5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I"

Transcript

1 5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

2 ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni inercije poprečnog preseka. Koso savijanje je slučaj kada ravan savijanja seče osu štapa z, a ne poklapa se ni sa jednom od glavnih ravni inercije poprečnog preseka. Pri kosom savijanju štap se savija istovremeno oko obe glavne ose poprečnog preseka.

3 PRIMERI U KOJIMA SE JAVLJA ČISTO KOSO SAVIJANJE, težišne ose (1), (2) glavne centralne ose

4 PRIMERI U KOJIMA SE JAVLJA ČISTO KOSO SAVIJANJE krovna rožnjača rožnjača rožnjača

5 ČISTO KOSO SAVIJANJE Posmatra se greda izložena dejstvu momenata ±M na krajevima tako da ravan savijanja π - π prolazi kroz težište poprečnog preseka i zaklapa sa glavnom osom inercije ugao α. Vektor rezultujućeg momenta savijanja ± M upravan je na ravan savijanja i ima dve svoje komponente: ± M = ± Mcos α ± M = ± Msin α

6 ČISTO KOSO SAVIJANJE Momenti M i M izazivaju savijanje štapa oko odgovarajućih osa: M oko ose i M oko ose, tj. izazivaju čisto pravo savijanje u glavnim ravnima inercije z, odnosno z. Pri čistom kosom savijanju greda je opterećena na savijanje u ravni π koja seče osu štapa z, ali se ne poklapa ni sa jednom od glavnih ravni.

7 ČISTO KOSO SAVIJANJE

8 ČISTO KOSO SAVIJANJE NORMALNI NAPON Momenti M =Mcosα deluju u ravni z, pa u tački (,) preseka izazivaju čisto pravo savijanje, tj. normalni napon M z = I Momenti M =Msinα deluju u ravni z i u tački (,) preseka izazivaju čisto pravo savijanje, tj. normalni napon = z M I

9 ČISTO KOSO SAVIJANJE NORMALNI NAPON Važi princip superpozicije: Ukupan normalni napon u tački (,) preseka nastao usled jednovremenog dejstva momenata M i M jednak je algebarskom zbiru napona koji se javljaju posebno od komponente M i komponente M M z = + I M I Naponi od M i M su kolinearni deluju upravno na presek pa se mogu algebarski sabrati.

10 ČISTO KOSO SAVIJANJE NORMALNI NAPON M z = + I M I M = M cos α M = M sin α M cos α z = + I Msin α I z je linerana funkcija koordinata i Ukupan normalni napon u tački (,) preseka nastao od istovremenog dejstva spregova M i M

11 ČISTO KOSO SAVIJANJE NORMALNI NAPON Normalni naponi u poprečnom preseku: Ukupan normalni napon Normalni napon od M Normalni napon od M

12 ČISTO KOSO SAVIJANJE DILATACIJE Primenom Hukovog zakona određuju se podužne i poprečne dilatacije Podužna dilatacija: ε = Poprečna dilatacija ε p E = ν ε 1 M M E I I ε z = + M M ε = ν + E I I M M ε = ν + E I I

13 ČISTO KOSO SAVIJANJE NEUTRALNA OSA Kao kod čistog pravog savijanja, i kod čistog kosog savijanja postoje u preseku tačke u kojima je normalni napon jednak nuli. Neutralna osa predstavlja geometrijsko mesto tačaka u poprečnom preseku u kojima je normalni napon jednak nuli. cos α sin α z = 0, M + = 0 I I Pošto je: cos α sin α M 0, + = 0 I I Ovo je jednačina prave kroz koordinatni početak koja je u slučaju kosog savijanja neutralna osa n-n. Za razliku od pravog savijanja neutralna osa nije upravna na ravan dejstva spregova π.

14 ČISTO KOSO SAVIJANJE POLOŽAJ NEUTRALNE OSE cos α sin α + = 0 I I Jednačina neutralne ose može da se napiše u obliku: I I = tgα = tgβ tg I I β = = tg α

15 ČISTO KOSO SAVIJANJE POLOŽAJ NEUTRALNE OSE Za razliku od čistog pravog savijanja, kod čistog kosog savijanja neutralna osa nije upravna na ravan π u kojoj deluju spregovi M. β = arc tg = arc tg tgα I I Ugao β određuje položaj neutralne ose n-n (mereno od pozitivnog smera ose). β Upravno na pravac neutralne ose n-n nalazi se osa s-s, koja predstavlja presek ravni savijanja grede i ravni poprečnog preseka.

16 ČISTO KOSO SAVIJANJE MAKSIMALNI NORMALNI NAPON. USLOV ČVRSTOĆE M z = + I M I M cos α z = + I Msin α I Ukupan normalni napon kod kosog savijanja je linarna funkcija koordinata i. Normalni napon je jednak nuli na neutralnoj osi, linearno raste sa udaljenjem tačke od te ose, a najveće vrednosti dostiže u najudaljenijim tačkama od neutralne ose.

17 ČISTO KOSO SAVIJANJE DIMENZIONISANJE M cos α Msin α z = + I I Pri dimenzionisanju grede mora biti zadovoljen uslov:

18 ČISTO KOSO SAVIJANJE PRIMER Greda pravougaonog poprečnog preseka b h = 6 12cm opterećena je na krajevima momentom M = 1 knm, kao na slici. Odrediti položaj neutralne ose poprečnog preseka i maksimalni napon. α = = I = 864cm 4 I = 216cm 4 = tgα = 4 3 I I = tgβ tg 4 3 β = ( ) 0 β= arc tg 4 3 = 82

19 ČISTO KOSO SAVIJANJE PRIMER Maksimalni napon je u najudaljenijim tačkama od neutralne ose, tj. u tačkama A i B. M cos α Msin α z = + I I

20 Odrediti maksimalni normalni napon i položaj neutralne ose. Ose i su glavne centralne ose inercije. Obe komponente momenta su negativne, što je na slici prikazano. U odnosu na neutralnu osu najudaljenije su tačke B i C. Tačka B se nalazi na delu preseka koga obe komponente momenta zatežu, dok se tačka D nalazi na delu preseka koga oba momenta pritiskaju. Maksimalni napon zatezanja se javlja u tački B, a najveći napon pritiska u tački C.

21 EKSCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

22 EKSCENTRIČNI PRITISAK ILI ZATEZANJE Ekscentrični pritisak je složeno naprezanje koje se sastoji od aksijalnog naprezanja i kosog savijanja. Sila koja deluje u pravcu paralelnom osi nosača u tački A (e, e ) redukuje se na težište pa postoji: Sila u težištu preseka i moment usled redukcije sile na težište

23 EKSCENTRIČNI PRITISAK ILI ZATEZANJE Ukoliko je greda opterećena na krajevima aksijalnom silom koja ne prolazi kroz težište poprečnog preseka imamo slučaj ekscentričnog naprezanja grede. e i e ekscentriciteti sile

24 EKSCENTRIČNO NAPREZANJE Redukcijom sile F na težište poprečnog preseka dobija se sila F koja deluje u težištu preseka u pravcu ose štapa i spregovi sa momentima: M = F e M = F e koji izazivaju čista prava savijanja oko osa i. Ekscentrični pritisak predstavlja kombinaciju aksijalnog naprezanja i savijanja grede u ravni z i ravni z.

25 EKSCENTRIČNI PRITISAK NORMALNI NAPON Napon koji se javlja u gredi (dovoljno daleko od krajeva grede) se može odrediti pomoću izraza: F M M A I I z = napon usled aksijalne sile napon usled M napon usled M Momenti M i M izazivaju čista prava savijanja oko osa i (u svim tačkama prvog kvadranta taj napon je negativan). Sila F izaziva aksijalno naprezanje (normalni napon je sa znakom minus jer sila pritiska presek).

26 F M M A I I z = F F e F e A I I z = U svim tačkama prvog kvadranta važi ovaj izraz. Sila deluje u prvom kvadrantu pritiska ceo presek, momenti u odnosu na ose i su takvi da izazivaju negativan napon u prvom kvadrantu. Stanje napona je linearno ali nije homogeno, jer zavisi od položaja tačke u poprečnom preseku.

27 Stanje napona je linearno ali nije homogeno, jer zavisi od položaja tačke u poprečnom preseku.

28 F M M A I I z = ± ± Sila F se uzima u apsolutnom iznosu; Koordinate tačke u kojoj deluje sila (e i e ) se uzimaju sa svojim znacima; Koordinate tačke u kojoj se određuje napon ( i ) su tekuće koordinate.

29 F M M A I I z = ± ± F M = + + A A A A I I F M = + M M B B B A I I F M = M C C C A I I F M M = + D D D A I I

30 EKSCENTRIČNI PRITISAK NORMALNI NAPON F M M M M z = A I I e i e koordinate napadne tačke sile ekscentriciteti, i koordinate tačke poprečnog preseka u kojoj se određuje napon, i i i glavni centralni poluprečnici inercije poprečnog preseka grede = F e = F e F F e F e 2 I 2 z = i = i = A I I A F e A e e A F e z = 1+ + = A I I A i i I A

31 EKSCENTRIČNO NAPREZANJE NEUTRALNA OSA Neutralna osa je geometrijsko mesto tačaka u kojima je normalni napon z =0 F e e z = = 0 A i i Kako je F e 0 A e i i 1+ + = Jednačina neutralne ose Neutralna osa je prava linija koja ne prolazi kroz težište preseka (postoji slobodan član u jednačini prave).

32 EKSCENTRIČNO NAPREZANJE NEUTRALNA OSA Neutralna osa: 1+ + = i i Odsečci neutralne ose na koordinatnim osama i su: 2 i = 0 = b = e e e i a = b = e e 2 2 i 2 i = 0 = a = e Iz dobijenih obrazaca se vidi da ovi odsečci ne zavise od veličine sile F, već samo od položaja njene napadne tačke (e i e ) i oblika poprečnog preseka (i i i, tj. I i I ).

33 EKSCENTRIČNO NAPREZANJE POLOŽAJ NEUTRALNE OSE I CENTRALNA ELIPSA INERCIJE i + 1 = 0 i Jednačina glavne centralne elipse inercije: Ako se pretpostavi da se napadna tačka A (e, e ) sile F nalazi baš na elipsi inercije, tada će za konjugovanu tačku B (-e, -e ), koja je takođe na elipsi, jednačina tangente na elipsu imati oblik: e e = i i tj. e i = i što se popudara sa jednačinom neutralne ose. Prema tome, važi pravilo: Ako je kod ekscentričnog pritiska napadna tačka sile na centralnoj elipsi inercije, tada se neutralna osa poklapa sa tangentom na elipsu inercije u konjugovanoj tački. e

34 Ukoliko se napadna tačka sile pomera po pravoj koja prolazi kroz težište poprečnog preseka, neutralna osa se paralelno pomera u istom smeru. Ukoliko se napadna tačka sile pomera po pravoj m-m koja ne prolazi kroz težište poprečnog preseka, odgovarajuća neutralna osa se obrće oko tačke A za koju je prava m-m neutralna osa.

35 SPECIJALNI SLUČAJ EKSCENTRIČNOG PRITISKA - NAPADNA TAČKA SILE JE NA JEDNOJ OD GLAVNIH OSA INERCIJE Neka je napadna tačka sile je na osi, koja je glavna osa, tada je: e 0, e = 0 Izraz za normalni napon tada je: F F e z = = 1+ A I A i F e a jednačina neutralne linije je u tom slučaju: e i 1+ = 0 tj. neutralna osa je u tom slučaju prava paralelna sa osom. Kada je napadna tačka sile na osi neutralna osa je prava paralelna sa osom, a kada ne na osi, neutralna osa je prava paralelna sa osom.

36 Primer: Naći ekstremne vrednosti normalnog napona za stub pravougaonog poprečnog preseka, opterećenog u tački A ekscentričnom silom pritiska F 2 2 h b A = b h, i =, i =, e = 0, e = e F F e F e z = A I I F F e F e F 12e z = = A I I b h h Sledi da će ekstremne vrednosti napona biti na krajnjim vlaknima, tj. za =±h/2: F 6e z,ma = + 1 b h h F 6e z,min = + 1 b h h 2 h Neutralna osa ima jednačinu: = 12e tj. paralelna je osi.

37 Položaj neutralne linije ne zavisi od veličine sile F, već samo od položaja njene napadne tačke i oblika poprečnog preseka. Neutralna linija se nalazi uvek u dijagonalno suprotnom kvadrantu u odnosu na kvadrant u kome je napadna tačka sile. Težište poprečnog preseka je uvek između neutralne ose i napadne tačke sile. Što je napadna tačka sile udaljenija, to je neutralna linija bliža težištu. Ako se napadna tačka sile nalazi na nekoj od osa, neutralna linija je upravna na tu osu.

38 JEZGRO PRESEKA Neutralna osa je geometrijsko mesto tačaka u kojima je normalni napon jednak nuli. Ona deli površinu poprečnog preseka na dva dela: u jednom delu su naponi zatezanja, a u drugom, u kome se nalazi napadna tačka sile, su naponi pritiska. Neutralna osa se udaljuje od težišta preseka kada mu se napadna tačka približava i obratno. Kada se toliko približi težištu da neutralna osa dodiruje presek, tada je u dodirnoj tački N normalni napon jednak nuli, a u svim tačkama preseka vlada napon istog znaka. Ako se tačka još približi težištu, neutralna osa je van preseka, pa je opet u svim tačkama preseka napon istog znaka.

39 U konstrukcijama se često koriste ekscentrično pritisnuti stubovi izrađeni od materijala koji dobro podnose pritisak, a veoma slabo zatezanje (beton). U tom slučaju moraju napadne tačke sila da budu takve da neutralna osa bude van površine preseka, ili da ga dodiruje. Napadne tačke sila čije neutralne ose obavijaju konturu preseka omeđuju deo površine preseka koja se naziva jezgro preseka. Pogodnim odabiranjem dimenzija preseka nastoji se da se u takvim konstrukcijama postigne da napadna sila rezultante pritiskajućih sila padne unutar jezgra preseka.

40 EKSCENTRIČNO NAPREZANJE GREDE JEZGRO PRESEKA Skup napadnih tačaka sila,čije neutralne ose tangiraju (obavijaju) konturu poprečnog preseka grede, ograničava malu površinu oko težišta poprečnog preseka grede koja se naziva jezgro preseka. Ukoliko je napadna tačka sile unutar jezgra, u svim tačkama preseka vlada napon istog znaka. Ako je napadna tačka sile van jezgra, u jednom delu preseka je zatezanje, a u drugom pritisak. Određivanje jezgra preseka je od velike važnosti u tehničkoj praksi jer pojedini materijali (beton) dobro podnose pritisak, a veoma slabo zatezanje.

41 JEZGRA POPREČNIH PRESEKA NEKIH RAVNIH FIGURA Ukoliko sila deluje na konturi jezgra odgovarajuće neutralne ose su tangente na konturu poprečnog preseka (ne smeju je seći).

42 JEZGRO KRUŽNOG POPREČNOG PRESEKA Odsečci neutralne ose na koordinatnim osama i su: i 4 R π = i = I 4 R = = A R π 2 2 i a = b = e e 2 2 i Traži se položaj tačke A pri kome bi neutralna osa n n tangirala krug poluprečnika R. Odsečci ove ose su: a = i b = R. R 2 i 2 a = a = = e = 0 e e R 2 i 2 R b = b = R = e = e e Zbog simetrije sledi da je jezgro preseka krug poluprečnika R/4.

43 Određivanje jezgra preseka za pravougaoni poprečni presek dimenzija bh Odsečci neutralne ose n 1 -n 1 na koordinatnim osama i su: a = b, b =, 2 Neutralnoj osi n 1 -n 1 odgovara tačka A 1 (e,e ): 2 b b 12 b e 2 e 6 b h 6 = 12 e = 0 e Odsečci neutralne ose n 2 -n 2 na koordinatnim osama i su: = = A 2 1,0 h a =, b =, 2 i i a = b = e e 2 2 i 3 3 b h h b I h I b A b h 12 A b h = = 12 =, i 12 = = = Neutralnoj osi n 2 -n 2 odgovara tačka A 2 (e,e ): 2 b 12 = e = 0 e h A 2 2 0, h 6 h 12 h = e = 2 e 6

44 Odsečci neutralne ose n 3 -n 3 na koordinatnim osama i su: a b =, b =, 2 Neutralnoj osi n 3 -n 3 odgovara tačka A 3 : b A 3,0 6 h Odsečci neutralne ose n 4 -n 4 na koordinatnim osama i su: a =, b =, 2 Neutralnoj osi n 4 -n 4 odgovara tačka A 4 sa koordinatama: A 0, h 4 6 Osim tačaka A 1, A 2, A 3 i A 4, kojima odgovaraju neutralne ose koje se poklapaju sa ivicama pravougaonika, u svakom temenu pravougaonika ima beskonačno mnogo tangenata na konturu pravougaonika. Njima odgovaraju tačke na konturi jezgra. Prava A 1 A 2 je deo konture jezgra koja odgovara svim mogućim neutralnim osama koje dodiruju pravougaonik u temenu P. Slično važi i za strane A 2 A 3, A 3 A 4 i A 4 A 1. Prema tome jezgro pravougaonika ima oblik romba sa dijagonalama b/3 i h/3.

45 Poligonalnom konveksnom preseku odgovara poligonalno jezgro i to tako da svakom vrhu datog poligona odgovara strana konture jezgra, a svakoj strani poligona odgovara vrh konture jezgra. Ako presek nije konveksan, otpadaju iz razmatranja one tangente na vrhovima P 1 i P 2 koje bi sekle površinu preseka, tj. Za konstrukciju jezgra merodavne su tangente n 1 -n 1, n 2 -n 2, n 3 -n 3, n 4 -n 4 i n 5 -n 5. Postupak: odrede se redom sve karakteristične tačke konture jezgra koje odgovaraju tangentama koje obavijaju (ne seku) konturu preseka, pa se spajanjem tih tačaka dobija cela kontura jezgra preseka.

46 EKSCENTRIČNO NAPREZANJE DIMENZIONISANJE Pri dimenzionisanju ekscentrično pritisnute grede neophodno je da bude zadovoljen uslov: ma + + z doz ma z doz gde su doz + i doz - odnosno pritisak. dozvoljeni naponi na zatezanje, Ekstremne vrednosti napona javljaju se u tačkama najudaljenijim od neutralne ose poprečnog preseka, pa su te tačke merodavne za dimenzionisanje.

47 Primer Ekscentrično naprezanje Jezgro preseka Dimenzionisanje Za poprečni presek kao na slici odrediti položaj neutralne ose ako ekscentrična sila pritiska F = 100 kn deluje u tački A. Dimenzionisati nosač ako je doz = 16 kn/cm 2. Odrediti jezgro preseka.

48 Primer Ekscentrično naprezanje Dimenzionisanje

49 Primer Ekscentrično naprezanje određivanje jezgra preseka n 1 -n 1 : n 2 -n 2 : n 3 -n 3 : n 4 -n 4 :

50 Primer Ekscentrično naprezanje Drveni stub pravougaonog poprečnog preseka cm opterećen je ekscentričnom silom pritiska od 90 kn koja deluje u tački N (3 cm,3 cm). Odrediti položaj neutralne ose i masimalne normalne napone.

51 Naponi u tačkama A i C su:

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

Konvencija o znacima za opterećenja grede

Konvencija o znacima za opterećenja grede Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Geometrijska mesta tačaka i primena na konstrukcije

Geometrijska mesta tačaka i primena na konstrukcije Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Geometrijska mesta tačaka i primena na konstrukcije Master rad Mentor: Prof. dr Mića Stanković Student: Ivana Gavrilović Niš,

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA 2011/2012 VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ

KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA 2011/2012 VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA / VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ SADRŽAJ. SCHRÖDINGER-OVA JEDNAČINA.. NESTACIONARNA SCHRÖDINGER-OVA JEDNAČINA.. STACIONARNA SCHRÖDINGER-OVA

Διαβάστε περισσότερα

1. Skicirati sledeće površi i ispitati njihovu regularnost:

1. Skicirati sledeće površi i ispitati njihovu regularnost: Geometrija 3, drgi kolokvijm Prezime i ime, broj indeksa, grpa Skicirati sledeće površi i ispitati njihov reglarnost: a f, v sh cos v, sh sin v,,, v [ π, π]; b g, v, 3, v,, v R a b Rešenje a Iz oblika

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

FUNDIRANJE (TEMELJENJE)

FUNDIRANJE (TEMELJENJE) 1/11/013 FUNDIRANJE 1 FUNDIRANJE (TEMELJENJE) 1. Projektovanje temelja se vrši prema graničnom stanju konstrukcije i tla ispod ojekta sa osvrtom na ekonomski faktor u pogledu utroška materijala, oima radova

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine ašinski fakultet Univerziteta u Beogradu/ ašinski elementi 1/ Predavanje.1 OSOVINE I VRATILA.1.1. Uvod Vratila i osovine, kao osnovni elementi obrtnog kretanja, moraju uvek biti preko kliznih i kotrljajnih

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

KLASIƒNI NAUƒNI SPISI GEOMETRISKA ISPITIVANJA IZ TEORIJE PARALELNIH LINIJA. N. I. LOBAƒEVSKOG

KLASIƒNI NAUƒNI SPISI GEOMETRISKA ISPITIVANJA IZ TEORIJE PARALELNIH LINIJA. N. I. LOBAƒEVSKOG S R P S K K M I J N U K KLSIƒNI NUƒNI SPISI KNJIG III MTMTIƒKI INSTITUT KNJIG 3 GOMTRISK ISPITIVNJ IZ TORIJ PRLLNIH LINIJ O N. I. LOƒVSKOG Preveo RNISLV PTRONIJVI RUGO, PRO IRNO IZNJ O G R 1951 Na²ao sam

Διαβάστε περισσότερα

Zadatak 1. U temenima kvadrata stranice a (Sl.1) nalaze se mala tela istoimene količine 11. naelektrisanja Q 4 10

Zadatak 1. U temenima kvadrata stranice a (Sl.1) nalaze se mala tela istoimene količine 11. naelektrisanja Q 4 10 adatak temenima kvadrata stranice a (Sl) nalaze se mala tela istoimene količine naelektrisanja Q 0 C u vakumu Koliku količinu elektriciteta negativnog znaka treba postaviti u tačku preseka dijagonala da

Διαβάστε περισσότερα

PRIMENA KOMPLEKSNIH BROJEVA U PLANIMETRIJI

PRIMENA KOMPLEKSNIH BROJEVA U PLANIMETRIJI Prirodno-matematički fakultet, Univerzitet u Nišu, Srbija http://wwwpmfniacrs/mii Matematika i informatika (1) (013), 19-74 PRIMENA KOMPLEKSNIH BROJEVA U PLANIMETRIJI Mihailo Krstić, Student Departmana

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

unutrašnja opterećenja

unutrašnja opterećenja * Ravnoteža u deformabilnom tijelu Koncentrisana sila (idealizacija) Površinska sila Spoljašnja opterećenja: površinske i zapreminske sile Reakcije oslonaca Jednačine ravnoteže Linearna raspodjela opterećenja

Διαβάστε περισσότερα

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive KOMPLEKSNA ANALIZA. Funkcije kompleksne promenljive Neka je R skup realnih brojeva, a C skup kompleksnih brojeva. Definicija. Ako je E R, preslikavanje f : E C se naziva kompleksna funkcija realne promenljive.

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Racionalne krive i površi u geometrijskom dizajnu

Racionalne krive i površi u geometrijskom dizajnu Racionalne krive i površi u geometrijskom dizajnu Tijana Šukilović Matematički fakultet, Univerzitet Beograd May 2, 2011, Beograd Sadržaj 1 Racionalne Bézier-ove krive Polinomijalne Bézier-ove krive Algoritam

Διαβάστε περισσότερα

Norme vektora i matrica

Norme vektora i matrica 2 Norme vektora i matrica Pojam norme u vektorskim prostorima se najčešće povezuje sa određenom merom veličine elemenata tog prostora. Tako je u prostoru realnih brojeva R, norma elementa x R najčešće

Διαβάστε περισσότερα

1 RАVANSKE REŠETKE (1.2)

1 RАVANSKE REŠETKE (1.2) 1 RАVNSKE REŠETKE Rešetkasti nosači predstavljaju sistem sačinjen od lakih krutih štapova međusobno zglobno vezanih svojim krajevima. Zglobne veze krajeva štapova se nazivaju čvorovi. Rešetke su opterećene

Διαβάστε περισσότερα

SLUČAJ GDE NE VAŽI NJUTNOV ZAKON AKCIJE I REAKCIJE U MAGNETNOM POLJU I MOGUĆNOST DOBIJANJA VIŠKA ENERGIJE U ELEKTRO GENERATORU

SLUČAJ GDE NE VAŽI NJUTNOV ZAKON AKCIJE I REAKCIJE U MAGNETNOM POLJU I MOGUĆNOST DOBIJANJA VIŠKA ENERGIJE U ELEKTRO GENERATORU SLUČAJ GDE NE VAŽI NJUTNOV ZAKON AKCIJE I REAKCIJE U MAGNETNOM POLJU I MOGUĆNOST DOBIJANJA VIŠKA ENERGIJE U ELEKTRO GENERATORU Jovan Marjanović, dipl. inženjer elektrotehnike e-mail: jmarjanovic@hotmail.com

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

Matematički modeli sistema

Matematički modeli sistema Matematički modeli sistema U analizi i sintezi SAU se koriste kvantitativni matematički modeli koji opisuju fiziku sistema. Generalno, dinamika sistema je opisana običnim diferencijalnim jednačinama. lasa

Διαβάστε περισσότερα

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014 Nermin Okičić Vedad Pašić MATEMATIKA II 014 Sadržaj 1 Funkcije više promjenljivih 1 1.1 Pojam funkcije više promjenljivih................ 1.1.1 Osnovni elementi preslikavanja.............. 1.1. Grafičko

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: MERENJE BRZINE I UBRZANJA

FIZIČKO-TEHNIČKA MERENJA: MERENJE BRZINE I UBRZANJA : MERENJE BRZINE I UBRZANJA UVOD Iako brzina predstavlja prvi, a ubrzanje drugi izvod, ne preporučuje se njihovo određivanje preko izvoda, jer usled šuma greška može biti velika. Može se koristi sledeća

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

DISPERZIVNI I NEDISPERZIVNI TALASI

DISPERZIVNI I NEDISPERZIVNI TALASI DISPERZIVNI I NEDISPERZIVNI TALASI Najpoznatiji primer nedisperzionog talasa je eketromagnetni talas u vakuumu. Nedisperzivni talasi imaju disperzivnu realciju o obliku, gde je c konstanta, tako da je

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Otvorene mreže. Zadatak 1

Otvorene mreže. Zadatak 1 Otvorene mreže Zadatak Na slici je data otvorena mreža u kojoj je rocesor centralni server. Prosečan intenzitet ulaznog toka rocesa u sistem iznosi X rocesa/sec. Posle rocesorske obrade, roces u % slučajeva

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Stalne jednosmerne struje

Stalne jednosmerne struje Stalne jednosmerne struje Električna struja Električnom strujom se može nazvati svako ureñeno kretanje električnih naelektrisanja, bez obzira na uzroke ovog kretanja i na vrstu električnih naelektrisanja

Διαβάστε περισσότερα

OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA

OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA Tihomir Latinović Miroslav Prša Tihomir Latinović, Miroslav Prša OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA Banja Luka, 2013. 1 Osnovi elektrotehnike i električnih mašina Biblioteka: INFORMACIONE TEHNOLOGIJE

Διαβάστε περισσότερα

KONTURNA INTEGRACIJA

KONTURNA INTEGRACIJA KONTURNA INTEGRACIJA Materijal sa sedme radne Ljaškijade - jun 14. Studentska asocijacija Eneter emineter.wordpress.com Ovo je materijal za rešavanje pet tipova integrala koristeći teoreme kompleksne analize

Διαβάστε περισσότερα

Mehanika, kinematika i elastičnost

Mehanika, kinematika i elastičnost Mehanika, kinematika i elastičnost Marko Petković Sreda, 9. Mart 006. god. 1 Osnovne relacije 1. Drugi Njutnov zakon: m v t = F ; m a = F + mω R + m( v ω). Priraštaj impulsa sistema: p p 1 = F t (ako je

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike Osnovne akademske studije PREDMET: Upravljanje sistemima TEMA: Frekvencijske karakteristike Predmetni nastavnik: Prof. dr Milorad Stanojević Asistent: mr Marko Đogatović Kompleksna funkcija prenosa Ukoliko

Διαβάστε περισσότερα

Vizualizacija prostora Lobačevskog

Vizualizacija prostora Lobačevskog Univerzitet u Beogradu Matematički fakultet Master rad Vizualizacija prostora Lobačevskog Marijana Babić Beograd, 2010. godine MENTOR Dr. Srdan Vukmirović ČLANOVI KOMISIJE Dr. Srdan Vukmirović Dr. Predrag

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

Predstavljanje orijentacije i rotacije u 3D

Predstavljanje orijentacije i rotacije u 3D Predstavljanje orijentacije i rotacije u 3D Orijentacija Još jednom: Orijentacija i pravac - isto ili ne? Pravac je određen vektorom, ali rotacija vektora oko samog sebe nema daljeg uticaja. Orijentacija

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα