln y ln y (y) () y (λόγω του ότι είναι γνησίως αύξουσα στο (, ) ) 3 ή. Lents 4

5 Θέμα 4 Α. Έστω η γνησίως φθίνουσα συνάρτηση : R R και η συνάρτηση α. Να δείξετε ότι η g είναι γνησίως φθίνουσα. g() () e R β. Να βρείτε το ώστε ( ) () e. Β. Να λύσετε την εξίσωση: ln e e. Α. Η συνάρτηση : R R και η συνάρτηση h() e R είναι γνησίως φθίνουσες. α. Η συνάρτηση g() () h() () e R. g είναι γνησίως φθίνουσα ως άθροισμα δύο συναρτήσεων που είναι γνησίως φθίνουσες. β. Είναι: ( ) () e ( ) e () g( ) g() και επειδή ότι η g είναι γνησίως φθίνουσα προκύπτει ότι. Β. Θέτω () ln e και g() () e,. Η συνάρτηση είναι γνησίως φθίνουσα και σύμφωνα με το ερώτημα Αα η g είναι γνησίως φθίνουσα και κατά συνέπεια είναι «-», επομένως η δοθείσα εξίσωση γράφεται: g( ) g( ) g() ln e e ln e e και επειδή η g είναι «-» προκύπτει Θέμα 5 Έστω η συνάρτηση () e. Α. α. Να εξετάσετε την ως προς την μονοτονία. β. Να λύσετε την εξίσωση: e Β. Έστω η συνάρτηση g : R R για την οποία ισχύει g() g() e για κάθε R α. Να δείξετε ότι η g(). β. Να δείξετε ότι η g είναι γνησίως αύξουσα. γ. Να λύσετε την ανίσωση: g (). Α. α. Η συνάρτηση () e, R είναι γνησίως αύξουσα (Θέμα Βα). β. e e () () (επειδή η είναι «-» ως γνησίως αύξουσα). Lents 5

6 Β. Έστω η συνάρτηση g : R R για την οποία ισχύει: g() g() e για κάθε R α. g() g() g() e g() e. Το g() είναι ρίζα της εξίσωσης e (Ερώτημα Αβ), δηλαδή g(). β. Η απόδειξη θα γίνει με απαγωγή σε άτοπο. Έστω ότι η g δεν είναι γνησίως αύξουσα. Τότε θα υπάρχουν, g( ) g( ) g( ) e g( ) e e e g( ) g( ) g( ) g( ) άτοπο ( η h() είναι γνησίως αύξουσα). Επομένως η g είναι γνησίως αύξουσα. γ. g () g( ()) g( ()) g( ()) () (). γιατί οι, g είναι γνησίως αύξουσες και (), g( ()) g(). R με ώστε Θέμα 6 Α. Έστω οι συναρτήσεις,g : R R. Αν οι g, g είναι γνησίως αύξουσες, να δείξετε ότι και η είναι γνησίως αύξουσα. Β. Αν η είναι γνησίως αύξουσα και η C τέμνει τον άξονα στο 3 α. Να δείξετε ότι η εξίσωση ( ) ( ) έχει μοναδική λύση. β. Να λύσετε την ανίσωση: ( ) ( ). Α. Η απόδειξη είναι απλή με απαγωγή σε άτοπο. Β. Εφόσον η C τέμνει τον άξονα στο 3, είναι (3). α. Επειδή η είναι γνησίως αύξουσα, τότε και οι συναρτήσεις ( ) και ( ) είναι γνησίως αύξουσες (σύνθεση δύο γνησίως αυξουσών συναρτήσεων), ως άθροισμά τους δηλ. η ( ) ( ) επίσης και το Επομένως η εξίσωση ( ) ( ) έχει μοναδική λύση την δοθέντος ότι (3) β. Θεωρώ τη συνάρτηση: h() ( ) (, η ) οποία είναι γνησίως αύξουσα και ισχύει h(), οπότε: ( ) ( ) h() h(). Θέμα 7 Έστω η συνάρτηση : R () R για την οποία ισχύει e () για κάθε R. α. Να δείξετε ότι () για κάθε R. Lents 6

7 β. Να βρείτε το (). γ. Να δείξετε ότι και η είναι γνησίως αύξουσα. δ. Να λύσετε την ανίσωση: ln (). α. Προφανώς ισχύει () (πράξεις μεταξύ θετικών αριθμών) για κάθε R. β. e () 3 () y y με y () (y )(y y ) y. Επομένως (). γ. Η απόδειξη θα γίνει με απαγωγή σε άτοπο. Έστω ότι η δεν είναι γνησίως αύξουσα. Τότε θα υπάρχουν, R με ώστε ( ) ( ) ( )( ( )) ( )( ( )) e e ( ) ( ) είναι γνησίως αύξουσα). Επομένως η είναι γνησίως αύξουσα. δ. ln() ln() ln () () (). άτοπο (η h() e Θέμα 8 Έστω η γνησίως μονότονη συνάρτηση : R R για την οποία ισχύει (R) R και η συνάρτηση 3 g() () ( )(), R. α. Να δείξετε ότι οι συναρτήσεις,g είναι -. β. Να δείξετε ότι: 3 (g )() (), R γ. Αν () να λύσετε την εξίσωση: 3 (). α. Η συνάρτηση ως γνησίως μονότονη είναι -. Θεωρώ τη συνάρτηση 3 h() (), R, η οποία είναι γνησίως μονότονη (άθροισμα γνησίως μονότονων συναρτήσεων) και κατά συνέπεια -. Η 3 g() () ( )() h( ()), R είναι - ως σύνθεση δύο συναρτήσεων -. β. γ. 3 (g )() h( ( () h() (), R 3 () h() h() Lents 7

8 Θέμα 9 Α. Έστω οι γνησίως αύξουσες συναρτήσεις,g : R R g, g είναι γνησίως αύξουσες. Β. α. Να εξετάσετε τη συνάρτηση h() ln ως προς τη μονοτονία.. Να δείξετε ότι οι συναρτήσεις β. Αν η συνάρτηση : R R είναι γνησίως αύξουσα και () R, να δείξετε ότι. Η συνάρτηση t() () ln () Rείναι αντιστρέψιμη.. Αν η C τέμνει τον άξονα yy στο να λύσετε την εξίσωση: Α. Έστω οι συναρτήσεις,g : R R, R με ( ) ( ) και g( ) g( ), ( ) g( ) ( ) g( ) ( g)( ) ( g)( ) δηλαδή η g είναι γνησίως αύξουσα. Επίσης επειδή οι,g είναι γνησίως αύξουσες τότε για () () e.. Επειδή οι,g είναι γνησίως αύξουσες τότε για, R με g( ) g( ) (g( )) (g( )) ( g) ) ( g)( ), δηλαδή η g είναι γνησίως αύξουσα. Β. α. Η συνάρτηση h() ln ( ) ln, είναι γνησίως αύξουσα ως άθροισμα γνησίως αυξουσών συναρτήσεων. β.. Θεωρώ τη συνάρτηση h() ln,, Η συνάρτηση t() () ln() h(()) (h )(), είναι γνησίως αύξουσα ως σύνθεση γνησίως αυξουσών συναρτήσεων και κατά συνέπεια - με αποτέλεσμα να υπάρχει η αντίστροφή της, είναι δηλαδή αντιστρέψιμη.. Επειδή η C τέμνει τον άξονα yy στο προκύπτει ότι () t() () () () () () e ln () ln e () ln () t() t(). Θέμα Έστω οι συναρτήσεις () ln και α. Να δείξετε ότι η g είναι -. e g() e β. Να βρείτε την συνάρτηση : γ. Να βρείτε την συνάρτηση: g. g. δ. Να λύσετε την ανίσωση: g ( ()). Lents 8

9 α. Έστω, R με τότε e e g( ) g( ) e e e e g( ) g( ) δηλ. η g είναι γνησίως φθίνουσα και κατά συνέπεια -. β. γ. e y e y y y ye e e (y ) y e y ln με y. Άρα y g () ln με ln (g )() g ( ()) ln, (,e). ln δ. Για (,e) η ανίσωση γράφεται: ln ln g ( ()) ln ln / e. ln ln ln Επομένως: e Θέμα Α. Αν οι συναρτήσεις, g είναι γνησίως φθίνουσες στο Α να δείξετε ότι και η συνάρτηση g είναι γνησίως φθίνουσα στο Α. Β. Έστω η συνάρτηση () ln( ). α. Να δείξετε ότι και η είναι γνησίως φθίνουσα. β. Να δείξετε ότι η αντιστρέφεται και να βρείτε την γ. Να λύσετε την εξίσωση: ().. δ. Να βρείτε τα κοινά σημεία της C και της ευθείας y Α. Έστω οι συναρτήσεις,g : A R. Επειδή οι,g είναι γνησίως φθίνουσες στο Α τότε Lents 9, R με ( ) ( ) και g( ) g( ) ( ) g( ) ( ) g( ) ( g)( ) ( g)( ) φθίνουσες στο Α. Β. Έστω η συνάρτηση () ln( ) με A [, ) α. Έστω, A με τότε ln( ) ln( ) ln( ) ln ), δηλαδή η g είναι γνησίως

10 ( ) ( ), δηλαδή η είναι γνησίως φθίνουσα. β. Η ως γνησίως φθίνουσα είναι - και κατά συνέπεια αντιστρέφεται. () ln( ) με A [, ) Είναι... () (A) (,] y () ln( ) y ln( ) e e y Επομένως () e με (,]. γ. () e. δ. () (). Θεωρώ τη συνάρτηση h() (),. Η συνάρτηση αυτή είναι γνησίως φθίνουσα ως άθροισμα γνησίως φθινουσών συναρτήσεων και κατά συνέπεια -. Επομένως () h() h(). Θέμα Έστω η συνάρτηση : R εξίσωση () που έχει μοναδική ρίζα. α. Να βρείτε το (). β. Να δείξετε ότι η είναι -. γ. Αν (),, να δείξετε ότι :. Να δείξετε ότι η γνησίως αύξουσα.. Να λύσετε την ανίσωση: R για την οποία ισχύει () (y) ( y), y R και η (e ) (3 ) (e ). α. Επειδή ισχύει () (y) ( y), y R, για y () () () (). β. Έστω, R με ( ) ( ) ( ) ( ) ( ). Επειδή η εξίσωση () έχει μοναδική ρίζα και () δηλαδή η είναι -. γ. (),., R με o ( ), ( ) ( ) ( ) ( ), δηλαδή η γνησίως αύξουσα.. (e ) (3 ) (e ) (e ) (e ) (3 ) (e ) (e 3 ) (e ) (e 4 ) Lents

11 Θέμα 3 e e 4 Έστω η συνάρτηση : (, ) R για την οποία ισχύει εξίσωση () που έχει μοναδική ρίζα. α. Να βρείτε το (). () (y) ( ), y και η y β. Να δείξετε ότι η είναι -. γ. Να λύσετε την εξίσωση: ( ) () (5 6). δ. Αν (), να δείξετε ότι η είναι γνησίως φθίνουσα. α. Επειδή ισχύει () (y) ( ), y, y για y () () () (). β. Έστω, R με ( ) ( ) ( ) ( ) ( ) ( ) ( ) (). Επειδή η () έχει μοναδική ρίζα, δηλαδή η είναι -. γ. ( ) () (5 6) ( ) (5 6) () ( ) ( ) δ., επειδή (), R με ( ) ( ) ( ) ( ) ( ), δηλαδή η γνησίως φθίνουσα. Θέμα 4 Έστω η συνάρτηση * : R R με () * R, για την οποία ισχύει Να δείξετε ότι: α. () () (y) (y) *, y R. β. (). Lents

12 γ. Αν η εξίσωση () έχει μοναδική ρίζα το, τότε η είναι -. δ. Αν η C τέμνει την ευθεία y σε ένα το πολύ σημείο, τότε η συνάρτηση είναι αντιστρέψιμη. () g() α. Επειδή ισχύει () (y) (y) *, y R για () (απορ.) β. y () () () () () () δεκτη () () () γ. Έστω. ( ), R με ( ) ( ) ( ) ( ) ( ) *. Επειδή η εξίσωση () έχει μοναδική ρίζα το, τότε ( ) ( ) ( ) δηλαδή η είναι -. () δ. Για την g() με ) g() γιατί () * R ισχύουν R * ) (y) () (y) () (y) g(y) g()g(y) y y y *, y R 3) Η εξίσωση () () g() έχει το πολύ μία ρίζα και επειδή g(), η εξίσωση g() έχει μοναδική ρίζα το. Για τη συνάρτηση () g() ισχύουν όλες οι προϋποθέσεις που ισχύουν και για την, η οποία είναι αντιστρέψιμη, συνεπώς και η g είναι αντιστρέψιμη. Θέμα 5 Έστω η συνάρτηση : R R για την οποία ισχύει () (y) ( y), y R και (). Να δείξετε ότι: α. () R. β. () R. Lents

13 γ. (). δ. () ( ) R. ε. Αν η εξίσωση () έχει μοναδική ρίζα, τότε η αντιστρέφεται και ισχύει: (y) () (y), y. α. () ( ) ()( ) () R β. () ( ) ( ) ( ) ( ) ( ) R. γ. Για y είναι () () ( ) δ. Για y είναι () ( ) () R. ε. Έστω () (απορ.) () () () () () δεκτη ( ), R με ( ) ( ) ( ) () ( ) ( ) εξάλλου ( ) ( ) ( ) () ( ) () Επομένως () ( ) ( ) ( ) (επειδή η εξίσωση () έχει μοναδική ρίζα και () ), επομένως και η αντιστρέφεται., y,, y R ώστε: ( ) () (y ) y (y) y ( y ) ( ) (y ) y (y) y Θέμα 6 (y) () (y),, y Έστω η συνεχής συνάρτηση : R R για την οποία ισχύει ( ) () a β R και A(,3) C. α. Να βρείτε τα α, β. β. Να δείξετε ότι (), R γ. Να βρείτε το lim ()ημ () Lents 3

14 α. ( ) () a β R και A(,3) C. Για a β β a () Για () ( ) () ( )(a ) () a. () Επειδή συνεχής lim () () a 3 a β. () β. Για () () a (). Για () 3. Επομένως () R. γ. ημu ημu () u u u u lim ()ημ lim lim lim u u u Θέμα 7 Έστω η συνεχής συνάρτηση : R (). R για την οποία ισχύει () () R και α. Να βρείτε τον τύπο της. β. Να βρείτε τα όρια: lim () () και lim ημ γ. Να δείξετε ότι υπάρχει, α. Ισχύει τέτοιο ώστε ( ) e () () R () () ( () ) () R. β. Είναι: lim () lim () () και lim lim ημ ημ γ. Θεωρώ τη συνάρτηση g() () e, R. Lents 4

15 Αυτή είναι συνεχής στο [,] και g() g() e θεωρήματος Bolzano, συνεπώς υπάρχει, ( ) e, ισχύουν δηλαδή οι προϋποθέσεις του, τέτοιο ώστε g( ) ( ) e Θέμα 8 Δίνεται η συνεχής συνάρτηση : R R για την οποία ισχύει. α. Να δείξετε ότι a. β. Να βρείτε τον τύπο της. γ. Να δείξετε ότι η εξίσωση () ( ) () a ημ έχει μια τουλάχιστον ρίζα στο διάστημα, () δ. Να βρείτε το όρι: lim, ν α. Η είναι συνεχής, επομένως ν N * lim( ) () lim( a) a a β. Για ( )( ) (). Επειδή η είναι συνεχής, για Επομένως () R. () lim( ) 3. γ. () ημ ημ. Θεωρώ τη συνάρτηση g() ημ, R. Αυτή είναι συνεχής στο [,] και g() g() ( ημ) ημ, ισχύουν δηλαδή οι προϋποθέσεις του θεωρήματος Bolzano, συνεπώς υπάρχει ένα τουλάχιστον, ώστε g( ), δηλαδή η εξίσωση () () δ. lim, ν ν N ι) Αν v τότε ιι) Αν v τότε * ν Lents 5, τέτοιο ημ έχει μια τουλάχιστον ρίζα στο διάστημα, () lim lim lim ( ) () lim lim lim ( ) ν v v v

16 Θέμα 9 Έστω οι συναρτήσεις () και g() α. Να βρείτε την συνάρτηση h g e. β. Να δείξετε ότι η h αντιστρέφεται και να βρείτε την αντίστροφή της. γ. Να δείξετε ότι υπάρχει μοναδικό, α., R e h() ( g)() (e ) τέτοιο ώστε h( ) h ( ) β. Έστω, R με e e h( ) h( ), δηλαδή η h είναι e e γνησίως φθίνουσα επομένως αντιστρέφεται. Θέτω Επομένως h () ln. y ln y. e γ. Θεωρώ τη συνάρτηση t() h() h (),. ln Αυτή είναι συνεχής στο [,] και t() t() ( ln ) e e, ισχύουν δηλαδή οι προϋποθέσεις του θεωρήματος Bolzano, συνεπώς υπάρχει ένα τουλάχιστον,, τέτοιο ώστε t( ) h( ) h ( ). Εξάλλου η συνάρτηση με, είναι γνησίως φθίνουσα, ως άθροισμα t() h() h () γνησίως φθινουσών συναρτήσεων, και κατά συνέπεια το, είναι μοναδικό. Θέμα Έστω η συνάρτηση () e ln 3. α. Να δείξετε ότι η είναι γνησίως αύξουσα. β. Να βρείτε το σύνολο τιμών της. γ. Να δείξετε ότι η εξίσωση δ. Να βρείτε το όριο: lim e ln 3 έχει μοναδική ρίζα. α. Η συνάρτηση () e ln 3, είναι γνησίως αύξουσα ως άθροισμα γνησίως αυξουσών συναρτήσεων (βλέπε θέμα Α ). Lents 6

17 β. (A) lim (), lim (), γ. Η εξίσωση e ln 3 είναι ισοδύναμη με την (). Το μηδέν () ανήκει στα σύνολο τιμών της συνάρτησης και η είναι γνησίως αύξουσα στο πεδίο ορισμού της. Συνεπώς η εξίσωση ει μοναδική ρίζα. δ. lim ( ) lim (u) 3. u e ln 3 έχει μοναδική ρίζα στο (, ). Θέμα Έστω η συνεχής συνάρτηση : α, β R και οι μιγαδικοί α z e i (α), z (β) ie β. Αν Im(z )Re(z ) και z z z z να δείξετε ότι: α. α β e e. (α) (β) β. H C τέμνει τον άξονα α. Im(z )Re(z ) (a) (β) z z z z z z z z (z z )(z z ) z z z z z z z z z z z z a β zz zz e (β) e (a) α β e e (α) (β). σε ένα τουλάχιστον σημείο με τετμημένη α, β β. Η συνάρτηση είναι ορισμένη και συνεχής στο [a,β] και a β a β βa e (β) e (a) e (a) (β) e ( (a)) (a) (β) e ( (a))., ισχύουν δηλαδή οι προϋποθέσεις του θεωρήματος Bolzano, συνεπώς υπάρχει ένα τουλάχιστον α, β, τέτοιο ώστε ( ), δηλαδή η C τέμνει τον άξονα σε ένα τουλάχιστον σημείο με τετμημένη α, β. Θέμα Έστω η συνεχής συνάρτηση : R () ημχ ημ για κάθε χ R για την οποία ισχύει: Lents 7

18 α. Να βρείτε τον τύπο της. β. Να βρείτε το όριο: lim () γ. Να δείξετε ότι η εξίσωση () έχει μια τουλάχιστον ρίζα. α. Για ημ () ημ. Επιπλέον η είναι συνεχής, επομένως ημ () lim () lim ημ lim. Άρα ημ ημ, (), β. Έχουμε διαδοχικά, ημ ημ lim () lim (ημ ) lim ημ lim ημu ημ lim lim u u γ. Επειδή lim () a,, ώστε (a). Η συνάρτηση είναι ορισμένη και συνεχής στο R και κατά συνέπεια στο [, a]και () (a), ισχύουν δηλαδή οι προϋποθέσεις του θεωρήματος Bolzano, συνεπώς υπάρχει ένα τουλάχιστον, a, τέτοιο ώστε ( ). Θέμα 3 Έστω η συνεχής συνάρτηση : R () 3ημ για κάθε R. α. Να βρείτε τον τύπο της. β. Να βρείτε το όριο: lim (). γ. Να δείξετε ότι η εξίσωση α. Για 3ημ (). Επιπλέον η είναι συνεχής, επομένως R για την οποία ισχύει: () e έχει μια τουλάχιστον θετική ρίζα. Lents 8

19 3ημ () lim () lim lim 3 3. Άρα 3ημ, () 3, β. ημ lim () lim 3 lim 3 γ. Θεωρώ τη συνάρτηση g() () e, R. Αυτή είναι συνεχής στο R ως άθροισμα συνεχών συναρτήσεων. Επιπλέον g() () e 3 4 lim g() lim ( () e ) lim () lim e Επειδή lim g() a,, ώστε g(a). Η συνάρτηση g είναι ορισμένη και συνεχής στο R και κατά συνέπεια στο [, a]και g()g(a), ισχύουν δηλαδή οι προϋποθέσεις του θεωρήματος Bolzano, συνεπώς υπάρχει ένα τουλάχιστον, a τουλάχιστον θετική ρίζα., τέτοιο ώστε g( ), Δηλαδή η εξίσωση () e έχει μια Θέμα 4 Έστω η συνεχής συνάρτηση : R () για κάθε R. R για την οποία ισχύει: Α. Να δείξετε ότι η C έχει ένα τουλάχιστον κοινό σημείο με την ευθεία y με τετμημένη,. Β. Αν η συνάρτηση είναι γνησίως αύξουσα στο [, ) να δείξετε ότι: α. Η συνάρτηση g() () e, R, είναι γνησίως φθίνουσα στο [, ). β. Η εξίσωση Γ. Να βρείτε το όριο: έχει μοναδική ρίζα στο διάστημα, e () e () ln. lim Α. Θεωρώ τη συνάρτηση h() (), R. Lents 9

20 Αυτή είναι συνεχής στο R ως άθροισμα συνεχών συναρτήσεων και ισχύει h() R. Για είναι: h() h() Για είναι: h() h() Η συνάρτηση h είναι ορισμένη και συνεχής στο R και κατά συνέπεια στο [, ] και h()h(), ισχύουν δηλαδή οι προϋποθέσεις του θεωρήματος Bolzano, συνεπώς υπάρχει ένα τουλάχιστον,, τέτοιο ώστε h( ). Η εξίσωση λοιπόν () έχει μια τουλάχιστον ρίζα στο, δηλαδή η C έχει ένα τουλάχιστον κοινό σημείο με την ευθεία y με τετμημένη,. Β. α. Η συνάρτηση g() () e, R, είναι γνησίως φθίνουσα στο [, ) ως άθροισμα των συναρτήσεων () και e που είναι γνησίως φθίνουσες στο [, ). β. e () e () g() Η συνάρτηση g() () e, R είναι συνεχής στο R και κατά συνέπεια στο [, ] ως άθροισμα συνεχών συναρτήσεων και g() () e (ισχύει () ) () 4 3e g() (ισχύει () e e 4e () () ) δηλαδή g()g(), ισχύουν δηλαδή οι προϋποθέσεις του θεωρήματος Bolzano, συνεπώς υπάρχει ένα τουλάχιστον, φθίνουσα στο [, ) η ρίζα είναι μοναδική., τέτοιο ώστε g( ) και επειδή η g είναι γνησίως Γ. Για και εφαρμόζοντας το κριτήριο παρεμβολής έχω: () ( ) ( ) lim Επομένως. lim ln lim limln Lents

21 Θέμα 5 Δίνεται η συνεχής και γνησίως φθίνουσα συνάρτηση :, C A, τότε: α. Να δείξετε ότι η συνάρτηση β. Να βρείτε το σύνολο τιμών της g. g() (),, R. Αν το σημείο είναι γνησίως αύξουσα. γ. Να δείξετε ότι η εξίσωση () () έχει μοναδική ρίζα στο διάστημα,. α. Η συνάρτηση συναρτήσεων g() () () και,, που είναι γνησίως αύξουσες στο β. Το σύνολο τιμών της g είναι: g (,) lim g(), g(), είναι γνησίως αύξουσα ως άθροισμα των.,. Αλλά g() () () και lim g() lim lim () () Επομένως το σύνολο τιμών της g είναι: g (,) (, ) γ. Να δείξετε ότι η εξίσωση () () g(). Το μηδέν ανήκει στο σύνολο τιμών της g, συνεπώς υπάρχει ένα τουλάχιστον,, δηλαδή στο πεδίο ορισμού της, τέτοιο ώστε g( ) και επειδή η g είναι γνησίως αύξουσα στο, η ρίζα αυτή είναι μοναδική. Θέμα 6 Έστω η συνεχής συνάρτηση : R Α. Αν Im(z ) R να βρείτε τα όρια: ) z συν lim Re(z ) Β. Αν z,, τότε: α. Να λύσετε την εξίσωση: () R και οι μιγαδικοί z i (), R. και ) lim( z ) Lents

22 β. Να βρείτε την όταν Im(z ) Α. Im(z ) R () για κάθε R ) z συν () συν συν lim lim lim Re(z ) συν lim lim lim( ) ) lim ( z ) lim ( () ) lim ( ) Β. Αν z,, τότε: α. () z β.,, z ( ) () () ( ) () Θέμα 7 Έστω η συνεχής συνάρτηση : R Α. Να δείξετε ότι: () R. Β. Αν () α. Να βρείτε τον τύπο της. β. Να βρείτε το όριο: Α. Έστω ότι υπάρχει Άρα () R για την οποία ισχύει () () για κάθε R. lim ()ημ. R ώστε: για κάθε R. Β. Είναι (). Για κάθε R ισχύει: ( ) ( ), άτοπο. () () () (). ( ισχύει: Im(z ) () ) Έστω () () lim () lim (), άτοπο. Άρα () και () (), R Lents

23 β. lim () lim ( ) lim ( )( ) ( ) ( )( ) lim lim lim ( ) Επομένως lim ()ημ lim ( )ημ. Θέμα 8 Έστω η συνεχής συνάρτηση : R R για την οποία ισχύει () ()ημ συν, για κάθε R και (). α. Να δείξετε ότι η συνάρτηση g() () ημ, R διατηρεί σταθερό πρόσημο. β. Να δείξετε ότι () ημ. γ. Να βρείτε τα όρια: ) ) () lim lim () α. Για κάθε R ισχύει: () ημ g() g(). () ()ημ συν ( () ημ) Αλλά η συνάρτηση g() () ημ είναι συνεχής ως άθροισμα συνεχών συναρτήσεων και δεν μηδενίζεται, κατά συνέπεια διατηρεί σταθερό πρόσημο. Επί πλέον g() () ημ. Επομένως g() R. β. Από το ερώτημα α. ισχύει: () ημ () ημ () ημ. γ. ) Είναι () ημ ημ lim lim lim lim ημ ημ lim lim lim lim ) lim () lim ( ημ) Lents 3

24 Θέμα 9 Δίνεται η συνάρτηση: () συν. Α. Να δείξετε ότι η είναι γνησίως αύξουσα στο π Δ, Β. Να βρείτε το (Δ) και να δείξετε ότι η εξίσωση συν έχει μοναδική ρίζα στο διάστημα π,. Γ. Να βρείτε τα όρια: ) () 3 lim και ) lim (). Α. Η συνάρτηση () συν ( ) ( συν) είναι γνησίως αύξουσα στο π Δ, ως άθροισμα αυξουσών συναρτήσεων (βλέπε Θέμα ο Α). Β. Η συνάρτηση () συν είναι συνεχής στο Δ ως άθροισμα συνεχών συναρτήσεων, επομένως το σύνολο τιμών της είναι: π π 8 (Δ) (), ( ), 4. π π 8 8 π Εξάλλου () ( ), πληρούνται δηλαδή οι προϋποθέσεις του 4 4 π θεωρήματος Bolzano, συνεπώς υπάρχει ένα τουλάχιστον,, τέτοιο ώστε ( ) και επειδή η είναι γνησίως αύξουσα στο Δ, η ρίζα αυτή είναι μοναδική. Γ. Να βρείτε τα όρια: ) () 3 lim και ) lim (). Θέμα 3 Α. Να δείξετε ότι:, ημ. Β. Δίνεται η συνεχής συνάρτηση :, R για την οποία ισχύει:, () ημ( ) α. Να λύσετε την εξίσωση: (). στο,. β. Να δείξετε ότι η διατηρεί σταθερό πρόσημο στο, Lents 4

25 γ. Αν () ημ να βρείτε τον τύπο της. Α., () Εξάλλου ημ( ) ημ,. () ημ( ) Β. Δίνεται η συνεχής συνάρτηση :, R για την οποία ισχύει:, () ημ( ) α. Για κάθε, : ισχύει Επομένως με, έχουμε:. () ημ( ) () ημ( ). β. Επειδή οι αριθμοί, είναι διαδοχικές ρίζες της, αυτό σημαίνει ότι αυτή διατηρεί σταθερό πρόσημο στο,. γ. Το μηδέν ανήκει στο πεδίο ορισμού,,, της, με () ημ και επειδή η διατηρεί σταθερό πρόσημο στο, έπεται ότι: () () ημ( ),. Επομένως Θέμα 3 ημ λ, Έστω η συνάρτηση () με λ. π α. Να βρείτε την. β. Να βρείτε το όριο: lim (). 3 γ. Να δείξετε ότι η είναι συνεχής. δ. Να δείξετε ότι υπάρχει ένα τουλάχιστον σημείο, π π τέτοιο ώστε ( ). α. Για κάθε Για κάθε 3 ημ συν λ 3 ημ συν λ είναι: 3 lim ημ λ είναι : Lents 5

26 Αλλά Επομένως β. Είναι : ημ λ ημ λ λ κρ. παρεμ lim ημ λ λ 3 ημ συν λ, αν λ, αν ημu λ u u u 3 lim () lim ημ λ lim ( ) u γ. H είναι συνεχής σε κάθε σημείο ( είναι αποτέλεσμα πράξεων μεταξύ συνεχών συναρτήσεων). Απομένει η εξέταση της συνέχειας στο σημείο. Ισχύει: ημ ημ Επομένως κρ. παρεμ lim ημ και συν συν κρ. παρεμ limσυν lim () lim3 ημ συν λ λ λ () Η λοιπόν είναι συνεχής. δ. Η ορίζεται και είναι συνεχής στο 3 Επί πλέον ( ) ημπ συνπ λ λ π π π π Οπότε, π π. 3 και ( ) ημ( π) συν( π) λ λ π π π π π π π π π ( ) ( ) λ λ λ που ισχύει, γιατί Για την ισχύουν οι προϋποθέσεις του θεωρ. Bolzano στο διάστημα. λ π π λ, π π συνέπεια υπάρχει ένα τουλάχιστον σημείο, π π τέτοιο ώστε ( ). Θέμα 3. και κατά Έστω η συνάρτηση () ( ρ )( ρ )...( ρ 7 ), η συνάρτηση g()... ρ ρ ρ 7 και το σύνολο A ρ, ρ,...,ρ. 7 Lents 6

27 Να δείξετε ότι R A ισχύουν: α. g () β. () g() () γ. () () () α. Είναι: g ()... ( ρ ) ( ρ ) ( ρ ) 7 R A. β. () ( ρ )...( ρ 7 ) ( ρ ) ( ρ 3)...( ρ 7)... ( ρ )( ρ )...( ρ 6 ) Επομένως: γ. ()... g() () ρ ρ ρ 7 R A. () () () () () () () () g() g (), R A () () () Αλλά g () () () () Θέμα 33 () () () R A Έστω C ο γεωμετρικός τόπος των εικόνων του μιγαδικού z για τον οποίο ισχύει: z 5i 6 z 5i α. Να βρείτε την εξίσωση του C. β. Να βρείτε τον τύπο της για την οποία ισχύει C C. γ. Να βρείτε την εξίσωση της εφαπτομένης της C που διέρχεται από το B,. δ. Έστω ένα κινητό Μ κινείται στην C. Καθώς το Μ περνάει από το σημείο Α, που η εφαπτομένη σ αυτό διέρχεται από το B,, η τετμημένη του ελαττώνεται με ρυθμό cm/sec. Να βρείτε το ρυθμό μεταβολής της τεταγμένης του, την στιγμή που περνάει από το Α. α. z 5i 6 z 5i y 5 6 y 5 y y 5 36 y y 5 y y 5 y 36 y y 5 5y 9 3 y y 5 Lents 7

28 Για 9 y Η ανωτέρω γράφεται: 5 5y 9y 8 9 9y 9y 5 y 66y 9 44 (Ό κάτω κλάδος της υπερβολής με εστίες Ε(, 5), Ε(, -5) 9 6 α=4, β=3, γ=5 y y 3 3 β. y 6 6, R γ. Η εξίσωση της εφαπτομένης της C σε σημείο. Εξάλλου 6 και y 3 4 A, αυτής είναι: Επομένως η εξίσωση της εφαπτομένης στο 3 3 y Το σημείο B, δεν ανήκει στη οι συντεταγμένες του την επαληθεύουν, Άρα A, γράφεται: C, διέρχεται όμως η όμως η εφαπτομένη, κατά συνέπεια Οπότε , 6 εφαπτομένης γράφεται: y y και η εξίσωση της 7 δ. Έστω (t) και y(t) οι συντεταγμένες του Μ. Τότε: 3 t 7yt 3 () Παραγωγίζοντας τα μέλη της έχουμε : Έστω και 3 t 7y t. () t η χρονική στιγμή που το Μ διέρχεται από το Α, τότε t 6, t m / sec. Για t t 7 3 t 7y t y t 6 m / sec. 7 η () γράφεται: 3 y t 7 4 Lents 8

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι αν () 0 στο, ) και ()

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και Ασκήσεις στη συνέχεια συναρτήσεων Άσκηση η Να βρεθούν τα ολικά ακρότατα των συναρτήσεων ) x, 0, ) x x a x x x, x x x x Άσκηση η Αν : a, συνεχής στο, τέτοια ώστε x x και x x Να αποδείξετε ότι η συνάρτηση

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια: Παπαδόπουλος Παναγιώτης 1 Θεωρούμε τις συναρτήσεις f, g με f() = 3e + 10 + 1 και g() = 015 + 015 196 α) Να προσδιορίσετε το είδος μονοτονίας των f, g β) Να βρείτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0 03 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 5 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. ΘΕΩΡΙΑ ΣΕΛ. 7 ΒΙΒΛΙΟ ΜΠΑΡΛΑ. Α. ΘΕΩΡΙΑ ΣΕΛ. 66 ΒΙΒΛΙΟ ΜΠΑΡΛΑ. Α3. α Σ, β Λ, γ Λ, δ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Έστω (z) = z iz, z. α) Να λύσετε την εξίσωση : (z) = i. β) Αν (z) = να βρείτε το z. γ) Αν z = να δείξετε ότι ο γεωμετρικός τόπος των εικόνων του w=(z) είναι κύκλος

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο. ΙΟΥΝΙΟΥ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία -απόδειξη θεωρήματος στη σελίδα 6 (μόνο το iii) στο σχολικό βιβλίο.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΗ 1η Να βρείτε το πεδίο ορισμού των συναρτήσεων: 5 α) f β) f 1 1 9 γ) f δ) f log 1 4 ημ ημ συν ε) f α) Για να ορίζεται η f() πρέπει και αρκεί + (1) Έχουμε: (1).(

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 4 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 4 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής zi,

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι 2.7) 03/01/2014. Θέμα A. Θέμα Β

Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι 2.7) 03/01/2014. Θέμα A. Θέμα Β Απαντήσεις Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Όριο Συνέχεια Συνάρτησης Διαφορικός Λογισμός (μέχρι.7 0/01/014 Θέμα A Α 1. Σχολικό βιβλίο σελίδα 5. Α. Σχολικό βιβλίο σελίδα 191. Α. Σχολικό βιβλίο σελίδα

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014 aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ Α Α. Σελ 5 Α. Σελ 73 Α3. Σελ 5 Α4. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β B. Θέτω z yi στην εξίσωση και έχουμε: z z z i 4 i yi yi yi i 4 i y i 4 i y i 4 i y 4 i Συνεπώς πρέπει να

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0 ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΔΙΑΔΙΚΤΥΑΚΟ

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση 1. Να δείξετε ότι η εξίσωση 7 3 + + + 3= (1) έχει ακριβώς μία πραγματική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Νίκος Ζανταρίδης (Φροντιστήριο Πυραμίδα) ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ένα γενικό θέμα Ανάλυσης Χρήσιμες Προτάσεις Ασκήσεις για λύση Μικρό βοήθημα για τον υποψήφιο μαθητή της Γ Λυκείου λίγο πριν τις εξετάσεις Απρίλιος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x ΕΞΕΤΑΣΕΩΝ 05 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα. Αν η F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν Α ΘΕΩΡΙΑ Εστω μια συνάρτηση και ένα σημείο του πεδίου ορισμού της Θα λέμε ότι η είναι συνεχής στο όταν Για παράδειγμα η συνάρτηση είναι συνεχής στο αφού Σύμφωνα με τον παραπάνω ορισμό μια συνάρτηση δεν

Διαβάστε περισσότερα

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) =

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) = ΣΥΝΑΡΤΗΣΕΙΣ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ Α ΠΕΔΙΟ ΟΡΙΣΜΟΥ Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) () = 4 6 6 ii) () = iii) () = log ( ) iv) () = log ( log4(- )) v) vii) () 5 4 viii) () 5 log

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο,

με f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο, Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 3 ωρών στις Συναρτήσεις και τα Όρια 9-5 Θέμα Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016 Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Συναρτήσεις Έστω συνάρτηση γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Να δείξετε ότι (), για κάθε R ( ) +, για κάθε R Έστω συνάρτηση µε πεδίο ορισµού και σύνολο τιµών το R και τέτοια ώστε ( ) ( ) e +,

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 9η Κατηγορία: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Για να βρούμε τη μονοτονία μιας συνάρτησης ακολουθούμε την εξής διαδικασία: Θεωρούμε, Δ, όπου Δ διάστημα του πεδίου ορισμού

Διαβάστε περισσότερα

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρείτε τα πεδία ορισµού των συναρτήσεων µε τύπο: i) ii) iii) iv) v) 2. Δίνεται η συνάρτηση µε:. Να βρείτε µια περίοδο της. 3. Δίνεται η συνάρτηση µε:. Να αποδείξετε

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή

Διαβάστε περισσότερα

x + lim = 1, να βρείτε τον γεωμετρικό τόπο των εικόνων του μιγαδικού z. R R με την ιδιότητα ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ

x + lim = 1, να βρείτε τον γεωμετρικό τόπο των εικόνων του μιγαδικού z. R R με την ιδιότητα ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Α ΕΚΔΟΣΗ:7/0/0 ΜΙΑ ΣΥΛΛΟΓΗ 30 ΑΣΚΗΣΕΩΝ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΑΣΚΗΣΗ 4 (από Περικλή Παντούλα) α. Αν η είναι συνεχής στο [0,] να δείξετε ότι υπάρχει

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΜΑΘΗΜΑ 5. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση - Αντίστροφη συνάρτηση Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση :Α R λέγεται συνάρτηση, όταν για οποιαδήποτε, Α µε ισχύει

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 6//26 ΕΩΣ 3//26 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Κυριακή 3 Οκτωβρίου 26 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α v v Α. Έστω το πολυώνυμο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

Μαθηματικά κατεύθυνσης Γ Λυκείου Επαναληπτικές ασκήσεις

Μαθηματικά κατεύθυνσης Γ Λυκείου Επαναληπτικές ασκήσεις Μαθηματικά κατεύθυνσης Γ Λυκείου + Επαναληπτικές ασκήσεις ς Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς Βαγγέλης Ραμαντάνης Ευάγγελος Τόλης wwwaskisopolisgr η έκδοση Μάρτιος 6 wwwaskisopolisgr Παράγωγοι Εκφωνήσεις

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Απαντήσεις Θεμάτων Θεμα Α Α1. Θεωρία σχολικού βιβλίου σελ. 334-335

Διαβάστε περισσότερα

και γνησίως αύξουσα στο 0,

και γνησίως αύξουσα στο 0, ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ 6 (i) A. Σχολικό βιβλίο σελ 141 Α. Σχολικό βιβλίο σελ 46-47 Α4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β Β1. Ισχύει D f επειδή 1 1 1 Για κάθε η f είναι παραγωγίσιμη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

f(x) x 3x 2, όπου R, y 2x 2

f(x) x 3x 2, όπου R, y 2x 2 Δίνεται η συνάρτηση με τύπο,. Μαθηματικά κατεύθυνσης f(), όπου R, α) Να αποδειχθεί ότι η f παρουσιάζει ένα τοπικό μέγιστο, ένα τοπικό ελάχιστο και ένα σημείο καμπής. β) Να αποδειχθεί ότι η εξίσωση f()

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt ΑΣΚΗΣΗ Δίνεται η συνάρτηση f με τύπο: f (x)= ημ x, x (0,π). α) Να μελετήσετε την f ως προς τη μονοτονία και τα κοίλα. β) Να βρείτε της ασύμπτωτες της γραφικής παράστασης της f. γ) Να βρείτε το σύνολο τιμών

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15

τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15 ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΡΙΑ ΚΑΙ ΣΤΗ ΣΥΝΕΧΕΙΑ ΘΕΜΑ o Α Να αποδείξετε ότι, αν μία συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β] και f(α)f(β), τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον

Διαβάστε περισσότερα

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2 ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο.3 Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Συνάρτηση Όταν

Διαβάστε περισσότερα

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.8 Ασκήσεις σχολικού βιβλίου σελίδας 77 79 A Οµάδας 1.i) Να βρείτε τα διαστήµατα στα οποία η συνάρτηση () 5 5 4 + είναι κυρτή ή κοίλη και να προσδιορίσετε (αν υπάρχουν) τα σηµεία καµπής της γραφικής της

Διαβάστε περισσότερα

Γ. Να δοθεί ο ορισμός του μέτρου ενός μιγαδικού αριθμού z x yi. Δ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,γράφοντας στο γραπτό σας

Γ. Να δοθεί ο ορισμός του μέτρου ενός μιγαδικού αριθμού z x yi. Δ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,γράφοντας στο γραπτό σας ΤΡΙΩΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΔΕΚΕΜΒΡΙΟΥ 01-ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Α. Έστω μία συνάρτηση f, η οποία είναι ορισμένη

Διαβάστε περισσότερα

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Τύποι - Βασικές έννοιες Όρια - Συνέχεια 37. ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Με τη βοήθεια του παρακάτω θεωρήματος διευκολύνεται ο υπολογισμός ορίων (άλγεβρα ορίων): Αν τα όρια lim f () και lim g()

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε ΕΠΑΝΑΛΗΠΤΙΚΑ ΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ Δίνεται η συνεχής συνάρτηση f : IR IR τέτοια ώστε f ( ) 1 για κάθε IR (1) και η γραφική της παράσταση διέρχεται από το σημείο i Να βρείτε τα κ και λ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β)

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β) Μαθηματικά Κατεύθυνσης Γ Λυκείου κ Θέµα 1 ο Α. Έστω η συνάρτηση ορισµένη και συνεχής στο διάστηµα [ α,β ] µε ( α) ( β). Να δειχτεί ότι για κάθε αριθµό η µεταξύ των ( α ) και ( β ) υπάρχει ένας τουάχιστον

Διαβάστε περισσότερα

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων 9 Θεολόγης Καρκαλέτσης Μαθηματικός teomail@schgr Πρόλογος Στο βιβλίο αυτό περιέχονται όλα τα

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να μπορεί να βρίσκει απο τη γραφική παράσταση μιας συνάρτησης το πεδίο ορισμού της το σύνολο τιμών της την τιμή της σε ένα σημείο..

Διαβάστε περισσότερα

( ) t, για κάθε x R. f t. xxκαι ' τις ευθείες x = 2 ΜΙΑ ΣΥΛΛΟΓΗ 60 ΑΣΚΗΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

( ) t, για κάθε x R. f t. xxκαι ' τις ευθείες x = 2 ΜΙΑ ΣΥΛΛΟΓΗ 60 ΑΣΚΗΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΑ ΣΥΛΛΟΓΗ 6 ΑΣΚΗΣΕΩΝ ΣΕ ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ Α ΕΚΔΟΣΗ:// ΑΣΚΗΣΗ (από Περικλή Παντούλα) Έστω η συνεχής συνάρτηση :, με ( ) α. Να δείξετε ότι ( )

Διαβάστε περισσότερα

( ) x( x ) ( ) 1.Δίνεται η συνάρτηση Να αποδείξετε ότι ΛΥΣΗ. Είναι f x ( x ) οπότε. 2. Δίνεται η συνάρτηση f(x)=

( ) x( x ) ( ) 1.Δίνεται η συνάρτηση Να αποδείξετε ότι ΛΥΣΗ. Είναι f x ( x ) οπότε. 2. Δίνεται η συνάρτηση f(x)= .Δίνεται η συνάρτηση Να αποδείξετε ότι Είναι ( ) () + 9 () + 9 + () ( ) + 9 + 9 + 9 () + 9 + () + 9 + + 9 ( )... οπότε. Δίνεται η συνάρτηση () + Να βρείτε την παράγωγο της συνάρτησης g( ) ( ηµ ) ( ) (

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελίδα 6 (i) Α. Σχολικό βιβλίο σελίδα 141 Α3. Σχολικό βιβλίο σελίδα 46-47 Α4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β Β1. To πεδίο ορισμού της f είναι

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΑΠΑΝΣΗΕΙ ΜΑΘΗΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΗ ΣΕΑΡΣΗ 18 ΜΑΪΟΤ 2016

ΑΠΑΝΣΗΕΙ ΜΑΘΗΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΗ ΣΕΑΡΣΗ 18 ΜΑΪΟΤ 2016 ΑΠΑΝΣΗΕΙ ΜΑΘΗΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΗ ΣΕΑΡΣΗ 8 ΜΑΪΟΤ 6 ΘΕΜΑ Α A. Eπειδή () για κάθε ( α, ) και η είναι συνεχής στο, η είναι γνησίως αύξουσα στο α, ]. Έτσι έχουμε ( ) ( ), για κάθε α, ]. () ( Επειδή ( ) για κάθε

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Σημαντικές παρατηρήσεις

Σημαντικές παρατηρήσεις ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Διαφορικός Λογισμός Σημαντικές παρατηρήσεις Φυλλάδιο Φυλλάδι555 5 ο ο Η έννοια της παραγώγου Να υπάρχει διάστημα της μορφής ή ή α,,β

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα