ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Στατιστική επαγωγή στο απλό γραμμικό. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Στατιστική επαγωγή στο απλό γραμμικό. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών"

Transcript

1 ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Στατιστική επαγωγή στο απλό γραμμικό υπόδειγμα Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

2 Σκοποί Ενότητας Εισαγωγή στη στατιστική επαγωγή στο απλό γραμμικό υπόδειγμα παλινδρόμησης με χρήση ελέγχων στατιστικής σημαντικότητας των εκτιμημένων συντελεστών Εισαγωγή στην πρόβλεψη με το απλό γραμμικό υπόδειγμα. Κατασκευή διαστήματος εμπιστοσύνης της πρόβλεψης 2/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

3 Περιεχόμενα ενότητας 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών 3.2 Πρόβλεψη με το απλό γραμμικό υπόδειγμα 3.3 Ασκήσεις 3/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

4 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Στο απλό γραμμικό υπόδειγμα της μορφής Y i = α + βx i + u i, i = 1,..., n (1) υποθέτουμε ότι ισχύει το πρώτο σύνολο των κλασσικών υποθέσεων, οπότε u i N.i.d ( 0, σ 2), i και, προσωρινά, για αλγεβρική ευκολία υιοθετούμε τη μη ρεαλιστική υπόθεση ότι η ερμηνευτική μεταβλητή X i, i είναι μη στοχαστική, άρα θεωρείται δεδομένη σε επαναλαμβανόμενα δείγματα Οι διαταρακτικοί όροι u i είναι τυχαίες μεταβλητές που κατανέμονται κανονικά και ανεξάρτητα με τον ίδιο μηδενικό μέσο και την ίδια (άγνωστη) διακύμανση σ 2 για κάθε i Η εξαρτημένη μεταβλητή Y i θεωρείται λοιπόν μία τυχαία μεταβλητή για κάθε i αφού είναι μία απλή γραμμική συνάρτηση των διαταρακτικών όρων u i 4/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

5 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Με τη μέθοδο ελαχίστων τετραγώνων (ΕΤ) υπολογίζουμε τους εκτιμητές των παραμέτρων ενδιαφέροντος α, β, σ 2. Οι εκτιμητές θα συμβολίζονται: γενικά με ˆα, ˆβ, ˆσ 2 ή με ˆα ET, ˆβ ET, ˆσ 2 ET όταν θέλουμε να ξεχωρίσουμε την μέθοδο ΕΤ από άλλες μεθόδους ή να δώσουμε έμφαση στη χρήση της μεθόδου ή με ˆα n, ˆβ n, ˆσ 2 n όταν θέλουμε να δώσουμε έμφαση στην εξάρτηση των εκτιμητών από το μέγεθος του δείγματος n. Στην περίπτωση χρονοσειρών αντίστοιχα θα μπορούσαμε να γράψουμε ˆα T, ˆβ T, ˆσ 2 T 5/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

6 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Οι εκτιμητές ΕΤ ˆα, ˆβ, ˆσ 2 δίνονται αναλυτικά από τις σχέσεις και ˆβ = n i=1 ˆα = Ȳ ˆβ X ( ( Yi Ȳ) X i X ) n i=1 ( Xi X ) 2 ˆσ 2 = 1 n 2 n û 2 i i=1 i=1 = n x 2 i i=1 Είναι εμφανές ότι οι εκτιμητές ˆα, ˆβ, ˆσ 2 αποτελούν συναρτήσεις τυχαίων μεταβλητών και η τιμή που θα λάβουμε σε κάποιο δείγμα για τις ˆα, ˆβ, ˆσ 2 εξαρτάται από την τιμή που έλαβε (τουλάχιστον 1 ) η εξαρτημένη μεταβλητή Y i στο συγκεκριμένο δείγμα. 1 Αν υιοθετήσουμε το δεύτερο σύνολο κλασσικών υποθέσεων (μία πιο ρεαλιστική κίνηση), τότε η τιμή του εκτιμητή εξαρτάται και από τις τιμές των τυχαίων μεταβλητών Xi. 6/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41 n y i x i

7 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Ενα διαφορετικό δείγμα θα έδινε διαφορετικές εκτιμήσεις, άρα οι εκτιμητές είναι τυχαίες μεταβλητές που υπόκεινται σε κατανομές δειγματοληψίας 2. Οπότε, σκοπός μας είναι, πρώτα η εκτίμηση των άγνωστων συντελεστών του υποδείγματος και κατόπιν η στατιστική επαγωγή για τους εκτιμημένους συντελεστές που θα επιτρέψει την ποιοτική διερεύνηση των χαρακτηριστικών του υποδείγματος. Επιπλέον, οι εκτιμητές ΕΤ έχουν στατιστικές ιδιότητες οι οποίες τους καθιστούν ελκυστικούς έναντι άλλων εκτιμητών. Για παράδειγμα, κάτω από τις (αυστηρές) υποθέσεις του υποδείγματος (1) αποδεικνύεται ότι οι εκτιμητές ΕΤ είναι αμερόληπτοι, δηλαδή E (ˆα) = α, E (ˆβ ) = β και E (ˆσ 2) = σ 2 2 Κατανομές που μεταβάλλονται με το δείγμα. 7/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

8 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών» Επίσης, σημαντικό ρόλο στη στατιστική επαγωγή διαδραματίζει και η δεύτερη ροπή των εκτιμητών, δηλαδή η διακύμανσή τους, αφού σε αυτή βασίζεται η στατιστική ιδιότητα της αποτελεσματικότητας ή ακρίβειας των εκτιμητών, ενώ αποτελεί και ουσιαστικό μέρος της στατιστικής επαγωγής ως παράγοντας τυποποίησης των στατιστικών ελέγχου. Η διακύμανση των εκτιμητών ΕΤ ˆα, ˆβ, ˆσ 2 των συντελεστών του απλού γραμμικού υποδείγματος δίνεται από τους παρακάτω τύπους 8/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

9 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών και Var (ˆα) = σ 2 1 X 2 n + n ( Xi X ) 2 = σ2 1 X 2 n + n x 2 i i=1 i=1 Var (ˆβ ) σ 2 ( n ) 1 = n ( Xi X ) 2 = σ2 x 2 i i=1 i=1 Var (ˆσ 2) = 2σ4 n 2 9/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

10 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Αφού έχουμε υπολογίσει την αναμενόμενη τιμή και την διακύμανση των εκτιμητών μένει να διαπιστώσουμε αν μπορούμε να βρούμε την κατανομή τους. Κάτω από την υπόθεση της κανονικότητας και ανεξαρτησίας των διαταρακτικών όρων, u i N.i.d ( 0, σ 2), αποδεικνύεται (δείτε άσκηση 1) ότι ενώ ( n ˆβ N.i.d β, σ 2 (n 2) ˆσ 2 σ 2 = 1 σ 2 x 2 i i=1 n i=1 ) 1 û 2 i χ 2 n 2 10/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

11 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Τα παραπάνω δύο αποτελέσματα είναι ουσιώδη στην βασική στατιστική επαγωγή του απλού γραμμικού υποδείγματος. Ενας έλεγχος υπόθεσης σχετικά με την άγνωστη παράμετρο β θα μπορούσε να βασιστεί στην τυποποιημένη κανονική μεταβλητή ˆβ E (ˆβ ) ˆβ z = Var (ˆβ ) = β ) N (0, 1) se (ˆβ όπου se (ˆβ ) = Var (ˆβ ) ( n ) 1 2 = σ x 2 i i=1 11/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

12 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Στην παραπάνω στατιστική, η παράμετρος της διακύμανσης του διαταρακτικού όρου σ 2, άρα και η τυπική απόκλιση σ, είναι άγνωστη οπότε δεν μπορούμε να προβούμε σε εμπειρική χρήση της στατιστικής. Όμως μπορούμε να κάνουμε χρήση ενός γνωστού θεωρήματος από τη στατιστική θεωρία σύμφωνα με το οποίο «Μία τυχαία μεταβλητή t = z yn κατανέμεται ως t-student με n βαθμούς ελευθερίας όταν (α) ο αριθμητής κατανέμεται σύμφωνα με την τυποποιημένη κανονική κατανομή z N (0, 1) (β) ο παρανομαστής δίνεται από την τετραγωνική ρίζα μίας y χ 2 n τυχαίας μεταβλητής δια τους βαθμούς ελευθερίας n και (γ) οι τυχαίες μεταβλητές z, y είναι ανεξάρτητες» 12/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

13 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Συνεπάγεται ότι μπορούμε να «διώξουμε» την άγνωστη παράμετρο του πληθυσμού σ 2 από τη στατιστική ˆβ E (ˆβ ) z ˆβ β = = n σ se (ˆβ ) μέσω της διαίρεσης t = x 2 i i=1 ( ) ˆβ β se(ˆβ) (n 2)ˆσ 2 σ2 (n 2) = ˆβ β ŝe (ˆβ ) 13/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

14 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Η νέα στατιστική ονομάζεται t-student στατιστική και κατανέμεται σύμφωνα με t = ˆβ β ŝe (ˆβ ) t n 2 (2) αφού έχουμε ήδη αναφέρει παραπάνω τις προϋποθέσεις (α) και (β) του θεωρήματος, ενώ αποδεικνύεται ότι αριθμητής και παρονομαστής είναι ανεξάρτητες τυχαίες μεταβλητές άρα ικανοποιείται και η προϋπόθεση (γ). 14/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

15 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Η τετραγωνική ρίζα της διακύμανσης του εκτιμητή ονομάζεται τυπικό σφάλμα και η εκτίμηση του τυπικού σφάλματος του δίνεται από ŝe (ˆβ ) = Var (ˆβ ) ( n ) 1/2 = ˆσ x 2 i i=1 ηλαδή, «υιοθετεί» τον αμερόληπτο εκτιμητή ˆσ 2 = 1 n 2 n û 2 i i=1 της διακύμανσης σ 2 του διαταρακτικού όρου. 15/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

16 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Με βάση τη στατιστική t-student (2) μπορούμε να προβούμε σε μονόπλευρο ή δίπλευρο έλεγχο υπόθεσης. Συνήθως, για τους συντελεστές κλίσης οι έλεγχοι είναι δίπλευροι, δηλαδή ελέγχουμε την Μηδενική υπόθεση H 0 : β = αριθμός έναντι της εναλλακτικής υπόθεσης H 1 : β αριθμός Ο έλεγχος δίπλευρων υποθέσεων πραγματοποιείται ως εξής. Υπολογίζουμε την t-student στατιστική t = ˆβ αριθμός ŝe (ˆβ ) t n 2 και τη συγκρίνουμε με την κριτική τιμή (έστω tn 2 α/2 ) από τους πίνακες της t-student κατανομής με n 2 βαθμούς ελευθερίας και δεδομένο α (επίπεδο σημαντικότητας). Το τελευταίο ορίζει τη πιθανότητα να απορρίψουμε τη μηδενική υπόθεση H 0 ενώ είναι σωστή. 16/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

17 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Αν ισχύει ότι t tn 2 α/2, τότε δεν απορρίπτουμε3 τη μηδενική υπόθεση σε επίπεδο σημαντικότητας (100α)%, ενώ όταν t >tn 2 α/2 τότε απορρίπτουμε τη μηδενική υπόθεση σε επίπεδο σημαντικότητας (100α)%. Στην οικονομετρική πρακτική συνηθίζεται ευρέως να θέτουμε α = 0.05 ή αν δεν είμαστε «αυστηροί 4» τότε α = Είναι σπάνιο να υιοθετήσουμε επίπεδο σημαντικότητας α = 0.01, αν και απόρριψη της μηδενικής υπόθεσης σε τέτοια επίπεδα και για «συμβατικά μεγέθη δείγματος» παρέχει «σημαντικότατες ενδείξεις» εναντίον της μηδενικής υπόθεσης H 0. Σχετικά με τους συμβολισμούς, συνηθίζεται να γράφουμε το α και επί τοις εκατό, π.χ., αν α = 0.05 τότε το επίπεδο σημαντικότητας λέμε ότι είναι 5%. 3 Θεωρούμε ότι δεν υπάρχουν ισχυρές ενδείξεις για την απόρριψη της υποθέσεως και όχι ότι η μηδενική υπόθεση είναι πραγματικά ορθή. 4 Καθώς το δείγμα μεγαλώνει τα τυπικά σφάλματα μικραίνουν, γι αυτό συνηθίζεται να θέτουμε το α = 1% για «μεγάλα» δείγματα και το α = 10% για «μικρά» δείγματα. Για τις ανάγκες του μαθήματος, η επιλογή α = 5% θα είναι αρκετή. 17/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

18 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Όταν ο δίπλευρος έλεγχος είναι της μορφής H 0 : β = 0 H 1 : β 0 δηλαδή όταν ελέγχουμε αν η παράμετρος του πληθυσμού είναι μηδενική και απορρίψουμε τη μηδενική υπόθεση λέμε ότι «η εκτίμηση ˆβ διαφέρει σημαντικά από το μηδέν» «ή ότι η εκτίμηση είναι στατιστικά σημαντική» «ή ότι η μεταβλητή X i έχει στατιστικά σημαντική επίδραση στην Y i» 18/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

19 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Ο συγκεκριμένος έλεγχος ονομάζεται έλεγχος σημαντικότητας του εκτιμημένου συντελεστή και είναι ο βασικότερος έλεγχος που διεξάγουμε στα πρώτα στάδια της εμπειρικής ανάλυσης. Το (1 α)% διάστημα εμπιστοσύνης ορίζεται μέσω της παρακάτω πιθανότητας P t ˆβ n 2 α/2 β ) tα/2 n 2 = 1 α ŝe (ˆβ όπου tn 2 α/2 αντιστοιχεί στην «κατάλληλη» κριτική τιμή από τους πίνακες της t-student κατανομής με n 2 βαθμούς ελευθερίας. 19/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

20 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών Αν αναδιατάξουμε τις ανισότητες μέσα στην πιθανότητα έχουμε P t α/2 ˆβ n 2 β ŝe ) tα/2 n 2 (ˆβ = 1 α P ( t α/2 n 2 ŝe (ˆβ ) ˆβ β t α/2 n 2 ŝe (ˆβ )) = 1 α P ( t α/2 n 2 ŝe (ˆβ ) ˆβ β t α/2 n 2 ŝe (ˆβ ) ˆβ ) = 1 α P (ˆβ t α/2 n 2 ŝe (ˆβ ) β ˆβ + t α/2 n 2 ŝe (ˆβ )) = 1 α 20/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

21 3.1 Ελεγχος στατιστικής σημαντικότητας συντελεστών δηλαδή η πιθανότητα οι τυχαίες μεταβλητές ˆβ tn 2 α/2 ŝe (ˆβ ) και ˆβ + tn 2 α/2 ŝe (ˆβ ) να λαμβάνουν τιμές που περικλείουν την παράμετρο του πληθυσμού β είναι (1 α)%. Το διάστημα εμπιστοσύνης μπορεί επίσης να οριστεί ως το διάστημα των τιμών β (0) της παραμέτρου β για το οποίο η μηδενική υπόθεση H 0 : β = β (0) δεν απορρίπτεται από τους δίπλευρους ελέγχους. Με παρόμοιο τρόπο μπορούμε να κατασκευάσουμε διαστήματα εμπιστοσύνης και να προβούμε σε έλεγχο υποθέσεων σχετικά με το σταθερό όρο του υποδείγματος α αλλά και τη διακύμανση σ 2 του διαταρακτικού όρου. 21/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

22 3.1.1 Παράδειγμα 22/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

23 3.2 Πρόβλεψη με το απλό γραμμικό υπόδειγμα Μία από τις βασικότερες εμπειρικές χρήσεις της Οικονομετρίας εδράζεται στη χρήση του υποδείγματος για την πρόβλεψη της εξαρτημένης μεταβλητής. Ουσιαστικά, οι προσαρμοσμένες τιμές του υποδείγματος Ŷi Ŷ i = ˆα + ˆβX i αποτελούν την πρόβλεψη του υποδείγματος και της μεθόδου εκτίμησης για την εξαρτημένη μεταβλητή και για δεδομένες (δειγματικές) τιμές της ανεξάρτητης μεταβλητής X i. Οι συγκεκριμένες τιμές, Ŷ i, i = 1,..., n ονομάζονται προσαρμοσμένες τιμές ή προβλέψεις. Όταν όμως θεωρήσουμε τιμές της X οι οποίες είναι εκτός των τιμών του δείγματος ή ειδικότερα με δεδομένα χρονοσειρών, εκτός του χρονικού εύρους που καλύπτει το δείγμα, τότε η παραγόμενη τιμή Ŷ της Y ονομάζεται μόνο πρόβλεψη με βάση το εκτιμημένο υπόδειγμα. 23/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

24 3.2 Πρόβλεψη με το απλό γραμμικό υπόδειγμα Με βάση την εκτίμηση του υποδείγματος και τη δοσμένη τιμή X 0 είμαστε σε θέση να «προβλέψουμε» την εξαρτημένη μεταβλητή Y. Συγκεκριμένα, η σημειακή πρόβλεψη (point forecast) δίνεται από ή όταν έχουμε δεδομένα χρονοσειρών από την Ŷ 0 = ˆα + ˆβX 0 (3) Ŷ T+1 = ˆα + ˆβX T+1 Ŷ T+2 = ˆα + ˆβX T+2 Ŷ T+k = ˆα + ˆβX T+k όπου k ονομάζεται ορίζοντας πρόβλεψης.. 24/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

25 3.2 Πρόβλεψη με το απλό γραμμικό υπόδειγμα Το σφάλμα πρόβλεψης e 0 = Y 0 Ŷ0 ή e T+k = Y T+k ŶT+k ορίζεται ως η απόκλιση της «πραγματικής» τιμής Y 0 που θα λάβει η εξαρτημένη μεταβλητή από την πρόβλεψή της Ŷ0 με βάση το υπόδειγμα αναφοράς. 25/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

26 3.2 Πρόβλεψη με το απλό γραμμικό υπόδειγμα Με βάση την υπόθεση ότι x 0 μη στοχαστική μεταβλητή, το μέσο σφάλμα πρόβλεψης είναι μηδενικό E (e 0 ) = 0 όταν ο εκτιμητής ΕΤ είναι αμερόληπτος, δηλαδή όταν E (ˆβ β ) = 0 αποτέλεσμα που βασίζεται στην υπόθεση E (u i ) = 0, i, ενώ αποδεικνύεται με χρήση των υποθέσεων Var (u i ) = σ 2, Cov ( ) u i, u j = 0, i j ότι Var (e 0 ) = σ n + x2 0 n x 2 i i=1 Εχοντας βρει την αναμενόμενη τιμή E(e 0 ) = 0 και διακύμανση Var(e 0 ) του σφάλματος πρόβλεψης e 0, μένει να βρούμε την κατανομή του ώστε να προβούμε σε στατιστική επαγωγή. 26/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

27 3.2 Πρόβλεψη με το απλό γραμμικό υπόδειγμα το σφάλμα πρόβλεψης ή αναλυτικά t = e 0 ŝe (e 0 ) = Y 0 Ŷ0 ŝe (e 0 ) t n 2 e 0 N 0, σ n + x2 0 n x 2 i i=1 27/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

28 3.2 Πρόβλεψη με το απλό γραμμικό υπόδειγμα Αντικαθιστώντας τη διακύμανση Var (e 0 ) με την εκτιμημένη διακύμανση Var (e 0 ) (η οποία χρησιμοποιεί ˆσ 2 αντί σ 2 ), το σφάλμα πρόβλεψης κατανέμεται ως μία t-student τυχαία μεταβλητή με n 2 βαθμούς ελευθερίας, δηλαδή t = e 0 ŝe (e 0 ) = Y 0 Ŷ0 ŝe (e 0 ) t n 2 όπου ŝe (e 0 ) = Var (e 0 ). Συνεπώς, το (1 α)% διάστημα εμπιστοσύνης πρόβλεψης για την «πραγματική» τιμή Y 0 δίνεται από τον τύπο Ŷ 0 ± t α 2 n 2 ŝe (e 0 ) όπου t α 2 n 2 η κριτική τιμή της t-student κατανομής με n 2 βαθμούς ελευθερίας (κοντά στην τιμή 2 για n 30 και α = 5%). Στην εμπειρική ανάλυση είναι σχεδόν βέβαιο ότι πρέπει να υιοθετούμε διαστήματα εμπιστοσύνης της πρόβλεψης ούτως ώστε να παρουσιάζουμε ένα εύρος πιθανών τιμών γύρω από την σημειακή πρόβλεψη. 28/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

29 3.2.1 Παράδειγμα 29/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

30 3.3 Ασκήσεις 30/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

31 3.3 Ασκήσεις: Άσκηση 1 31/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

32 3.3 Ασκήσεις: Άσκηση 2 32/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

33 3.3 Ασκήσεις: Άσκηση 3 33/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

34 Τέλος ενότητας 34/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

35 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στο πλαίσιο του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και ια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ενωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 35/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

36 Σημειώματα 36/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

37 Σημείωμα Ιστορικού Εκδόσεων Εργου Το παρόν έργο αποτελεί την έκδοση /41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

38 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Ιωάννης Βενέτης, Αναπλ. Καθηγητής. «Οικονομετρία. Τίτλος ενότητας». Εκδοση: 1.0. Πάτρα ιαθέσιμο από τη δικτυακή διεύθυνση: eclass.upatras.gr/courses/econ /41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

39 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια ιανομή 4.0 [1] ή μεταγενέστερη, ιεθνής Εκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Εργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 39/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

40 ιατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση ιατήρησης Σημειωμάτων το Σημείωμα Χρήσης Εργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 40/41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

41 Σημείωμα Χρήσης Εργων Τρίτων Το Εργο αυτό κάνει χρήση των ακόλουθων έργων: Ιωάννης Α. Βενέτης (2013). Εισαγωγή στην Οικονομετρία, GOTSIS Εκδόσεις, Πάτρα, ISBN /41 Ι. Βενέτης (Πανεπιστήμιο Πατρών) Οικονομετρία, Ενότητα 3 Μάϊος / 41

ΟΙΚΟΝΟΜΕΤΡΙΑ. ελαχίστων τετραγώνων. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. ελαχίστων τετραγώνων. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Απλό γραμμικό υπόδειγμα και η μέθοδος ελαχίστων τετραγώνων Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 6: Ελεγχος γενικών γραμμικών υποθέσεων. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 6: Ελεγχος γενικών γραμμικών υποθέσεων. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ελεγχος γενικών γραμμικών υποθέσεων Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/56 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Περαιτέρω εξειδίκευση του υποδείγματος Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/61 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Το πολλαπλό υπόδειγμα παλινδρόμησης Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/96 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εισαγωγή στην Οικονομετρία. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εισαγωγή στην Οικονομετρία. Αναπληρωτής Καθηγητής. Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εισαγωγή στην Οικονομετρία Ιωάννης Βενέτης Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών Σχολή Οργάνωσης και ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών 1/40 Ι. Βενέτης (Πανεπιστήμιο

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Επίλυση ειδικών μορφών ΣΔΕ

Επίλυση ειδικών μορφών ΣΔΕ 15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα

Διαβάστε περισσότερα

Αναλυτικές ιδιότητες

Αναλυτικές ιδιότητες 8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι

Διαβάστε περισσότερα

5.1 Μετρήσιμες συναρτήσεις

5.1 Μετρήσιμες συναρτήσεις 5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 A Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της ιοίκησης Τμήμα Μηχανικών Οικονομίας και ιοίκησης Εργαστήριο Στατιστικής Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 26Επιμέλεια:

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους

Διαβάστε περισσότερα

Ανελίξεις σε συνεχή χρόνο

Ανελίξεις σε συνεχή χρόνο 4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Σημειώσεις για το μάθημα ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Παπάνα Αγγελική http://users.auth.gr/~agpapana/statlogistics E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ

Διαβάστε περισσότερα

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. 2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία

Διαβάστε περισσότερα

Martingales. 3.1 Ορισμός και παραδείγματα

Martingales. 3.1 Ορισμός και παραδείγματα 3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,

Διαβάστε περισσότερα

Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας

Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας Γ. Η. Πανάγος 1195 ΟΡΘΗ ΠΡΑΚΤΙΚΗ ΔΙΕΞΑΓΩΓΗΣ ΚΛΙ ΝΙΚΩΝ ΜΕΛΕΤΏΝ Η ορθή πρακτική διεξαγωγής των κλινικών δοκιμών (GCP) είναι ένα διεθνές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

Η εξίσωση Black-Scholes

Η εξίσωση Black-Scholes 8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το

Διαβάστε περισσότερα

Στοχαστικές διαφορικές εξισώσεις

Στοχαστικές διαφορικές εξισώσεις 14 Στοχαστικές διαφορικές εξισώσεις 14.1 Γενικά Στοχαστική διαφορική εξίσωση λέμε μια εξίσωση της μορφής dx = µ(, X ) d + σ(, X ) db, X = x, (14.1) με µ, σ : [, ) R R μετρήσιμες συναρτήσεις, x R, και B

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. 2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα 17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση

Διαβάστε περισσότερα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Επιχειρησιακή Ερευνα Ι

Επιχειρησιακή Ερευνα Ι Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε (X = = (X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων αριθμών

Διαβάστε περισσότερα

Συναρτήσεις. Σημερινό μάθημα

Συναρτήσεις. Σημερινό μάθημα Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών Πιθανότητες ΙΙ o Μέρος Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 4 Απριλίου 7 Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Το υπόδειγμα IS-LM: Εισαγωγικά

Το υπόδειγμα IS-LM: Εισαγωγικά 1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις 602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά

Διαβάστε περισσότερα

Χαρακτηριστικές συναρτήσεις

Χαρακτηριστικές συναρτήσεις 13 Χαρακτηριστικές συναρτήσεις 13.1 Μετασχηματισμός Fourier μέτρου πιθανότητας στο R Εστω (Ω, F, µ) χώρος μέτρου και f : Ω C Borel-μετρήσιμη συνάρτηση. Το πραγματικό και φανταστικό μέρος της f, που τα

Διαβάστε περισσότερα

Αλγόριθμοι & Βελτιστοποίηση

Αλγόριθμοι & Βελτιστοποίηση Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)

Διαβάστε περισσότερα

Κατασκευή της κίνησης Brown και απλές ιδιότητες

Κατασκευή της κίνησης Brown και απλές ιδιότητες 5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27 ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες

Διαβάστε περισσότερα

Συναρτήσεις & Κλάσεις

Συναρτήσεις & Κλάσεις Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT

Διαβάστε περισσότερα

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Ενα δεύτερο μάθημα στις πιθανότητες Ενα δεύτερο

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη ΙΙ

Εισαγωγή στην Οικονομική Επιστήμη ΙΙ Εισαγωγή στην Οικονομική Επιστήμη ΙΙ Νικόλαος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2015-2016 Εαρινό Εξάμηνο 1/12 Ημέρες/ Ωρες ιδασκαλίας &

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον

Διαβάστε περισσότερα

τους στην Κρυπτογραφία και τα

τους στην Κρυπτογραφία και τα Οι Ομάδες των Πλεξίδων και Εφαρμογές τους στην Κρυπτογραφία και τα Πολυμερή Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΜΠ Επιβλέπουσα Καθηγήτρια: Λαμπροπούλου Σοφία Ιούλιος, 2013 Περιεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών

Διαβάστε περισσότερα

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους.

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους. Προτεινόμενα θέματα στο μάθημα Αρχές οργάνωσης και διοίκησης επιχειρήσεων ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους Στις παρακάτω προτάσεις να γράψετε δίπλα στον αριθμό της καθεμιάς τη λέξη Σωστό αν κρίνετε ότι

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ) ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = ) = P(X = ) = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό

Διαβάστε περισσότερα

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0, Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων 1

Αναγνώριση Προτύπων 1 Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Ε Π Α Ν Α Λ Α Μ Β Α Ν Ο Μ Ε Ν Ε Σ Π Α Ρ Α Τ Η Ρ Η Σ Ε Ι Σ

Ε Π Α Ν Α Λ Α Μ Β Α Ν Ο Μ Ε Ν Ε Σ Π Α Ρ Α Τ Η Ρ Η Σ Ε Ι Σ Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Ε Ι Ρ Α Ι Ω Σ Τ Μ Η Μ Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Κ Α Ι Α Σ Φ Α Λ Ι Σ Τ Ι Κ Η Σ Ε Π Ι Σ Τ Η Μ Η Σ Μ Ε Τ Α Π Τ Υ Χ Ι Α Κ Ο Π Ρ Ο Γ Ρ Α Μ Μ Α Σ Π Ο ΥΔ Ω Ν Σ Τ Η Ν Ε Φ Α Ρ Μ Ο Σ Μ Ε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΣΤΗ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΠΕ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με

Διαβάστε περισσότερα

Επίλυση δικτύων διανομής

Επίλυση δικτύων διανομής ΑστικάΥδραυλικάΈργα Υδρεύσεις Επίλυση δικτύων διανομής Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διατύπωση του προβλήματος Δεδομένου ενός δικτύου αγωγών

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο Αλυσίδες Markov

Διαβάστε περισσότερα