Σχεδιασµός Φίλτρων µε τηµέθοδο των παραθύρων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σχεδιασµός Φίλτρων µε τηµέθοδο των παραθύρων"

Transcript

1 Σχεδιασµός Φίλτρων µε τηµέθοδο των παραθύρων (ή µέθοδο Μετ/σµού. Fourier) Νοέµβριος 25 ΨΕΣ

2 Βασίζεται στον αντίστροφο µετ/σµό Fourier (IDTFT). ηλ. δίνεται η µορφή της απόκρισης συχνότητας Η(ω) και ζητείται η αντίστοιχη h(n) h( n) = 2π π π H ( e jω ) e jnω dω Νοέµβριος 25 ΨΕΣ 2

3 Συνήθως εφαρµόζεται για απλές µορφές Η(ω) Το βασικό πρόβληµα στη µέθοδοαυτήείναιοαριθµόςαριθµός των συντελεστών h(n) που πρέπει να επιλεγούν. Η µέθοδος αρχίζει µε την υλοποίηση ιδανικής µορφής βαθυπερατού φίλτρου Νοέµβριος 25 ΨΕΣ 3

4 Νοέµβριος 25 ΨΕΣ 4 -π - ω ω π ω Η(ω) Επιθυµητή Η(ω) Εύρεση του h(n) ) ( sin ) sin( ) (. ) ( ) ( ω π ω π ω ω ω ω ω ω ω π ω ω ω π ω π π π n c n n n h jn e d e d e n h jn jn jn = = = = Η =

5 παράδειγµα Θα υπολογισθούν οι συντελεστές h(n) για ιδανικό βαθυπερατό φίλτρο µε συχνότητα αποκοπής ω =π/5 sin( nω) h( n) = nπ ω =π/5 h(n) = sin(n nπ π 5 ) h(n) = [ ].3.2. h(n) 33 συντελεστές n Νοέµβριος 25 ΨΕΣ 5

6 h(n) = sin(n nπ π 5 ) >> n= -2::2, h = sin(n*pi/5)./ (n*pi) h(n)? n Νοέµβριος 25 ΨΕΣ 6

7 Aποκοπή.3 h(n).2. n Γιαναέχεινόηµα το φίλτρο πεπερασµένου µήκους (FIR) πρέπει να κρατήσουµε έναν πεπερασµένο µόνο αριθµό απότους συντελεστές h(n) δηλ. να κάνουµε αποκοπή. Η αποκοπή αυτή αλλοιώνει την αρχική ιδανική βαθυπερατή συνάρτηση της οποίας είναι προσέγγιση. Η προσέγγιση είναι η βέλτιστη µε την έννοια του µέσου τετραγωνικού σφάλµατος ηλ. είναι ελάχιστο το σφάλµα e = Η (ω) Η (ω)dω Νοέµβριος 25 ΨΕΣ 7 2π d a

8 .3 h(n).2. n Ηαποκοπήεκφράζεται καλύτερα µε την έννοια του παραθύρου Είναι πράξη πολλαπλασιασµού της (άπειρης) ακολουθίας h(n) µε ένα ορθογώνιο παράθυρο w(n) πεπερασµένου µήκους Ν. Ηέννοιατουπαραθύρου µας δίνει την δυνατότητα γενίκευσης της αποκοπής µε ταυτόχρονη διαµόρφωση των συντελεστών h(n). Νοέµβριος 25 ΨΕΣ 8

9 α)ιδανική άπειρη κρουστική απόκριση β) ορθογώνιο παράθυρο γ) η πραγµατική απόκριση.3.2. h (n) (α).5.5 H (ω) n w(n) (β).5 xπ ω 5 5 W(ω) h(n) (γ).5 Η(ω) h(n) = h (n) w(n) H(ω) ω)=η (ω) W( W(ω) Νοέµβριος 25 ΨΕΣ 9

10 Αποκλίσεις: εµφάνιση ζώνης µετάβασης και πεπερασµένη τιµή τηςελάχιστης εξασθένισης που είναι ανεξάρτητη του µήκους του παραθύρου (περίπου 2dB) Νοέµβριος 25 ΨΕΣ

11 Βελτίωση: Τριγωνικό παράθυρο w(n)=m+- n -M n M ή πιο απλά: w(n)= [,2,3,4..M,M+,M,.4,3,2, ] παράθυρο Bartlett M + n w(n) = M n 2 (M + ) M παράθυρο Ηanning και Ηamming w(n)=.5+.5 cos{nπ/(m+)} -M n M w(n)= cos{nπ/m} -M n M και Ν=2Μ+ Νοέµβριος 25 ΨΕΣ

12 Triangular Bartlett w(n) w(n) n n w(n) w(n) Hanning n Hamming n Νοέµβριος 25 ΨΕΣ 2

13 W(ω) 5 Απόκριση συχνότητας ---- Hanning ---- Hamming ---- τριγωνικό Νοέµβριος 25 ΨΕΣ 3

14 Μέθοδος των παραθύρων -ΣΧΕ ΙΑΣΜΟΣ Η(ω) σε db R p Η(ω) +δ -δ Ζώνη µετάβασης A s δ 2 ω p ω s ω ω Νοέµβριος 25 ΨΕΣ 4

15 Η διαδικασία σχεδιασµού βασίζεται στον παρακάτω πίνακα Τύπος παραθύρου Εύρος ζώνης µετάβασης ω (rad) Μέγιστη εξασθένηση στη ζώνη αποκοπής σε db Ορθογώνιο.8π/N 2 Bartlett 6.π/N 25 Hanning 6.2π/N 44 Hamming 6.6π/N 53 Blackman π/n 74 Eπιλέγεται το παράθυρο από την επιθυµητή εξασθένηση στηζώνηαποκοπής Bρίσκεται η τάξη Ν του φίλτρου από το εύρος της ζώνης µετάβασης sin(nω) h(n) = Στη συνέχεια βρίσκονται οι συντελεστές nπ & διαµορφώνονται από το παράθυρο (h(n). w(n)) Νοέµβριος 25 ΨΕΣ 5

16 Παράθυρο Kaiser Mε τοπαράθυροkaiser γίνεται ένας "συµβιβασµός" µεταξύ του εύρους και της εξασθένησης Ορισµός: w(n) = I o α I o (α) n M 2 2 n x Io(x) n= 2 n! = + Μ n Μ Η D (ω) +δ -δ δ π -δ ω Πρέπει να υπολογίσουµε την παράµετρο α και το Μ που καθορίζει την τάξη του φίλτρου (Ν=2Μ+) Νοέµβριος 25 ΨΕΣ 6

17 Παράθυρο Kaiser - σχεδιασµός Αρχίζει µε τον υπολογισµό τηςπαραµέτρουαπουείναιη εξασθένηση δ σε db: A =-2 log δ Από την τιµή Α επιλέγεται η παράµετρος α ως εξής: α=.2(α-8.7) εάν Α (Α-2) (Α-2) εάν 2<Α<5 εάν Α 2 Επιλέγεται η τάξητουφίλτρου Ν=2Μ+ : M A εύρος Νοέµβριος 25 ΨΕΣ 7

18 We ve created a Low-pass filter (ideal Pass-Band & modulation with a window); How can we transform it to a Band-pass filter? Νοέµβριος 25 ΨΕΣ 8

19 Ζωνοδιαβατά φίλτρα Μία βαθυπερατή συνάρτηση Η(ω) µετατοπίζεται στο πεδίο των συχνοτήτων κατά ω ο εάν συνελιχθεί µε τηµοναδιαία κρουστική συνάρτηση δ(ω ο ). ω ο ω ο Επειδή η συνέλιξη στο πεδίο των συχνοτήτων αντιστοιχεί σε πολλαπλασιασµό στο πεδίο του χρόνου, µια ζωνοδιαβατή συνάρτηση προκύπτει από τους συντελεστές του βαθυπερατού φίλτρου αν πολλαπλασιαστούν µε cos( nω ο ) Νοέµβριος 25 ΨΕΣ 9

20 Υψιπερατά φίλτρα Υψιπερατά φίλτρα υλοποιούνται όπως τα ζωνοδιαβατά ω ο ω ο αν η µετατόπιση της συχνότητας είναι ω ο =π Νοέµβριος 25 ΨΕΣ 2

21 Σχεδιασµός Υψιπερατού, Ζωνοδιαβατού και Απόρριψης ζώνης (φίλτρων). Με διαµόρφωση Μετά την εύρεση του παραθύρου και αντίστοιχης διαµόρφωσης των συντελεστών h(n) του βαθυπερατού φίλτρου, πολλαπλασιάζουµε τους συντελεστές h(n) µε cos(nω ο ) όπου ω ο αντιστοιχεί στη συνολική µετατόπιση της βαθυπερατής απόκρισης. Με την διαδικασία αυτή υλοποιούµε zωνοδιαβατά και υψιπερατά φίλτρα Νοέµβριος 25 ΨΕΣ 2

22 2. Με συνδυασµό Βαθυπερατών συναρτήσεων. Μία οποιαδήποτε ιδανική συνάρτηση απόκριση συχνότητας µπορεί να υλοποιηθεί σαν άθροισµα βαθυπερατών συναρτήσεων. π.χ. ζωνοδιαβατό h BP =sin(ω 2 n)/(πn)- sin(ω n)/(πn). windowing. ω ω 2 π Νοέµβριος 25 ΨΕΣ 22

23 Νοέµβριος 25 ΨΕΣ 23

24 Παράδειγµα Να σχεδιασθεί FIR βαθυπερατό φίλτρο µε προδιαγραφές: f p =.5kHz, f (ζώνη µετάβασης)=.5khz, A s >5dB Συχνότητα δειγµατοληψίας f s =8kHz Η(ω) σε db R p Η(ω) +δ -δ Ζώνη µετάβασης ω= 2π f/f s A s δ 2 ω p ω s ω >5dB ω c ω p =2π f p /f s Ω= 2π f ω =2π f/f Νοέµβριος 25 ΨΕΣ 24

25 A s >5dB ---. Επιλέγουµε παράθυρο Hamming Τύπος παραθύρου Εύρος ζώνης µετάβασης ω (rad) Μέγιστη εξασθένηση στη ζώνη αποκοπής σε db Ορθογώνιο.8π/N 2 Bartlett 6.π/N 25 Hanning 6.2π/N 44 Hamming 6.6π/N 53 Blackman π/n Για την τάξη Ν του φίλτρου από τις προδιαγραφές για το εύρος και τον πίνακα ισχύει : ω= 2π f/f s = 6.6 π/ν 2π.5/8 = 6.6 π/ν.5/8 = 3.3/Ν - Ν= 3.3/(.5/8) = Νοέµβριος 25 ΨΕΣ 25

26 3. Υπολογίζουµε τους συντελεστές του ιδανικού βαθυπερατού που αντιστοιχούν στη συχνότητα αποκοπής ω c h D (n) = sin(n ω C )/(nπ), n=, ±, ±2, ±3, ±4. Οπότε έχουµε: για n= h D (n)=.4375, n=±.322 n=±2.69 n=± n=± n=± 26 end Η(ω) σε db R p A s Ζώνη µετάβασης ω p ω s ω ω c ω C = 2π f C / f s =2π (f p + f/2)/ f s =.4375π Νοέµβριος 25 ΨΕΣ 26

27 4. Υπολογίζουµε τους συντελεστές του Ηamming παραθύρου w(n) = cos {π n/ 26} -26 n 26 5.Tελικά διαµορφώνουµε τους συντελεστές του ιδανικού βαθυπερατού h A (n) = h D (n).w(n) Oι συντελεστές τελικά είναι : n= h A (n) =.4377 n=±.33 n=±2.6 n=± n=± n=± x π Νοέµβριος 25 ΨΕΣ 27 H(ω) (db) π

28 Παράδειγµα Nα σχεδιασθεί FIR φίλτρο µε τις εξής προδιαγραφές ω p =.2π, R p =.25 db, ω s =.3π, Α s =5dB Η(ω) σε db R p Η(ω) +δ -δ Ζώνη µετάβασης R p Α s + δ = 2log δ δ 2 = 2log + δ 2logδ A s 2 δ 2 ω p ω s ω Νοέµβριος 25 ΨΕΣ 28

29 α. Επιλέγεται παράθυρο Hamming διότι αυτό εξασφαλίζει εξασθένιση 5dB στη ζώνη αποκοπής. β. Η επιλογή αυτή ικανοποιεί και τη συνθήκη κυµάτωσης στη ζώνη διέλευσης που είναι.25 db: R A p s + δ p = 2log δ = 2logδ s p = =.25 δ 5 δ s = p = min( δ, δ ) = δ p s s 2. Γιά την τάξη του φίλτρου από τις προδιαγραφές για το εύρος : Ν= 6.6π/ ω =6.6π/(.3π-.2π)= N=67 ` (Προσθέτουµε + για να έχουµε FIR φίλτρο oυ τύπου) Νοέµβριος 25 ΨΕΣ 29

30 3. Υπολογίζουµε τους συντελεστές του ιδανικού βαθυπερατού που αντιστοιχούν στη συχνότητα αποκοπής ω c h D (n) = sin(n ω C )/(nπ), n=, ±, ±2, ±3, ±4. όπου ω c =.2π +(.3π-.2π)/2=.25π 4. Υπολογίζουµε τους συντελεστές του Ηamming παραθύρου w(n) = cos {π n/ 33} -33 n 33 5.Tελικά διαµορφώνουµε τους συντελεστές του ιδανικού βαθυπερατού h A (n) = h D (n).w(n) Οι 5 πρώτοι (n= έως ±4) συντελεστές είναι οι ακόλουθοι:.252,.2248,.579,.737,. Νοέµβριος 25 ΨΕΣ 3

31 Παράδειγµα Nα σχεδιασθείfir φίλτρο µε παράθυρο Kaiser και τις εξής προδιαγραφές Ζώνη διέλευσης: 5-25 Hz. Ζώνη µετάβασης: 5 Hz Kυµάτωση στη Ζώνη διέλευσης: δ p R p =.db ΕξασθένησηστηΖώνηαποκοπής: δ s A s = 6 db Συχνότητα δειγµατοληψίας ΚΗz Το φίλτρο είναι Ζωνοδιαβατό Σχεδιάζουµε τοαντίστοιχοβαθυπερατόφίλτρο Η(ω) σε db R p Εύρεση των αρχικών συντελεστών h D µε ω c =2π{(25-5)/2+5/2}/=.5 π ΥπολογισµόςτηςτάξεωςΝ=(Α-7.95)/(4.36 f) Το Α υπολογίζεται σε db ως: Α=-2log{min(δ p, δ s )} = 6 f= 5/ N=(6-7.95)/(4.36 x.5)= Η µεταβλητή α=.2(6-8.7)=5.67 Υπολογισµός του παραθύρου w(n)=i o {5.67 [-(n/36) 2 ]}/I o (5.67) h A =h D (n).w(n) -36 n 36 και το ιαµόρφωση του βαθυπερατού για µετατροπή στο ζητούµενο Ζωνοδιαβατό: h(n)= h A cos(n.2π.2/) -36 n 36 Νοέµβριος 25 ΨΕΣ 3 A s.5..5 ω s ω p ω p2 ω s2 ω h(n) για το βαθυπερατό h(n) για το Zωνοδιαβατό

32 Απόκριση συχνότητας του ζωνοδιαβατού φίλτρου H db συχνότητα Hz Νοέµβριος 25 ΨΕΣ 32

33 optimal equiripple FIR filter design. Ισοκυµατικά φίλτρα (equiripple filters) Στη µέθοδο των παραθύρων το σφάλµα βρίσκεται κυρίως πλησίον της ζώνης µετάβασης - Αντίθετα εδώ το σφάλµα κατανέµεται σε όλες τις συχνότητες - Ο σχεδιασµός βασίζεται στην ελαχιστοποίηση του µεγίστου σφάλµατος Η µέθοδος υλοποίησης φέρεται µε το όνοµα Parks - McClellan.4 H(ω) Μέθοδος παραθύρων Μέθοδος ισοκυµατικών Οι κυµατώσεις σχετίζονται µε την τάξη του φίλτρου ω Νοέµβριος 25 ΨΕΣ 33.2

34 Ισοκυµατικά φίλτρα-συνέχεια H(ω) +δ -δ δ ω >> remez Νοέµβριος 25 ΨΕΣ 34

35 FIR Φίλτρα δειγµατοληψίας συχνότητας.5 H(ω) συχνότητα ω Ηαπόκριση συχνότητας δειγµατοληπτείται στο διάστηµα 2π ( f s ) Με τον IDFT λαµβάνουµε την επιθυµητή κρουστική απόκριση h(n) Fs Νοέµβριος 25 ΨΕΣ 35

36 Απόκριση σε γραµµική και σε λογαριθµική κλίµακα Η απόκριση διέρχεται από τα σηµεία που έγινε η δειγµατοληψία της απόκρισης συχνότητας Η εξασθένηση στη ζώνη αποκοπής είναι πολύ «φτωχή» Νοέµβριος 25 ΨΕΣ 36

37 ιαφοριστές x(n) h(n) y(n)=x (n) Χ(ω) H(ω) Υ(ω) Από ιδιότητες DTFT: d dn e jn ω = jω e? jn ω? e jnω H(ω) jω e jnω Aπόκριση συχνότητας Υ(ω)/Χ(ω) : H(ω) = jω Νοέµβριος 25 ΨΕΣ 37

38 Η(ω)/j π ω Ηκρουστική απόκριση h(n) =IDTF{ H(ω) } είναι: h( n) = n π jωn = jω e dω =... 2π π n = ±, 3, 5... n n = ± 2 4, 6... για n = Σε κάθε περίπτωση γίνεται χρήση των παραθύρων για αποκοπή και «διαµόρφωση» των συντελεστών h(n) Νοέµβριος 25 ΨΕΣ 38

39 Για 2 σηµεία η h(n) είναι h(n) =[ ] h(n).5 n 4 Η(ω) 3 2 Ιδανικός ιαφοριστής σηµείων - ω π Νοέµβριος 25 ΨΕΣ 39

40 Μία προσέγγιση διαφοριστού µε διαφορά ης τάξεως y(n) = x(n)-x(n-) Υ(ω) =Χ(ω)- e -jω Χ(ω) Υ(ω) = Χ(ω) (-e -jω ) H(ω)=-e -jω = -cosω+jsinω Η(ω) =.=2sin(ω/2) ω για ω<<π π Η(ω) 3 2 ιδανικός πραγµατικός ω π 4

41 Μετασχηµατιστής Hilbert Χ(ω) H(ω) Υ(ω) Απόκριση συχνότητας: Η(ω) = -j sign(ω) Η(ω)/j -Π π ω - π = jωn jnω h(n) H(ω)e dω = je dω + je 2π 2π 2π π για = cos(nπ) nπ n = γιά n π dω =... Νοέµβριος 25 ΨΕΣ 4 π jnω

42 J. Galvanic Skin Reflex (GSR), Electrodermal Response (EDR) The principle: the Autonomic nervous system in response to emotional stimulus, changes the activity of the sweat glands Νοέµβριος 25 ΨΕΣ 42

43 the Media Lab at MIT has a program called the Affective Computing Research Project that uses this sensor. Νοέµβριος 25 ΨΕΣ 43

44 It is popularly known as a lie detector, but is also used in Biofeedback conditioning. The theory is that: the more relaxed you are the dryer your skin is andsothehigherthe skin s electrical resistance. When you are under stress your hand sweats andthentheresistance goes down. The range is reported to be 5K to 25K Ohms. Νοέµβριος 25 ΨΕΣ 44

45 Νοέµβριος 25 ΨΕΣ 45

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

20-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)

20-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR) ΗΜΥ 429 14. Φίλτρα απόκρισης πεπερασμένου παλμού (FIR) 1 Γενικά βήματα για σχεδιασμό φίλτρων (1) Προσδιορισμός χαρακτηριστικών του φίλτρου: Χαρακτηριστικά σήματος (π.χ. μέγιστη συχνότητα) Χαρακτηριστικά

Διαβάστε περισσότερα

ΚΕΦ.6 Σχεδιασµός FIR φίλτρων Λύσεις των ασκήσεων

ΚΕΦ.6 Σχεδιασµός FIR φίλτρων Λύσεις των ασκήσεων ΚΕΦ.6 Σχεδιασµός FIR φίλτρων Λύσεις των ασκήσεων Άσκηση Ποια είναι η αόκριση συχνότητας σε ένα φίλτρο µέσης τιµής (averager) (α) -σηµείων (β) σηµείων (α) -σηµεία Ένα φίλτρο µέσης τιµής (averager) -σηµείων

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ

Διαβάστε περισσότερα

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. 1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην

Διαβάστε περισσότερα

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου ΜΑΘΗΜΑ 6: ΣΧΕ ΙΑΣΗ ΦΙΛΤΡΩΝ 6. Εισαγωγή Τα φίλτρα είναι µια ειδική κατηγορία ΓΧΑ συστηµάτων τα οποία τροποποιούν συγκεκριµένες συχνότητες του σήµατος εισόδου σε σχέση µε κάποιες άλλες. Η σχεδίαση ψηφιακών

Διαβάστε περισσότερα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα -Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45 ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 45 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών α Μετασχηματισμός

Διαβάστε περισσότερα

Σχεδιασµός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impulse response filters

Σχεδιασµός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impulse response filters Σχεδιασµός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impule repone filter Νοέµβριος 005 ΨΕΣ Περιεχόµενα Εισαγωγικά χαρακτηριστικά των IIR φίλτρων, σχεδιασµός στο πεδίο- Συναρτήσεις

Διαβάστε περισσότερα

Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων

Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impule repone filter Recurive filter / 77 / 78 Περιεχόμενα Εισαγωγικά χαρακτηριστικά των IIR φίλτρων, σχεδιασμός στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ / 46 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ DTFT και Περιοδική/Κυκλική Συνέλιξη Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

Σχεδιασµός IIR φίλτρων

Σχεδιασµός IIR φίλτρων Σχεδιασµός IIR φίλτρων. Ένα αναλογικό ζωνοδιαβατό φίλτρο έχει συνάρτηση H(). Σχεδιάστε ( + )( + ) ένα IIR φίλτρο µε την µέθοδο της αµετάβλητης κρουστικής απόκρισης µε συχνότητα δειγµατοληψίας 0 H. Η απάντηση

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το

Διαβάστε περισσότερα

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT

Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT Σ. Φωτόπουλος ΨΕΣ Κεφάλαιο 3 ο DTFT -7- Μετασχηµατισµός FOURIER ιακριτού χρόνου DTFT (discrete time Fourier transform) 3.. Εισαγωγικά. 3.. Είδη µετασχηµατισµών Fourier Με την ονοµασία Μετασχηµατισµοί Fourier

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.- Σ. Φωτόπουλος ΔΠΜΣ Ποιός είναι ο DTFT της u(n)?? u(n) e πδ(ω πk) j ω k ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.-

Διαβάστε περισσότερα

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters)

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

Φασµατική επεξεργασία και φιλτράρισµα χρονοσειρών γεωδαιτικού ενδιαφέροντος

Φασµατική επεξεργασία και φιλτράρισµα χρονοσειρών γεωδαιτικού ενδιαφέροντος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τµήµα Αγρονόµων και Τοπογράφων Μηχανικών Πρόγραµµα Μεταπτυχιακών Σπουδών «Γεωπληροφορικής» Κατεύθυνση "Σύγχρονες Γεωδαιτικές Εφαρµογές Φασµατική επεξεργασία και φιλτράρισµα

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΕΞ. ΠΕΡΙΟΔΟΣ Β ΧΕΙΜ. 00 - ΩΡΕΣ ΘΕΜΑ Για τα παρακάτω συστήματα εισόδου εξόδου α. y ( 3x( x( n ) β. y ( x( n ) / γ. y ( x( x( n ) δ. y( x( n ) Α. Αιτιολογήστε αν είναι γραμμικά

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 17: Φίλτρα (II)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 17: Φίλτρα (II) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 17: Φίλτρα (II) Φίλτρα Bu*erworth, Chebyshev και ελλειπτικά φίλτρα Είναι οι πιο δημοφιλείς τεχνικές σχεδιασμού φίλτρων συνεχούς χρόνου (Appendix

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σήματος

Ψηφιακή Επεξεργασία Σήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Σήματος Ενότητα Θ: Σχεδίαση Ψηφιακών Φίλτρων Πεπερασμένης Χρονικής Απόκρισης (Finite Impulse Response (F.I.R.)

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1

Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1 Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1 ΑΝΑΛΟΓΙΚΑ ΦΙΛΤΡΑ ΚΑΝΟΝΙΚΟΠΟΙΗΜΕΝΗ ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 2 ΦΙΛΤΡΑ BUTTERWORTH: Τα βαθυπερατά φίλτρα έχουν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής

Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής Σχεδίαση Φίλτρων IIR ( Infinite Impulse Response Filters ) Μπαρμπάκος Δημήτριος Τζούτζης Έλτον-Αντώνιος Τα φίλτρα άπειρης κρουστικής απόκρισης ( Infinite Duration Impulse

Διαβάστε περισσότερα

Σχεδιασμός Φίλτρων. Κυριακίδης Ιωάννης 2011

Σχεδιασμός Φίλτρων. Κυριακίδης Ιωάννης 2011 Σχεδιασμός Φίλτρων Κυριακίδης Ιωάννης 2011 Εισαγωγή Τα φίλτρα IIR (Infinite Impulse Response) είναι φίλτρα των οποίων η κρουστική απόκριση δεν είναι πεπερασμένη. Συνήθως χρησιμοποιούνται οι παρακάτω τρείς

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

10.16 Σχεδίαση ϕίλτρων πεπερασµένης κρουστικής απόκρισης

10.16 Σχεδίαση ϕίλτρων πεπερασµένης κρουστικής απόκρισης ΑΝΑΛΟΓΙΚΑ ΚΑΙ ΨΗΦΙΑΚΑ ΦΙΛΤΡΑ 83 ενώ η συνάρτησηp(ω δίδεται από την εξίσωση P(ω= ξ[k] cos(ωk (.298 µε τις ποσότητεςξ[k] και L να ορίζονται από τις εξισώσεις β(k για τα ϕίλτρα FIR τύπου I α(k για τα ϕίλτρα

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

Θεώρημα δειγματοληψίας

Θεώρημα δειγματοληψίας Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Κυριακίδης Ιωάννης 2011

Ψηφιακά Φίλτρα. Κυριακίδης Ιωάννης 2011 Ψηφιακά Φίλτρα Κυριακίδης Ιωάννης 2011 Συνέλιξη Convolution) Με το άθροισμα της συνέλιξης μπορούμε να βρούμε την απόκριση ενός συστήματος διακριτού χρόνου για είσοδο xn), αν γνωρίζουμε την κρουστική του

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε

Διαβάστε περισσότερα

Τι είναι σήµα; Σεραφείµ Καραµπογιάς

Τι είναι σήµα; Σεραφείµ Καραµπογιάς Τι είναι σήµα; Σεραφείµ Καραµπογιάς Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές Παραδείγµατα: Σήµα οµιλίας Σήµα εικόνας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΗΧΗΤΙΚΩΝ ΣΗΜΑΤΩΝ ΜΕ ΤΟ ΜΑTLAΒ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σπουδαστές: Θεοδωρίδης Σταύρος, Τσιόρλας Νικόλαος.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σήματος

Ψηφιακή Επεξεργασία Σήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Σήματος Ενότητα Ι: Σχεδίαση Ψηφιακών Φίλτρων Άπειρης Κρουστικής Απόκρισης (Infinite Impulse Response (I.I.R.)

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

Συστήµατα Μετάδοσης Πληροφορίας Εκποµπή και Λήψη Αναλογικού Σήµατος Εισαγωγή (/7) Πώς γίνεται τελικά η µετάδοση των δεδοµένων; Πηγές πληροφορίας Αναλογικές»H τιµή (πλάτος) του σήµατος µεταβάλλεται συνεχώς

Διαβάστε περισσότερα

Μετασχημ/μός Fourier Διακριτών Σημάτων - Διακριτός Μετασχημ/μός Fourier. Στην απόκριση συχνότητας ενός ΓΧΑ συστήματος ο μετασχηματισμός :

Μετασχημ/μός Fourier Διακριτών Σημάτων - Διακριτός Μετασχημ/μός Fourier. Στην απόκριση συχνότητας ενός ΓΧΑ συστήματος ο μετασχηματισμός : Μετασχημ/μός Fourir Διακριτών Σημάτων - Διακριτός Μετασχημ/μός Fourir Στην απόκριση συχνότητας ενός ΓΧΑ συστήματος ο μετασχηματισμός : j h(i) H( Ω ) ορίζεται ως μετασχηματισμός Fourir της ακολουθίας h(i)

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Εισαγωγή. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Εισαγωγή. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Εισαγωγή Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Εφαρµογές της Ψηφιακής Επεξεργασίας Σηµάτων Ακουστικά Σήµατα ü Αναγνώριση, Ανάλυση, Σύνθεση,

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Δ/ΨΙΑ) Δειγματοληψία:

Διαβάστε περισσότερα

Θέµα 1: Φασµατική ανάλυση. Συναρτήσεις παραθύρου. Ψηφιακά φίλτρα. Ανάλυση σε Χρόνο-Συχνότητα (Φασµατογράφηµα).

Θέµα 1: Φασµατική ανάλυση. Συναρτήσεις παραθύρου. Ψηφιακά φίλτρα. Ανάλυση σε Χρόνο-Συχνότητα (Φασµατογράφηµα). Θέµα 1: Φασµατική ανάλυση. Συναρτήσεις παραθύρου. Ψηφιακά φίλτρα. Ανάλυση σε Χρόνο-Συχνότητα (Φασµατογράφηµα). Άσκηση 1: Φασµατική ανάλυση λευκού θορύβου, παλµοσειρές και σήµατα ιπλού Τόνου Πολλαπλής Συχνότητας

Διαβάστε περισσότερα

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ ΣΤΗΑ ΨΕΣ -3 4/4/3 : πµ ΑΝΤΙΚΕΙΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήµατος ΨΕΣ Η Επεξεργασία Σήµατος µέσω της ψηφιοποίησής του και της επεξεργασίας µε ηλεκτρονικό υπολογιστή ή ειδικά ολοκληρωµένα κυκλώµατα

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings

Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ Συνέδριο Μαρτίου Απριλίου 00 Χόρδισμα Οργάνων με την μέθοδο των Zero Crossings f( x) = sin( x )+sin( x) 8 nzc * SR f = N + i t F( ω) = f () t e ω dt -10-5 5 10 - - - f X = klog (

Διαβάστε περισσότερα

ΣΤΗΑ ΨΕΣ /6/ :36 µµ ( ) ( ) ( ) y n = x k h( n k) = h k x( n k) ( ) 1

ΣΤΗΑ ΨΕΣ /6/ :36 µµ ( ) ( ) ( ) y n = x k h( n k) = h k x( n k) ( ) 1 ΕΦΑΡΜΟΓΕΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΟΣ ΕΛΕΓΧΟΣ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΩΝ LTI ΣΥΣΤΗΜΑΤΩΝ ΣΤΟΠΕ ΙΟ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ Κρουστική Απόκριση LTIΣυστήµατος h(n) Απόκριση y(n) LTIΣυστήµατος Συστήµατοςσε σε σήµα εισόδου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ (ΚΙΙΙ)

ΘΕΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ (ΚΙΙΙ) 1 ΘΕΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ (ΚΙΙΙ) 213-214. 1. ΘΕΜΑ 1: Στο Σχ.1, έχουμε ένα κανονικοποιημένο βαθυπερατό φίλτρο τύπου (Τ) τρίτης τάξης Butterworth. Οι αντιστάσεις (R S ) και (R

Διαβάστε περισσότερα

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z 6-Μαρτ-29 ΗΜΥ 429. Μετασχηματισμός . Μετασχηματισμός 6-Μαρτ-29 Μετασχηματισμός Μέθοδος εκπροσώπησης, ανάλυσης και σχεδιασμού συστημάτων και σημάτων διακριτού χρόνου. Ό,τι είναι η μέθοδος Lplce στο συνεχή

Διαβάστε περισσότερα

Γενικές Αρχές Επεξεργασίας Βιολογικών Σημάτων

Γενικές Αρχές Επεξεργασίας Βιολογικών Σημάτων Γενικές Αρχές Επεξεργασίας Βιολογικών Σημάτων Δρ. Ανδριάνα Πρέντζα 4 Νοέμβρη 2002 Εισαγωγή Παρουσίαση μεθόδων και τεχνικών επεξεργασίας σημάτων που προέρχονται από βιολογικά συστήματα ηλεκτροκαρδιογράφημα

Διαβάστε περισσότερα

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Συναρτήσεις συσχέτισης/αυτοσυσχέτισης Φίλτρα Μετασχηματισμός Hilbert + Περιεχόμενα n Συνάρτηση αυτοσυσχέτισης n Συνάρτηση

Διαβάστε περισσότερα

Συνεπώς, η συνάρτηση µεταφοράς δεν µπορεί να οριστεί για z=0 ενώ µηδενίζεται όταν z=1. Εύκολα προκύπτει το διάγραµµα πόλων-µηδενικών ως εξής:

Συνεπώς, η συνάρτηση µεταφοράς δεν µπορεί να οριστεί για z=0 ενώ µηδενίζεται όταν z=1. Εύκολα προκύπτει το διάγραµµα πόλων-µηδενικών ως εξής: ΦΕΒΡΟΥΑΡΙΟΣ Άσκηση : Δίνεται το LTI σύστηµα y[ n ] T{ x[ n ] } που ορίζεται από την αναδροµική σχέση: y[n ]y[n - ] +x[n ]- x[ n -] +x[ n - ] ( ). Να βρεθεί η συνάρτηση µεταφοράς του συστήµατος H(z ). 𝑦

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών

Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών Ηλεκτρονική ΗΥ231 Εισαγωγή στην Ηλεκτρονική Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Σήµατα Ένα αυθαίρετο σήµα τάσης v s (t) 2 Φάσµα συχνοτήτων των σηµάτων

Διαβάστε περισσότερα

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής 15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος

Διαβάστε περισσότερα

Ειδικά Θέματα Ηλεκτρονικών 1

Ειδικά Θέματα Ηλεκτρονικών 1 Ειδικά Θέματα Ηλεκτρονικών 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3...2 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ...2 3.1 Απόκριση συχνότητας ενισχυτών...2 3.1.1 Παραμόρφωση στους ενισχυτές...5 3.1.2 Πιστότητα των ενισχυτών...6 3.1.3

Διαβάστε περισσότερα

Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα

Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου Εισαγωγή Τι είναι σήμα; Είναι μεταβολές ενός φυσικού μεγέθους που αναπαριστούν ή μεταφέρουν

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 Εργαστηριακές Ασκήσεις Ηλεκτρικών Κυκλωµάτων ΙΙΙ 1 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΑΝΑΛΥΣΗ, ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΑΝΑΛΟΓΙΚΩΝ ΠΑΘΗΤΙΚΩΝ ΦΙΛΤΡΩΝ ΣΚΟΠΟΣ Η άσκηση αυτή εξετάζει την ανάλυση παθητικών αναλογικών φίλτρων,

Διαβάστε περισσότερα

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Όπως θα δούμε και παρακάτω το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων, δηλαδή «κόβουν» κάποιες ανεπιθύμητες

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 3 Σχεδιασμός ψηφιακών φίλτρων FIR με το MATLAB

Εργαστηριακή Άσκηση 3 Σχεδιασμός ψηφιακών φίλτρων FIR με το MATLAB Εργαστηριακή Άσκηση 3 Σχεδιασμός ψηφιακών φίλτρων FIR με το MATLAB Σκοπός της τρίτης σειράς ασκήσεων είναι η εξοικείωση με τις συναρτήσεις σχεδιασμού φίλτρων πεπερασμένης κρουστικής απόκρισης (FIR) που

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8)

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8) University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 3 Δειγματοληψία και Ανακατασκευή (Κεφ. 4.0-4.3 & 4.6,4.8) Περιοδική δειγματοληψία (periodic sampling) Περίοδος (sampling period) T Συχνότητα

Διαβάστε περισσότερα

Κεφάλαιο 3 Προεπεξεργασία Σήµατος Οµιλίας

Κεφάλαιο 3 Προεπεξεργασία Σήµατος Οµιλίας Κεφάλαιο 3 Προεπεξεργασία Σήµατος Οµιλίας σελ.83 Κεφάλαιο 3 Προεπεξεργασία Σήµατος Οµιλίας 3.1 Eισαγωγή Τα στάδια που προηγούνται της βασικής διαδικασίας αναγνώρισης, αναφέρονται σαν στάδια προεπεξεργασίας

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµάτων. ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών

Ψηφιακή Επεξεργασία Σηµάτων. ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών Ψηφιακή Επεξεργασία Σηµάτων ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών Πεδίο Συχνοτήτων Απόκριση συχνότητας LTI συστήµατος µε συνάρτηση µεταφοράς Hz). Σε ένα LTI σύστηµα µε συνάρτησηµεταφοράς Hz), εφόσον ο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3 ΚΕΦΑΛΑΙΟ 3 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ- ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3 ΕΝΟΤΗΤΑ 3.. Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z...4 3... ΟΡΙΣΜΌΣ...4 3... ΎΠΑΡΞΗ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΎ-Z...5 3..3. ΙΔΙΌΤΗΤΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΎ-Z... ΕΝΟΤΗΤΑ 3..

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 1: Αναγνώριση Συστημάτων Διαλέξεις 8 9 Ομαλοποίηση (smoothing) Μη παραμετρική αναγνώριση γραμμικών συστημάτων: Παραδείγματα Συστήματα με θόρυβο Ασυσχέτιστος θόρυβος και στην είσοδο και στην έξοδο:

Διαβάστε περισσότερα

Θεωρία και Πρακτική Ψηφιακών Εφέ Ήχου (Digital Audio Effects - DAFX). Ένα Διδακτικό Βοήθημα για τη Μουσική Πληροφορική

Θεωρία και Πρακτική Ψηφιακών Εφέ Ήχου (Digital Audio Effects - DAFX). Ένα Διδακτικό Βοήθημα για τη Μουσική Πληροφορική ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΑΤΕΥΘΥΝΣΗ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΟΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Θεωρία και

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ 1

13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ 1 1 13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ ΜΟΛΥΝΣΗ ΗΕΓ eye blinks muscle movements eye blinks Time, s eye movements line (mains) noise 2 ΠΑΡΑΜΟΡΦΩΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΗΕΓ ΛΟΓΟΥ ΘΟΡΥΒΟΥ Αλλαγή στην αντίσταση των ηλεκτροδίων, τάση

Διαβάστε περισσότερα

3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές

3-Μαρτ-2009 ΗΜΥ Γρήγορος Μετασχηματισμός Fourier Εφαρμογές ΗΜΥ 429 9. Γρήγορος Μετασχηματισμός Fourier Εφαρμογές 1 Ζεύγη σημάτων Συνάρτηση δέλτα: ΔΜΦ δ[ n] u[ n] u[ n 0.5] (συχνότητα 0-0.5) Figure από Scientist s and engineer s guide to DSP. 2 Figure από Scientist

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα κυκλώματα που θεωρούμε εδώ είναι γραμμικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #5 Στόχος Βασικό στόχο της 5 ης εργασίας αποτελεί η εξοικείωση με τις έννοιες και τα μέτρα επικοινωνιακών καναλιών (Κεφάλαιο 3), καθώς και με έννοιες και τεχνικές της

Διαβάστε περισσότερα

Συνέλιξη Κρουστική απόκριση

Συνέλιξη Κρουστική απόκριση Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο 1 ο -Εισαγωγικά 1. Εισαγωγικά. Σήµατα γενικά είναι µεταβλητές που µεταφέρουν κάποια πληροφορία

Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο 1 ο -Εισαγωγικά 1. Εισαγωγικά. Σήµατα γενικά είναι µεταβλητές που µεταφέρουν κάποια πληροφορία Σ. Φωτόπουλος ΨΕΣ- Κεφάλαιο ο -Εισαγωγικά. Γενικά Εισαγωγικά Σήµατα γενικά είναι µεταβλητές που µεταφέρουν κάποια πληροφορία Χαρακτηριστικά σήµατα είναι :! Φωνή! Μουσική! Βιοϊατρικα (εγκεφαλογραφήµατα

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα