Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
|
|
- Ἀνίκητος Βουγιουκλάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων αριθμών λέει ότι με πιθανότητα ο μέσος όρος S / συγκλίνει στο 0. Μεγάλη απόκλιση για τον μέσο όρο λέμε ένα ενδεχόμενο της μορφής { S A } όπου A R είναι ένα σύνολο «μακριά» από το 0, δηλαδή με 0 Ā. Για παράδειγμα, το A μπορεί να είναι ένα από τα (,, ( 4, (0.5, 0 αλλά όχι το {/ : N + }. Επειδή η S / συγκλίνει στο 0 με πιθανότητα, μια μεγάλη απόκλιση ζητάει από την S / να κάνει κάτι που η ακολουθία δεν θέλει να κάνει. Και η πιθανότητα μιας μεγάλης απόκλισης τείνει στο 0 εξαιτίας του ασθενούς νόμου των μεγάλων αριθμών (Πόρισμα 2.. Μας ενδιαφέρει να έχουμε μια καλή εκτίμηση του πόσο σύντομα συμβαίνει αυτό. Θα δούμε ότι για πολλά σύνολα A (τα οποία θα προσδιορίσουμε ισχύει P A e c(a, (7. όπου c(a είναι μια θετική σταθερά που εξαρτάται από το σύνολο A. Θα διευκρινίσουμε τη σημασία του και θα υπολογίσουμε αυτή τη σταθερά c(a. Επίσης, δεν θα περιοριστούμε μόνο στην πιο πάνω ακολουθία (X αλλά θα θεωρήσουμε οποιαδήποτε ακολουθία ανεξάρτητων και ισόνομων τυχαίων μεταβλητών με τιμές στο R. Προηγουμένως όμως θα εξηγήσουμε γιατί είναι σημαντικό να ξέρουμε τον ακριβή ρυθμό με τον οποίο φθίνει η πιθανότητα μιας μεγάλης απόκλισης. Γιατί ασχολούμαστε με την πιθανότητα ενός ενδεχομένου που εκ των προτέρων ξέρουμε ότι είναι ελάχιστη (και επομένως δεν περιμένουμε το ενδεχόμενο να συμβεί; Συμβολισμος: Για (a, (b ακολουθίες θετικών πραγματικών αριθμών γράφουμε a b αν log a =. log b 7.2 Γιατί οι μεγάλες αποκλίσεις είναι σημαντικές Θεωρούμε το εξής παιχνίδι. Ξεκινάμε με αρχική περιουσία P 0 = Ευρώ και πραγματοποιούμε μια ακολουθία ρίψεων ενός αμερόληπτου νομίσματος. Οποτε το νόμισμα φέρνει «Κεφαλή», η περιουσία μας διπλασιάζεται, όποτε φέρνει «Γράμματα», η περιουσία μας υποδιπλασιάζεται. Ερώτημα: Ποια είναι η μέση τιμή της περιουσίας μετά από βήματα; Η περιουσία μετά βήματα είναι P = 2 S, όπου S είναι η ακολουθία της προηγούμενης ενότητας. Μια διαισθητική προσέγγιση: Εστω ε := S /, που ξέρουμε ότι τείνει στο μηδέν με πιθανότητα. Τότε E(P = E(e S = E(e ε ; = e a 08
2 7.3 Η αρχή μεγάλων αποκλίσεων 09 με a ακολουθία που τείνει στο 0. Η τελευταία ισότητα είναι μια εικασία. Παίρνουμε μέση τιμή μιας ποσότητας με ρυθμό εκθετικής αύξησης log eε (= ε που είναι περίπου 0. Αναμένουμε η συνολική μέση τιμή να έχει ρυθμό εκθετικής αύξησης επίσης περίπου 0. Τι πραγματικά συμβαίνει: Η μέση τιμή E(P υπολογίζεται άμεσα ως ( E(P = E(2 X = = e log(5/4. 2 Δηλαδή έχει θετικό εκθετικό ρυθμό ανάπτυξης ίσο με log(5/4. Εξήγηση: Ποιο είναι το πρόβλημα με τη διαισθητική προσέγγιση πιο πάνω; Το κλάσμα ε := S / παίρνει τιμές στο U := {k/ : k Z, k }. Προσεγγιστικά ισχύει P(ε = x e I(x, με I μια συνεχή συνάρτηση στο [, ] περίπου της μορφής x 2. Δηλαδή τιμές του x μακριά από το 0 είναι δύσκολο να ληφθούν από την S /. Ο υπολογισμός της E(P γίνεται ως εξής: E(2 S = e x log 2 e I(x. (7.2 x U Η διαισθητική προσέγγιση πρότεινε να αγνοήσουμε όλους τους όρους με x 0 γιατί έχουν πολύ μικρή πιθανότητα. Βέβαια κάθε τέτοιος όρος δεν έχει μόνο κόστος (συγκεκριμένα e I(x αλλά και όφελος (συγκεκριμένα e x log 2 το οποίο ίσως να ισοσκελίζει το κόστος. Κυρίαρχος όρος στο άθροισμα είναι αυτός που μεγιστοποιεί τη διαφορά x log 2 I(x (όφελος μείον κόστος. Πιο κάτω που θα έχουμε την ακριβή μορφή της συνάρτησης I (Παράδειγμα 7.9, θα δούμε ότι το καλύτερο x είναι το x = 3/5. Η μέγιστη συνεισφορά στη μέση τιμή προέρχεται από μια μεγάλη απόκλιση. Η τυπική συμπεριφορά του μέσου S / είναι αδιάφορη στον υπολογισμό. Στο πιο πάνω πρόβλημα η επίκληση των μεγάλων αποκλίσεων δεν ήταν απαραίτητη αφού υπάρχει απλούστερος τρόπος αντιμετώπισης. Υπάρχουν όμως άλλα προβλήματα στα οποία μια μεγάλη απόκλιση παίζει κεντρικό ρόλο και η θεωρία των μεγάλων αποκλίσεων είναι το μόνο διαθέσιμο εργαλείο. 7.3 Η αρχή μεγάλων αποκλίσεων Εστω X μετρικός χώρος. Συνάρτηση ρυθμού στον X ονομάζουμε οποιαδήποτε συνάρτηση I : X [0, ] που είναι κάτω ημισυνεχής [δηλαδή το σύνολο [I > a] είναι ανοιχτό για κάθε a R]. Εστω τώρα (µ ακολουθία μέτρων πιθανότητας στον (X, B(X και (a αύξουσα ακολουθία θετικών αριθμών με a =. Ορισμός 7.. Λέμε ότι η ακολουθία (µ ικανοποιεί την αρχή μεγάλων αποκλίσεων με ταχύτητα a και συνάρτηση ρυθμού I αν για κάθε A B(X ισχύει if I(x x A log µ (A log µ (A if I(x. (7.3 x Ā Στην πράξη, συνήθως έχουμε μια ακολουθία (Y τυχαίων μεταβλητών στον X που συγκλίνει κατά πιθανότητα σε ένα σημείο x 0 του X και εξετάζουμε αν η ακολουθία (µ των κατανομών των Y ικανοποιεί την αρχή των μεγάλων αποκλίσεων. Αν την ικανοποιεί, λέμε ότι η ακολουθία (Y ικανοποιεί την αρχή μεγάλων αποκλίσεων. Παράδειγμα 7.2. Εστω Y ακολουθία τυχαίων μεταβλητών (στον ίδιο χώρο πιθανότητας με την Y να ακολουθεί την εκθετική κατανομή με παράμετρο (και άρα μέση τιμή /. Η Y συγκλίνει
3 0 Μεγάλες αποκλίσεις* κατά πιθανότητα στο 0. Η ακολουθία (των κατανομών των Y ικανοποιεί την αρχή των μεγάλων αποκλίσεων με ταχύτητα και συνάρτηση ρυθμού αν x < 0, I(x = x αν x 0. Η απόδειξη αφήνεται ως άσκηση. Παρατήρηση 7.3. (α Για κάθε σύνολο A X, εισάγουμε τη συντομογραφία I(A = if x A I(x. (β Οταν για ένα σύνολο Borel A X ισχύει I(A = I(Ā, τότε έχουμε ότι η log µ (A συγκλίνει στην τιμή I(A = I(A = I(Ā. Δηλαδή µ (A e I(A. (γ Η (7.3 ισοδυναμεί με την απαίτηση το άνω φράγμα να ισχύει για A κλειστό και το κάτω φράγμα να ισχύει για A ανοιχτό. Δηλαδή για κάθε F X κλειστό και log µ (F if I(x (7.4 x F log µ (G if I(x (7.5 x G για κάθε G X ανοιχτό. Επιπλέον, το κάτω φράγμα ισοδυναμεί με το εξής: Για κάθε x X και ανοιχτό σύνολο G X που περιέχει το x ισχύει log µ (G I(x. (7.6 Για την απόδειξη της αρχής μεγάλων αποκλίσεων, θα χρησιμοποιούμε αυτές τις ισοδύναμες μορφές του ορισμού. 7.4 Το Θεώρημα Cramer Για f : R [, ] ορίζουμε τον μετασχηματισμό Legedre της f ως τη συνάρτηση f : R [, ] με f (x := sup{xt f (t} t R για κάθε x R, όπου υπενθυμίζουμε ότι sup = και sup A = αν το A R είναι μη φραγμένο. Εστω τώρα (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές με τιμές στο R και µ η κατανομή καθεμιάς. Συμβολίζουμε με M τη ροπογεννήτρια της X, με Λ τον λογάριθμο της M και με Λ το μετασχηματισμό Legedre της Λ. Δηλαδή M(λ := E(e λx = e λx dµ(x, (7.7 για κάθε λ, x R. Λ(λ := log M(λ, (7.8 Λ (x := sup{λx Λ(λ} (7.9 λ R
4 7.4 Το Θεώρημα Cramer Παράδειγμα 7.4. Ας δούμε την περίπτωση που η X είναι η ομοιόμορφη στο {, }. Τότε ( e λ + e λ Λ(λ = log 2 για κάθε λ R και είναι άσκηση απειροστικού λογισμού (μεγιστοποίησης να δείξει κανείς ότι Λ 2 {( + x log( + x + ( x log( x} αν x [, ], (x = (7.0 αν x R\[, ], με τη σύμβαση 0 log 0 = 0. Το Θεώρημα Cramer λέει ότι η ακολουθία (S / ικανοποιεί την αρχή μεγάλων αποκλίσεων με ταχύτητα και συνάρτηση ρυθμού Λ. Ξεκινάμε με ένα λήμμα που ουσιαστικά αποδεικνύει το άνω φράγμα της αρχής. Λήμμα 7.5. Υποθέτουμε ότι m := E(X R. Τότε (i x m Λ (x = sup λ 0 {λx Λ(λ}, x m Λ (x = sup λ 0 {λx Λ(λ}, Λ (m = 0. (ii x m P x e Λ (x, x m P x e Λ (x. Απόδειξη. (i Για κάθε λ R εφαρμόζοντας την ανισότητα Jese έχουμε Λ(λ = log E(e λx E(λX = λm, επομένως λm Λ(λ 0. Τώρα για να αποδείξουμε τον πρώτο ισχυρισμό, θέλουμε να δείξουμε ότι στο supremum που ορίζει το Λ (x μπορούμε να αγνοήσουμε τους αριθμούς λx Λ(λ που έχουν λ < 0. Πράγματι, για x m και λ < 0 έχουμε λx λm ( Λ(λ όπως δείξαμε πιο πάνω, οπότε λx Λ(λ 0. Ομως 0 είναι η τιμή του λx Λ(λ όταν λ = 0. Αρα οι όροι με λ < 0 δεν μπορούν να αυξήσουν το supremum. Ανάλογη είναι η απόδειξη του δεύτερου ισχυρισμού. Οταν x = m, οι δύο παραπάνω ισχυρισμοί δίνουν ότι το Λ (m ισούται με την τιμή του λx Λ(λ για λ = 0, η οποία είναι 0. (ii Για x m και λ 0 έχουμε P x = P(S x = P(λS λx = P(e λs e λx e λx E(e λs = e λx M(λ = e Λ(λ λx = e {λx Λ(λ}. Η ανισότητα στην πρώτη γραμμή προέκυψε από την ανισότητα Markov. Επειδή το φράγμα ισχύει για κάθε λ > 0, η ιδέα είναι να διαλέξουμε το λ που δίνει το καλύτερο/μικρότερο φράγμα. Συγκεκριμένα παίρνουμε ότι η πιθανότητα P(S / x φράσσεται πάνω από την ποσότητα if λ 0 e {λx Λ(λ} = e sup λ 0 {λx Λ(λ} = e Λ (x. Στην τελευταία ισότητα χρησιμοποιούμε το μέρος (i του λήμματος. Ο ισχυρισμός για x m αποδείχθηκε. Για x m και λ 0 έχουμε P x = P(S x = P(λS λx = P(e λs e λx e λx E(e λs = e {λx Λ(λ}. Και η απόδειξη συνεχίζεται όπως και στην περίπτωση x m.
5 2 Μεγάλες αποκλίσεις* Το επόμενο λήμμα είναι κρίσιμο για την απόδειξη του κάτω φράγματος της αρχής μεγάλων αποκλίσεων. Λήμμα 7.6. (α Η M είναι διαφορίσιμη στο εσωτερικό του D M := {λ R : M(λ < } με παράγωγο M (λ = E(X e λx. (β Αν µ((, a, µ((a, > 0 και το µ έχει συμπαγή φορέα τότε D M = R και υπάρχει λ 0 R ώστε Λ (a = λ 0 a Λ(λ 0. Για αυτό το λ 0 ισχύει Λ (λ 0 = a Απόδειξη. (α Ο τύπος για την παράγωγο προκύπτει διαφορίζοντας την E(e λx μέσα από την μέση τιμή. Πρέπει όμως να δείξουμε ότι αυτό είναι επιτρεπτό. Εστω λ εσωτερικό σημείο του D M και δ > 0 με [λ δ, λ + δ] D M. Τότε για ε [ δ, δ], ε 0 έχουμε M(λ + ε M(λ ε ( e (λ+εx e λx = E ε ( = E e λx eεx. ε Το όριο για ε 0 της ποσότητας στη μέση τιμή είναι το επιθυμητό X e λx και η απόλυτή της τιμή φράσσεται από e λx eδ X δ {e (λ δx + e (λ+δx }. δ Για να δούμε το πρώτο φράγμα, αναπτύσσουμε σε δυναμοσειρά την e εx. Το δεξί μέλος της τελευταίας ανισότητας δεν εξαρτάται από το ε και έχει πεπερασμένη μέση τιμή εξαιτίας του ότι λ δ, λ + δ D M. Το συμπέρασμα έπεται από το θεώρημα κυριαρχημένης σύγκλισης. (β Εχουμε Λ (a = sup λ R A(λ με A(λ := λa Λ(λ = log E(e λ(x a. Η A είναι πεπερασμένη και διαφορίσιμη στο R με όρια A( = A( = εξαιτίας της µ((, a, µ((a, > 0. Αρα παίρνει μέγιστο σε ένα σημείο λ 0 R και 0 = A (λ 0 = a Λ (λ 0. Ο ισχυρισμός αποδείχθηκε. Θεώρημα 7.7 (Θεώρημα Cramer. Υποθέτουμε ότι m := E(X R. Η ακολουθία (S / ικανοποιεί την αρχή μεγάλων αποκλίσεων με ταχύτητα και συνάρτηση ρυθμού I(x := Λ (x. Απόδειξη. Εστω µ η κατανομή της τυχαίας μεταβλητής S /. Ακολουθούμε τη μέθοδο της Παρατήρησης 7.3(γ. Ανω φραγμα: Εστω F R κλειστό μη κενό. Αν I(F = 0, δεν έχουμε να αποδείξουμε τίποτα γιατί το αριστερό μέλος της (7.4 είναι μη θετικό πάντοτε. Υποθέτουμε λοιπόν ότι I(F > 0. Επειδή I(m = 0 (Λήμμα 7.5, έπεται ότι το m είναι στοιχείο του ανοιχτού συνόλου R\F. Εστω (a, b το μέγιστο υποδιάστημα του R\F που περιέχει το m. Αυτό το υποδιάστημα είναι ανοιχτό (και άρα a, b F γιατί το R\F είναι ανοιχτό και ενδέχεται a = ή b = (όχι όμως και τα δύο γιατί F. Επειδή F R\(a, b, όταν a, b R, έχουμε µ (F µ ((, a] + µ ([b, e Λ (a + e Λ (b 2e I(F. (7. Η πρώτη ανισότητα έπεται από το Λήμμα 7.5, ενώ η δεύτερη από το ότι a, b F. Αν a =, οι ανισότητες ισχύουν αν παραλείψουμε τους όρους µ ((, a], e Λ (a. Ανάλογα και όταν b =. Τώρα το άνω φράγμα έπεται από την (7.. Κατω φραγμα: Με βάση την (7.6, επειδή η S / παίρνει τιμές στο R, αρκεί να δείξουμε ότι για κάθε a R και δ > 0 ισχύει log µ ((a δ, a + δ Λ (a. (7.2 Περίπτωση. µ((, a, µ((a, > 0 και το µ έχει συμπαγή φορέα. Τότε με βάση το Λήμμα 7.6 υπάρχει λ 0 R ώστε Λ (a = λ 0 a Λ(λ 0. Ορίζουμε ένα νέο μέτρο µ από τη σχέση d µ dµ (x = eλ 0x Λ(λ 0, x R. (7.3
6 Το µ είναι μέτρο πιθανότητας γιατί µ(r = e λ 0x Λ(λ 0 dµ(x = και έχει μέση τιμή a γιατί R R x d µ(x = 7.4 Το Θεώρημα Cramer 3 R xeλ 0x dµ(x M(λ 0 e λ0x dµ(x = M(λ 0 R = M (λ 0 M(λ 0 = Λ (λ 0 = a Επίσης, συμβολίζουμε με µ την κατανομή του μέσου όρου X + + X / όταν οι X, X 2,..., X είναι ανεξάρτητες ισόνομες καθεμία με κατανομή µ. Και τώρα είμαστε σε θέση να δείξουμε το ζητούμενο κάτω φράγμα. Για οποιοδήποτε ε ( δ, δ υπολογίζουμε µ ((a ε, a + ε = P (a ε, a + ε = dµ(x dµ(x x +x 2 + +x a <ε = e Λ(λ 0 λ 0 (x + +x d µ(x dµ(x Αρα x +x 2 + +x a <ε e Λ(λ 0 λ 0 a λ 0 ε µ ((a ε, a + ε = e Λ (a λ 0 ε µ ((a ε, a + ε. log µ ((a δ, a + δ Λ (a λ 0 ε log µ ((a δ, a + δ. (7.4 Τώρα µ ((a δ, a + δ = από τον ασθενή νόμο των μεγάλων αριθμών γιατί ( X + + X µ ((a δ, a + δ = P (a δ, a + δ και οι X,..., X είναι ανεξάρτητες ισόνομες με μέση τιμή a. Αρα το στο δεξί μέλος της ανισότητας (7.4 είναι 0 και παίρνοντας ε 0 έχουμε την (7.6. Περίπτωση 2. µ((, a, µ((a, > 0 και το µ δεν έχει συμπαγή φορέα. Υπάρχει R 0 > 0 μεγάλο ώστε µ(( R 0, a, µ((a, R 0 > 0. Θεωρούμε τώρα οποιοδήποτε R > R 0 και ακολουθία ( ˆX i i ανεξάρτητων και ισόνομων τυχαίων μεταβλητών με κατανομή αυτήν της X με τη δέσμευση X R. Δηλαδή P( ˆX A = P(X A, X R P( X R για κάθε A B(R. Θέτουμε Ŝ = ˆX + ˆX ˆX. Τότε ( S P (a ε, a + ε P (a ε, a + ε, X i R για κάθε i =, 2,..., (7.5 = P (a ε, a + ε, X i R για κάθε i =, 2,..., (7.6 P( X i R για κάθε i =, 2,..., P( X i R για κάθε i =, 2,..., (7.7 (Ŝ = P (a ε, a + ε P( X R (7.8 Τώρα για την ακολουθία Ŝ / εφαρμόζεται η περίπτωση του κάτω φράγματος. Συμβολίζουμε με I R τη συνάρτηση ρυθμού της αρχής μεγάλων αποκλίσεων που ικανοποιεί η ακολουθία. Αρα log µ ((a δ, a + δ I R (a + log P( X R.
7 4 Μεγάλες αποκλίσεις* Αρχικά, θα βελτιώσουμε την έκφραση του κάτω φράγματος. Θέτουμε C R (λ = log E(e λx X R. Η ροπογεννήτρια της ˆX είναι E(e λx X R/ P( X R, με λογάριθμο C R (λ log P( X R, άρα I R (a = sup λ R {λa C R (λ} + log P( X R. Επομένως το προηγούμενο κάτω φράγμα είναι απλώς sup{λa C R (λ}, λ R το οποίο είναι το αντίθετο του μετασχηματισμού Legedre C R (a της C R στο a. Ετσι, το ζητούμενο κάτω φράγμα έπεται από τον εξής ισχυρισμό. Ισχυρισμος: R C R (a Λ (a. Η CR (a είναι φθίνουσα ως προς R γιατί η C R(λ είναι αύξουσα ως προς R. Αρα R CR (a C r(a για κάθε r > 0. Εστω u < R CR (a. Θέτουμε K r := {λ R : λa C r (λ u}. Για r R 0, το K r είναι μη κενό αφού u < C r(a και συμπαγές γιατί η A r (λ := λa C r (λ είναι πεπερασμένη παντού και συνεχής ως προς λ με A r ( = A r ( = (απόδειξη όπως στο Λήμμα 7.6(β. Επίσης η (K r r R0 είναι φθίνουσα ως προς r, άρα η τομή r R0 K r είναι μη κενή και έστω λ 0 ένα σημείο σε αυτήν. Τότε λ 0 a C r (λ 0 u για κάθε r R 0. Για r η τελευταία ανισότητα και το θεώρημα μονότονης σύγκλισης δίνουν λ 0 a log Λ(λ 0 u, και άρα Λ (a u. Ο ισχυρισμός αποδείχθηκε. Περίπτωση 3. Κανένας περιορισμός στο µ (πέραν του E(X R. Μένει να εξετάσουμε την περίπτωση που ένα τουλάχιστον από τα µ((, a, µ((a, είναι 0. Τότε Λ (a = sup{λa log E(e λx } = sup{ log E(e λ(x a } = log P(X = a. λ R λ R Η τελευταία ισότητα ισχύει γιατί κάτω από τις υποθέσεις μας, η E(e λ(x a είναι μονότονη ως προς λ και άρα το ifimum της ισούται με το όριό της στο όταν µ((, a = 0 και με το όριο της στο όταν µ((a, = 0. Τώρα το συμπέρασμα έπεται γιατί µ ((a δ, a + δ P(X = X 2 = = X = a = P(X = a. Παρατήρηση 7.8. (α (Η ιδέα της αλλαγής μέτρου Το ουσιαστικό κομμάτι της απόδειξης του κάτω φράγματος είναι η Περίπτωση. Ας πάρουμε την περίπτωση a m και ε μικρό. Το γεγονός A = {S / (a ε, a + ε} είναι μη τυπικό όταν οι X i έχουν κατανομή µ και δυσκολευόμαστε να εκτιμήσουμε την πιθανότητά του. Αυτό που κάνουμε είναι να αλλάξουμε το νόμο των X i με τέτοιο τρόπο ώστε το A να γίνει τυπικό για αυτό το νέο νόμο. Και πράγματι, ο νόμος µ έχει μέση τιμή a, οπότε, όταν οι X i είναι ανεξάρτητες, καθεμία με κατανομή µ, το A έχει πιθανότητα που τείνει στο. Το κόστος για την αλλαγή νόμου (μέτρου είναι η παράγωγος Rado-Nikodym, για την οποία ευτυχώς έχουμε καλό έλεγχο. Στο σύνολο A αυτή έχει τιμή περίπου e {Λ(λ 0 λ 0 a}. (β Προσέξτε ότι για την Περίπτωση 2 του κάτω φράγματος εφαρμόσαμε την τεχνική της περικοπής ώστε να αναχθούμε στην Περίπτωση. Με τον ίδιο τρόπο αποδείξαμε την επέκταση του νόμου των μεγάλων αριθμών στην Ασκηση 2.2. (γ Το Θεώρημα Cramer ισχύει ακόμα και χωρίς την υπόθεση ότι η E(X ορίζεται και είναι πραγματικός αριθμός. Αυτό αποδεικνύεται με λίγες παρεμβάσεις στην απόδειξη πιο πάνω (δες Dembo ad Zeitoui (998, Θεώρημα
8 7.4 Το Θεώρημα Cramer 5 I(x log 2 x Σχήμα 7.: Η συνάρτηση ρυθμού της αρχής μεγάλων αποκλίσεων για τον μέσο όρο ομοιόμορφων στο {, }. Παράδειγμα 7.9. Το Θεώρημα Cramer εφαρμόζεται στην ακολουθία (S / της Παραγράφου 7. και δίνει ότι αυτή ικανοποιεί την αρχή μεγάλων αποκλίσεων με συνάρτηση ρυθμού I(x τη Λ (x της (7.0. Το γράφημά της δίνεται στο Σχήμα 7.. Να παρατηρήσουμε τα εξής Η I έχει την τιμή 0 στη μέση τιμή E(X = 0. Η I έχει την τιμή για x [, ], που είναι αναμενόμενο αφού η S / παίρνει τιμές στο [, ]. Οσο απομακρυνόμαστε από το 0 (τη μέση τιμή των X i, η I(x αυξάνει. Το γεγονός {S / είναι κοντά στο x} γίνεται ακριβότερο/πιο απίθανο. Τώρα μπορούμε να επιστρέψουμε στην Παράγραφο 7.2 και να δούμε ότι πράγματι το x που μεγιστοποιεί τη διαφορά x log 2 I(x είναι το x = 3/5. Ασκήσεις 7. Να υπολογιστεί ο μετασχηματισμός Λ στην περίπτωση που η X ακολουθεί την κατανομή (α Poisso(a, (β exp(a, (γ N(0, σ 2, όπου a, σ > 0. Επίσης, με χρήση Mathematica ή άλλου προγράμματος να γίνει σε κάθε περίπτωση η γραφική παράσταση του Λ. 7.2 Να υπολογιστεί ο μετασχηματισμός Λ στην περίπτωση που η X έχει πυκνότητα f (x = (3/2 x 4 x. Τι πληροφορίες δίνει το άνω και το κάτω φράγμα της αρχής μεγάλων αποκλίσεων για την ακολουθία S /; 7.3 Εστω f : R [, ] και D f := {x R : f (x < }. (α Αν 0 D f, τότε και άρα x f (x =. (β Αν D f = R, τότε f (x > 0, x x f (x =. x x
Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε (X = = (X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων αριθμών
Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ) ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = ) = P(X = ) = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων
5.1 Μετρήσιμες συναρτήσεις
5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο
Εφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
Αναλυτικές ιδιότητες
8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι
Ο Ισχυρός Νόμος των Μεγάλων Αριθμών
1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε
Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Επίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
Ανελίξεις σε συνεχή χρόνο
4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς
Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.
2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία
Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.
2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Martingales. 3.1 Ορισμός και παραδείγματα
3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,
Χαρακτηριστικές συναρτήσεις
13 Χαρακτηριστικές συναρτήσεις 13.1 Μετασχηματισμός Fourier μέτρου πιθανότητας στο R Εστω (Ω, F, µ) χώρος μέτρου και f : Ω C Borel-μετρήσιμη συνάρτηση. Το πραγματικό και φανταστικό μέρος της f, που τα
Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
Κατασκευή της κίνησης Brown και απλές ιδιότητες
5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)
Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Η εξίσωση Black-Scholes
8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το
Οι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ
Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Ενα δεύτερο μάθημα στις πιθανότητες Ενα δεύτερο
{ i f i == 0 and p > 0
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων
Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2
12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει
602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις
602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά
Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.
Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x
Στοχαστικές διαφορικές εξισώσεις
14 Στοχαστικές διαφορικές εξισώσεις 14.1 Γενικά Στοχαστική διαφορική εξίσωση λέμε μια εξίσωση της μορφής dx = µ(, X ) d + σ(, X ) db, X = x, (14.1) με µ, σ : [, ) R R μετρήσιμες συναρτήσεις, x R, και B
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»
HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος
Εκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.
Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.
HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων
ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ
Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον
ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ
Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα
17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών
Πιθανότητες ΙΙ o Μέρος Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 4 Απριλίου 7 Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής
Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2
Το Μέτρο και η Διάσταση Hausdorff Γεωργακόπουλος Νίκος Τερεζάκης Αλέξης Περίληψη Αναπτύσσουμε τη ϑεωρία του μέτρου και της διάστασης Hausdorff με εφαρμογές στον υπολογισμό διαστάσεων συνόλων fractal (Θεώρημα
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ
17 Μαρτίου 2013, Βόλος
Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης
Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Εκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις
Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
Επιχειρησιακή Ερευνα Ι
Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες
Αρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Ισοπεριμετρικές ανισότητες για το
Ισοπεριμετρικές ανισότητες για το μέτρο του Gauss Διπλωματική Εργασία Μαρία Μαστροθεοδώρου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 018 Περιεχόμενα 1 Εισαγωγή 1 1.1 Το ισοπεριμετρικό πρόβλημα................................
Μαθηματικά Πληροφορικής
Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...
Αρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το
21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
τους στην Κρυπτογραφία και τα
Οι Ομάδες των Πλεξίδων και Εφαρμογές τους στην Κρυπτογραφία και τα Πολυμερή Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΜΠ Επιβλέπουσα Καθηγήτρια: Λαμπροπούλου Σοφία Ιούλιος, 2013 Περιεχόμενα
ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει
ΕΙΣΑΓΩΓΗ ------------------------------------------------------------------------------------- H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει αντικείμενο
Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10
Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά
ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27
ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull
Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss
Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή
Συναρτήσεις. Σημερινό μάθημα
Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Αλγόριθμοι & Βελτιστοποίηση
Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)
Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016
Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία
ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο
ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο Αλυσίδες Markov
ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Η έκδοση αυτή είναι υπό προετοιμασία. Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης
Θεωρία Αριθμών και Εφαρμογές Η έκδοση αυτή είναι υπό προετοιμασία Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης 9 Φεβρουαρίου 2015 2 Περιεχόμενα I ΑΡΙΘΜΟΘΕΩΡΙΑ ΤΩΝ ΡΗΤΩΝ ΑΡΙΘΜΩΝ 7 1 ΔΙΑΙΡΕΤΟΤΗΤΑ ΚΑΙ ΠΡΩΤΟΙ
Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)
Εισαωή στη Μιαδική Ανάλυση Σημειώσεις (Πρώτη Ολοκληρωμένη Γραφή) Ε. Στεφανόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αιαίου Καρλόβασι Καλοκαίρι 26 Πρόλοος Οι σημειώσεις αυτές είναι αποτέλεσμα επεξερασίας
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα
Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος
Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης
1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και
ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,
Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν
1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή
Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Λυκείου 3 ο Κεφάλαιο Ηλεκτρικό Πεδίο. Ηλεκτρικό πεδίο. Παρασύρης Κώστας Φυσικός Ηράκλειο Κρήτης
Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο 3 Ηλεκτρικό πεδίο Πρσύρης Κώστς Φσικός Ηράκλειο Κρήτης Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο
Χαρτοφυλάκια και arbitrage
16 Χαρτοφυλάκια και arbitrage 16.1 Αγορές μετοχών Ποια είναι η χρήση και η σημασία των μετοχών μιας εταιρείας; Κατά τη σύστασή της ή σε άλλες στιγμές του χρόνου ύπαρξής της χρειάζεται να συγκεντρώσει κεφάλαιο
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να
Το Θεώρημα Μοναδικότητας των Stone και von Neumann
Κ Ε Το Θεώρημα Μοναδικότητας των Stone και von Neumann Διπλωματική Εργασία Ειδίκευσης στα Θεωρητικά Μαθηματικά Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Αθήνα 2011 Αφιερώνεται στην οικογένεια μου ii Περίληψη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.
Διανυσματικές Συναρτήσεις
Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,
ΠΙΘΑΝΟΤΗΤΕΣ 2. Σάμης Τρέβεζας
ΠΙΘΑΝΟΤΗΤΕΣ 2 Σάμης Τρέβεζας ii ΣΑΜΗΣ ΤΡΕΒΕΖΑΣ Λέκτορας Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Πιθανότητες ΙΙ Σημειώσεις σε εξέλιξη... (02/03) Περιεχόμενα 1 Δομές σε Οικογένειες
( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»
( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε
CSE.UOI : Μεταπτυχιακό Μάθημα
Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &
ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ
ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση
Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2
Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται
Η Θεωρια Αριθμων στην Εκπαιδευση
Η Θεωρια Αριθμων στην Εκπαιδευση Καθηγητὴς Ν.Γ. Τζανάκης Εφαρμογὲς τῶν συνεχῶν κλασμάτων 1 1. Η τιμὴ τοῦ π μὲ σωστὰ τὰ 50 πρῶτα δεκαδικὰ ψηφία μετὰ τὴν ὑποδιαστολή, εἶναι 3.14159265358979323846264338327950288419716939937511.
Σημειώσεις Μαθηματικών Μεθόδων. Οικονομικό Πανεπιστήμιο Αθηνών
Σημειώσεις Μαθηματικών Μεθόδων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Φεβρουαρίου 08 Κεφάλαιο Το Μιγαδικό Εκθετικό Είναι γνωστό ότι η εκθετική συνάρτηση e x έχει το ανάπτυγμα
Βελτίωση Εικόνας. Σήμερα!
Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram
Επίλυση δικτύων διανομής
ΑστικάΥδραυλικάΈργα Υδρεύσεις Επίλυση δικτύων διανομής Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διατύπωση του προβλήματος Δεδομένου ενός δικτύου αγωγών
Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,
Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,
Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης
Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών
Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS
Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS ΕΛΕΝΗ ΤΑΝΤΟΥΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΗΣ ΤΣΟΛΟΜΥΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΑΜΟΣ 2009 Στην μητέρα μου που μπορεί και με ανέχεται ακόμα,
ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
Σημειώσεις για το μάθημα ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Παπάνα Αγγελική http://users.auth.gr/~agpapana/statlogistics E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ
ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.
1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων