ΙΑΓΩΝΙΣΜΑ 3. 2 ο Θέµα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΙΑΓΩΝΙΣΜΑ 3. 2 ο Θέµα"

Transcript

1 1 ΙΩΝΙΣΜ ΘΕΩΡΙ 1 ο Θέµα. Τι ονοµάζουµε τετραγωνική ρίζα ενός θετικού αριθµού και πως την συµβολίζουµε ; Να συµπληρώσετε τις παρακάτω προτάσεις i) ν α 0 τότε ( α ) =. ii) ια οποιονδήποτε αριθµό α ισχύει iii) ν iν) ν α = α τότε ο α είναι. α = α = α τότε ο α είναι ν) ν x, α µη αρνητικοί και α = x τότε ισχύει.. νi) ν x > 0 και 5 = x τότε ισχύει x =... νii) ν α, β µη αρνητικοί τότε ισχύει νiii) ν α 0 και β > 0 τότε α β =.. α β =... Σε κάθε παράσταση της στήλης να αντιστοιχίσετε το ισοδύναµό της από τη στήλη Στήλη Στήλη α εν ορίζεται β γ , δ ε. ( στ ζ. 0, ,0 η θ ο Θέµα. Να συµπληρώσετε τα κενά ύο τρίγωνα είναι ίσα όταν δυο.. του ενός και η..από αυτές γωνία είναι. ύο τρίγωνα είναι ίσα όταν µία. του ενός και οι...σε αυτή γωνίες είναι. γ) ύο τρίγωνα είναι ίσα όταν οι.του ενός είναι.µία προς µία µε τις.. δ) ύο ορθογώνια τρίγωνα είναι ίσα όταν δύο...είναι ίσες.. ε) ύο ορθογώνια τρίγωνα είναι ίσα όταν έχουν µία...ίση και µία...

2 γωνία ίση. Στο διπλανό σχήµα τα τρίγωνα και ΚΛΜ είναι ίσα και ισχύει = ΜΚ και = Μ. Να γράψετε τις ισότητες των υπολοίπων κυρίων στοιχείων των τριγώνων. ια δύο τρίγωνα και ΕΖ ισχύουν i) = Ε, = Ζ, = ΕΖ ii) =, = ɵ Ε, ɵ = Ζ iii) = Ε, = ɵ Ε, = iν) = Ε, = ΕΖ, = ɵ Ε ν) = Ε, = ΕΖ, = ɵ Ε Να εξετάσετε σε ποιες από τις παραπάνω περιπτώσεις τα τρίγωνα είναι ίσα και σε ποιες ενδεχοµένως να µην είναι ίσα Μ Λ Κ ΣΚΗΣΕΙΣ 1 η Άσκηση Έστω γωνία ω µε 0 ω 180 ο και συνω = Να καθορίσετε το είδος της γωνίας ω Να βρεθούν το ηµω και η εφω γ) Να βρεθεί το µέτρο της γωνίας ω η Άσκηση Έστω το διπλανό τρίγωνο και η διχοτόµος του. Στην παίρνουµε σηµεία Ε και Ζ έτσι ώστε Ε = και Ζ =. 1 Ε είξτε ότι ɵ Ε = Ζ Το Ζ ισαπέχει από τις και η Άσκηση Να κάνετε γινόµενο παραγόντων τις παραστάσεις x + 6x, x 4x + 4, x 8, x 8 x + 6x Να βρείτε για ποιες τιµές του x ορίζονται τα κλάσµατα = x 8 x 8 και = 4(x 4x+ γ) Να λύσετε την εξίσωση = Ζ

3 (ΠΝΤΗΣΕΙΣ ΛΥΣΕΙΣ) 1 ο Θέµα (απάντηση). Ονοµάζουµε τετραγωνική ρίζα ενός θετικού αριθµού x έναν άλλο θετικό αριθµό που αν υψωθεί στο τετράγωνο µας δίνει τον x. Την τετραγωνική ρίζα του x την συµβολίζουµε µε x. i) ν α 0 τότε ( = α ii) ια οποιονδήποτε αριθµό α ισχύει iii) ν α = α α = α τότε ο α είναι θετικός ή µηδέν iν) ν α = α τότε ο α είναι αρνητικός ή µηδέν ν) ν x, α µη αρνητικοί και α = x τότε ισχύει α = x νi) ν x > 0 και 5 = x τότε ισχύει x = 5 νii) ν α, β µη αρνητικοί τότε ισχύει α β = α νiii) ν α 0 και β > 0 τότε β = α β. α, β 1, γ 4, δ, ε, στ 1, ζ, η 6, θ 8 α β ο Θέµα (απάντηση). ύο τρίγωνα είναι ίσα όταν δυο πλευρές του ενός και η περιεχόµενη από αυτές γωνία είναι ίσες µε δύο πλευρές του άλλου και την περιεχόµενη από αυτές γωνία ύο τρίγωνα είναι ίσα όταν µία πλευρά του ενός και οι προσκείµενες σε αυτή γωνίες είναι ίσες µε µία πλευρά του άλλου και τις προσκείµενες σε αυτή γωνίες γ) ύο τρίγωνα είναι ίσα όταν οι πλευρές του ενός είναι ίσες µία προς µία µε τις πλευρές του άλλου τριγώνου δ) ύο ορθογώνια τρίγωνα είναι ίσα όταν δύο πλευρές του ενός είναι ίσες µε δύο αντίστοιχες πλευρές του άλλου ε) ύο ορθογώνια τρίγωνα είναι ίσα όταν έχουν µία αντίστοιχη πλευρά ίση και µία αντίστοιχη γωνία ίση. Λαµβάνοντας υπόψη ότι σε ίσα τρίγωνα απέναντι από ίσες πλευρές βρίσκονται ίσες γωνίες και απέναντι από ίσες γωνίες βρίσκονται ίσες πλευρές έχουµε = Κ, = ΛΚ, = ΜΛ, Λ = ɵ Μ Λ Κ

4 4. Με βάση τη θεωρία έχουµε ότι i) Τα τρίγωνα είναι ίσα (Π-Π-Π) ii) εν ξέρουµε ισότητα πλευράς οπότε µπορεί να είναι ίσα µπορεί και όχι iii) Τα τρίγωνα είναι ίσα ( -Π-) iν) εν ξέρουµε ν) εν ξέρουµε 1 η Άσκηση (προτεινόµενη λύση) Επειδή συνω < 0, η ω είναι αµβλεία ηµ ω + συν ω = 1 άρα ηµ ω + ηµ ω + 4 = 1 = 1 ηµ ω = 1 4 = Τότε εφω = ηµω συνω = γ) ηµω = ± 1 και επειδή 0 ω 180ο, είναι ηµω = 1 = 1 = ηµω = 1 άρα ηµω = ηµ0ο οπότε ω = 0 ο ή ω = 150 ο και επειδή ω αµβλεία, είναι ω = 150 ο η Άσκηση (προτεινόµενη λύση) Τα τρίγωνα Ζ και Ε έχουν 1 Ε =, Ζ = και 1 = Άρα τα τρίγωνα είναι ίσα. Εποµένως ɵ Ε = Ζ ως αντίστοιχες γωνίες Επειδή το Ζ είναι σηµείο της διχοτόµου της γωνίας, αυτό ισαπέχει από τις πλευρές και της γωνίας. Ε Ζ η Άσκηση (προτεινόµενη λύση) x + 6x = x(x + ), x 8 = ( x = (x )(x + ) x 4x + 4 = (x ), x 8 = x = (x )(x + x +

5 5 To A ορίζεται όταν x 8 0 άρα (x )(x + ) 0 x και x Το ορίζεται όταν x 4x άρα (x ) 0 x γ) Με τους περιορισµούς x και x η εξίσωση διαδοχικά γίνεται x + 6x x 8 x(x + ) (x )(x + x+ = άρα = x 8 4(x 4x+ (x )(x+ ) 4(x ) x = (x ) (x + x+ 4(x ) x (x + x+ 4(x ) = 4(x ) (x ) 4(x ) 6x = x + x + 4 x 4x + 4 = 0 (x ) = 0 x = πορρίπτεται λόγω των περιορισµών εποµένως η εξίσωση είναι αδύνατη

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε

Διαβάστε περισσότερα

1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A

1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A 1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ 1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 η ΕΚΑ Α ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α. Πότε δύο γωνίες λέγονται εφεξής; Ποιο σχήµα ονοµάζουµε κύκλο µε κέντρο Ο και ακτίνα ρ ; Στον παρακάτω πίνακα να αντιστοιχίσετε κάθε αριθµό της πρώτης στήλης µε ένα γράµµα της

Διαβάστε περισσότερα

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά ΜΕΡΟΣ. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ 61 Ορισμοί. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ Ημίτονο γωνίας Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά μιας οξείας γωνίας ω ενός ορθογωνίου

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί;

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 5. 5.2 σκήσεις σχολικού βιβλίου σελίδας 99 00 ρωτήσεις ατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 3 Π 5 4 Π 2 5 5 Ο 3 4 Ο 4 Π 3 Ν 3 3 Μ 3,5 3,5 Λ Ρ φ Π 4 φ ω

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης 0. 0.3 σκήσεις σχολικού βιβλίου σελίδας 7 8 Ερωτήσεις κατανόησης. Να γράψετε τους τύπους υπολογισµού του εµβαδού Τετραγώνου Ορθογωνίου i Παραλληλογράµµου iν) Τριγώνου ν) Τραπεζίου πάντηση Ε = α Ε = α β

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης

3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης .5.6 σκήσεις σχολικού βιβλίου σελίδας 48 ρωτήσεις κατανόησης. Έστω ευθεία ε και σηµείο εκτός αυτής. ν ε και ε (, σηµεία της ε) τότε i) Σ Λ ii) Σ Λ iii) = Σ Λ ιτιολογήστε την απάντηση σας i) ιότι από ένα

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

1 η εκάδα θεµάτων επανάληψης

1 η εκάδα θεµάτων επανάληψης η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 4 η ΕΚ 1. ίνονται οι παραστάσεις = 5 2 4 2 + και Β = 4 (2 5) + 24: Να υπολογιστούν οι τιµές των και Β Να αναλυθούν οι αριθµοί και Β σε γινόµενα πρώτων παραγόντων γ) Να απλοποιηθεί το

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ

Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 5 η ΕΚ 1. Οι πλευρές ενός τριγώνου σε cm είναι = 3x 3, = 3x + 1 και = x και η περίµετρος Π του τριγώνου είναι Π = 8cm. Να βρείτε τα µήκη των πλευρών του τριγώνου. Να δείξτε ότι το τρίγωνο

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β 1 11.6 11.8 σκήσεις σχολικού βιβλίου σελίδας 50 51 Ερωτήσεις Κατανόησης 1. ντιστοιχίστε κάθε µέγεθος της στήλης µε την τιµή του στην στήλη Στήλη Στήλη Εµβαδόν κυκλικού δίσκου ακτίνας Εµβαδόν κυκλικού τοµέα

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.

Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος. ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III

Διαβάστε περισσότερα

3.3 ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΟΡΘΟΓΩΝΙΟ

3.3 ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΟΡΘΟΓΩΝΙΟ 1 3 ΠΛΛΗΛΟΜΜΟ ΟΘΟΩΝΙΟ ΤΤΩΝΟ ΟΜΟΣ ΤΠΙΟ ΙΣΟΣΛΣ ΤΠΙΟ ΘΩΙ Παραλληλόγραµµο Λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές παράλληλες. ( // και // ) άσεις και ύψη στο παραλληλόγραµµο άθε πλευρά του µπορεί

Διαβάστε περισσότερα

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών

Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών 0. 0.5 Άλλοι τύποι γι το εµβδόν τριγώνου κι λόγος εµβδών ΘΕΩΡΙ. Ε= τ( τ )( τ β)( τ γ ) Ε = τ ρ Ε = β γ R Ε = β γ ηµ = γ ηµ = β ηµ ηµ = β ηµ = γ ηµ = R. ν δύο τρίγων έχουν ίσες βάσεις, τότε ο λόγος των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος, . ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ 1.1 ΤΡΙΓΩΝΜΕΤΡΙΚΙ ΑΡΙΘΜΙ ΓΩΝΙΑΣ ΘΕΩΡΙΑ 1. Για γωνία ω µε ο < ω < 9 ο ηµω = γ α = απέ ναντι κάθετη υποτείνουσα Β συνω = β α = προσκείµενη κάθετη υποτείνουσα εφω = γ β = απέ ναντι κάθετη προσκείµενη κάθετη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».

Διαβάστε περισσότερα

5 η εκάδα θεµάτων επανάληψης

5 η εκάδα θεµάτων επανάληψης 5 η εκάδα θεµάτων επανάληψης 4. ίνεται παραλληλόγραµµο και έστω, Μ τα µέσα των και αντίστοιχα Οι προεκτάσεις των τµηµάτων Μ και τέµνονται στο Ζ. Να αποδείξετε ότι Τα τρίγωνα Μ και ΜΖ είναι ίσα i Το τετράπλευρο

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ Θέμα 1 ο α ) Ποια παράσταση καλείται μονώνυμο; Δώστε παράδειγμα. β ) Πότε δυο μονώνυμα είναι όμοια ; Δώστε παράδειγμα όμοιων μονωνύμων. γ ) Για ποιες τιμές των μεταβλητών

Διαβάστε περισσότερα

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 05/01/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 05/01/10 ΥΕΙ ΙΑΩΝΙΜΑ ΕΩΜΕΤΡΙΑ Α ΥΚΕΙΟΥ 05/0/0 ΘΕΜΑ ο Α. Να αποδειχτεί ότι σε κάθε παραλληλόγραµµο οι απέναντι πλευρές είναι ίσες. Θεωρία σελίδα 97 B. Να χαρακτηρίσετε µε την ένδειξη σωστό () ή λάθος () καθεµιά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Απέναντι πλευρές παράλληλες

Απέναντι πλευρές παράλληλες 5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας

Διαβάστε περισσότερα

5.1 ΣΥΝΟΛΑ. 2. Παράσταση συνόλου. 3. Εποπτική παράσταση συνόλου : Γίνεται µε το διάγραµµα Venn, δηλαδή µε

5.1 ΣΥΝΟΛΑ. 2. Παράσταση συνόλου. 3. Εποπτική παράσταση συνόλου : Γίνεται µε το διάγραµµα Venn, δηλαδή µε 1 5.1 ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο 1 3.3 ΜΗΚΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙ 1. Μήκος κύκλου ακτίνας ρ : Το µήκος L ενός κύκλου δίνεται από τον τύπο L = 2πρ ή L = πδ όπου δ η διάµετρος του κύκλου και π ένας άρρητος αριθµός του οποίου προσέγγιση µε δύο δεκαδικά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΤΑΞΗ Γ 119. Θέμα 1 ο. Θέμα 2 ο. Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΤΑΞΗ Γ 119. Θέμα 1 ο. Θέμα 2 ο. Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η ΥΜΝΑΣΙΟ ΤΑΞΗ ΥΜΝΑΣΙΟ ΤΑΞΗ 119 α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται. Δώστε ένα παράδειγμα μονωνύμου. β. Να αποδείξετε την ταυτότητα: ( ) α + β = α + αβ + β γ. Να

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

2.7 ΑΝΑΛΥΣΗ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ

2.7 ΑΝΑΛΥΣΗ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ ΜΕΡΟΣ Β.7 ΑΝΑ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ 33.7 ΑΝΑ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΥΟ ΚΑΘΕΤΕΣ ΣΥΝΙΣΤΩΣΕΣ Ανάλυση διανύσματος σε δυο κάθετες συνιστώσες y x Α Γ x Δ Β y Όπως φαίνεται στο παραπάνω σχήμα κατασκευάζουμε

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001 Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ 008 65 ΥΜΝΑΣΙΟ 008 66 α. Πότε μια γωνία λέγεται εγγεγραμμένη και πότε επίκεντρη; β. Ποια είναι η σχέση μεταξύ επίκεντρης και εγγεγραμμένης γωνίας, που βαίνουν στο ίδιο τόξο; γ. Πότε δύο τόξα μ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Α ΘΕΩΡΙΑ ΘΕΜΑ 1 Ο : α) Ποια μονώνυμα λέγονται αντίθετα; Γράψτε ένα παράδειγμα δύο αντίθετων μονωνύμων. β) Ποια αλγεβρική

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών Άλγεβρα Α Λυκείου, Κεφάλαιο ο ΘΕΩΡΙΑ-ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΠΟΔΕΙΞΕΙΣ ΠΡΟΤΑΣΕΩΝ-ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΥΠΟΥΡΓΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. Οι Πράξεις και οι Ιδιότητές

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον

Διαβάστε περισσότερα

Β Γενική Τριγωνομετρία

Β Γενική Τριγωνομετρία Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

1.5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ

1.5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ 1 5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ ΘΕΩΡΙ Μονάδα µέτρησης γωνιών : Είναι η 1 µοίρα που γράφεται 1 ο Υποδιαιρέσεις της 1 ο : 1 ο = 60 (πρώτα λεπτά) και 1 = 60 ( δεύτερα λεπτά) 3. Μέτρο γωνίας : Είναι ο αριθµός

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ ΕΩΜΕΤΡΙΑ ΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 ΤΑΞΗ ΦΥΛΛΟ ΕΡΑΣΙΑΣ Κ 1.1 ΕΝΟΤΗΤΑ : Εμβαδόν επίπεδης επιφάνειας Τάξη : υμνασίου. Καθ. Χρήστος Μουρατίδης Όνομα Μαθητή :.. Ημ/νία :. 1. Να βρείτε το εμβαδόν

Διαβάστε περισσότερα

Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.

Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. ΜΕΡΟΣ Α. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 69. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. Για παράδειγμα ο αριθμός που στην προηγούμενη

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α 11. Στο λογαριασµό του ΟΤΕ πληρώνουµε πάγιο τέλος κάθε µήνα 1 και για κάθε µονάδα οµιλίας 0,09. Να βρείτε έναν τύπο που να µας δίνει το ποσό των χρηµάτων y που θα πληρώσουµε

Διαβάστε περισσότερα

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : 2005-2006 ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 1 Ο ΓΥΜΝΑΣΙΟ ΑΡΙΔΑΙΑΣ ΑΡΙΔΑΙΑ : 15 / 6 / 2006 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ (επιλέξτε ένα

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον

Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

1.0 Βασικές Έννοιες στην Τριγωνομετρία

1.0 Βασικές Έννοιες στην Τριγωνομετρία .0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι

Διαβάστε περισσότερα