F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0"

Transcript

1 ΜΑ 1 Μ.2 Ν ΟΙ ΠΑΡ ΓΩΓΟΙ fx ΚΑΙ fy ΥΠ ΡΧΟΥΝ ΚΑΙ ε ΝΑΙ ΙΑφΟΡ ΣΙΜε Σε Κ ΠΟΙΑ ΠεΡΙΟΧ ΤΟΥ a, b Τ Τε ΝΑ ΑΠΟ ειχθε ΤΙ fxy fyx. Α εξετ ΣεΤε ΑΝ fxy fyx ΣΤΟ 0, 0 ΓΙΑ ΤΗΝ ΣΥΝ ΡΤΗΣΗ f x, y xy x2 y 2 ΓΙΑ x, y 0, 0 ΚΑΙ f 0, 0 0. x 2 y2 Π ειξη ε ΡΗΜΑ 2 ΣεΛ Α 228 ΙΒΛ Ο L. Brand ΤΟΥΜε φ x f x, b k f x, b ΚΑΙ ΧΟΥΜε F h, k φ a h φ a hφ' a hθ, 0 Θ 1 ΑΠ ΤΟ ε ΡΗΜΑ ΤΗ Μ ΣΗ ΤΙΜ ΡΑ F h, k h fx a Θh, b k fx a Θh, b h fx a Θh, b k fx a, b h fx a Θh, b f a, b επει Η fx ΚΑΙ fy ε ΝΑΙ ΙΑφΟΡ ΣΙΜε ΣΤΟ a, b ΧΟΥΜε fx a Θh, b k fx a, b Θhfxx a, b kfxy a, b n1hθ n2k fx a Θh, b f a, b Θhfxx a, b n3θh ΓΙΑ ΛΑ ΤΑ n1, n2, n3 0 ΚΑΘ h, k 0. ΡΑ F h, k h kfxy a, b n1hθ n2k n3θh ΓΙΑ k h ΒΡ ΣΚΟΥΜε Lim h0 F h, h h 2 ΠΑΝΑΛΑΜΒ ΝΟΥΜε ΤΙ Ρ ΣΚΟΥΜε Lim h0 f h, h h 2 Lim fxy a, b n1 n3 Θ n2 fxy a, b h0 fyx a, b Ιε ΣΧ ΣεΙ Θ ΤΟΝΤΑ Ψ y f a h, y f a, b ΡΑ fxy a, b fyx a, b ΚΑΙ ΤΟ Θε ΡΗΜΑ ΑΠΟ ε ΧΘΗΚε ΙΑ ΤΟ ε ΤεΡΟ Μ ΛΟ ΤΟΥ Θ ΜΑΤΟ ΤΑ Ο ΡΙΑ ε ΝΑΙ ΙΑφΟΡεΤΙΚ ΠΡ ΓΜΑΤΙ fx 0, y Lim h0 fxy 0, 0 Lim k0 ΛΛ ΜΩ fy x, 0 Lim k0 fyx 0, 0 Lim h0 ΡΑ f h, y f 0, y h fx 0, k fx 0, 0 k f x, k f x, 0 k fy h, 0 fy 0, 0 h fyx 0, 0 fxy 0, 0 Lim h0 Lim k0 Lim k0 Lim h0 hy h2 y 2 h 2 y 2 h k k kx x2 k 2 x 2 k 2 k h h 1 1 y x

2 2 lpa3.nb ΜΑ 2 Μ. 1.5 Α ΑΠΟ ειξετε ΤΙ ΤΟ Ι ΝΥΣΜΑ f r ε ΝΑΙ Κ ΘεΤΟ ΣΤΗΝ επιφ ΝεΙΑ f r c. NΑ ΒΡε Τε ΤΟ ΜΟΝΑ ΙΑ Ο Κ ΘεΤΟ Ι ΝΥΣΜΑ ΣΤΗΝ επιφ ΝεΙΑ x 2 y 2 x z 4 ΣΤΟ ΣΗΜε Ο P 2, 2, 3. Π ειξη ΙΑφΟΡ ΖΟΥΜε ΤΗΝ ΣΧ ΣΗ f r c ΚΑΙ ΒΡ ΣΚΟΥΜε 0 df x, y, z f f f dx dy x y z dz f r d r 0 f x, f y, f z dx, dy, dz Ο Ι ΝΥΣΜΑ ΜΩ d r ε ΝΑΙ εφαπτομενικ ΤΗ επιφ ΝεΙΑ ΡΑ ΤΟ f r ε ΝΑΙ Κ ΘεΤΟ ΣΤΗΝ επιφ ΝεΙΑ Ο ΜΟΝΑ ΙΑ Ο Κ ΘεΤΟ Ι ΝΥΣΜΑ ε ΝΑΙ ΤΟ f r f r. Ρ ΣΚΟΥΜε ΤΟ f r ΣΤΟ ΟΣΜ ΝΟ ΣΗΜε Ο fx_, y_, z_ x 2 y 2 x z 4 ttt ReplaceAll Dfx, y, z, x, Dfx, y, z, y, Dfx, y, z, z, x 2, y 2, z 3 2, 4, 4 Ο Μ ΚΟ ΤΟΥ ΙΑΝ ΣΜΑΤΟ ε ΝΑΙ ttt 6 1 3, 2 3, 2 3 Normalize2, 4, 4 1 3, 2 3, , 2 3, 2 3 ε ΝΑΙ ΤΟ ΖΗΤΟ ΜεΝΟ Ι ΝΥΣΜΑ ΜΑ 3 Μ.1 Α ΜεΛεΤΗΘε Η ΣΥΝ ΡΤΗΣΗ f x, y a x 2 b y 2 Ω ΠΡΟ ΤΑ ΑΚΡ ΤΑΤΑ ΓΙΑ ΤΙ Ι φορε ΤΙΜ ΤΩΝ a ΚΑΙ b. ΣΗ fx_, y_ a x 2 b y 2 a x 2 b y 2 Α ΠΙΘΑΝ ΑΚΡ ΤΑΤΑ ε ΝΑΙ ΟΙ Λ ΣεΙ ΤΩΝ εξισ ΣεΩΝ

3 lpa3.nb 3 fxx, y 0 fyx, y 0 Ρ ΣΚΟΥΜε SolveDfx, y, x 0, Dfx, y, y 0, x, y x 0, y 0 ΙΑ ΝΑ Ο Με ΤΙ ε ΟΥ ΑΚΡ ΤΑΤΑ ε ΝΑΙ ΤΑ ΣΗΜε Α ΑΥΤ ΒΡ ΣΚΟΥΜε ΤΗΝ ΟΡ ΖΟΥΣΑ ΤΟΥ Π ΝΑΚΑ tt fxx, fxy, fyx, fyy MatrixForm h fxx fyx fxy fyy h DetDDfx, y, x, x, DDfx, y, x y, DDfx, y, y, x, DDfx, y, y, y 4 a b ΡΑ 1. Ν h 4 a b ε ΝΑΙ ΑΡΝΗΤΙΚ Τ Τε ΤΟ ΣΗΜε Ο 0, 0 ε ΝΑΙ ΣΑΓΜΑΤΙΚ ΣΗΜε Ο ΚΑΙ h 4 a b 0 ΑΝ a ΚΑΙ b ε ΝΑΙ ετερ ΣΗΜΑ ΗΛΑ a 0, b 0 ΚΑΙ a 0, b 0 2. Ν h 4 a b a ΚΑΙ b ΟΜ ΣΗΜΑ ε ΝΑΙ ΘεΤΙΚ ΚΑΙ a 0 ΚΑΙ b 0 ΤΟ ΣΗΜε Ο 0, 0 ε ΝΑΙ ΤΟΠΙΚ ελ ΧΙΣΤΟ 3. Ν h 4 a b a ΚΑΙ b ΟΜ ΣΗΜΑ ε ΝΑΙ ΘεΤΙΚ ΚΑΙ a 0 ΚΑΙ b 0 ΤΟ ΣΗΜε Ο 0, 0 ε ΝΑΙ ΤΟΠΙΚ ΜεΓΙΣΤΟ. ΜΑ 4 Μ.1 Α ΒΡεΘε ΙΑΝΥΣΜΑΤΙΚ ΣΥΝ ΡΤΗΣΗ g ΣΤε F g ΠΟΥ F E1, E2, E3. ΣΗ ΠΟΛΟΓ ΖΟΥΜε ΤΟΝ ΣΤΡΟΒΙΛΙΣΜ ΤΟΥ ΙΑΝ ΣΜΑΤΟ g g1, g2, g3 ΠΟΥ ε ΝΑΙ Η ΟΡ ΖΟΥΣΑ ΤΟΥ Π ΝΑΚΑ aa i j k x y z g1 g2 g3 ΚΑΙ ΤΟΝ εξισ ΝΟΥΜε Με ΤΟ Ι ΝΥΣΜΑ F. Ρ ΣΚΟΥΜε ΤΟ Σ ΣΤΗΜΑ ΤΩΝ εξισ ΣεΩΝ g3 y z g1 z x g2 x y g2 E1 g3 E2 g1 E3 Α ΛΥΣΟΥΜε ΤΟ Σ ΣΤΗΜΑ ΑΥΤ. ΙΑ ΝΑ ΒΡΟ Με ΜΙΑ ΜεΡΙΚ Λ ΣΗ Θ ΤΟΥΜε g3 0 Ο Σ ΣΤΗΜΑ Γ ΝεΤΑΙ z g2 E1 g1 E1 z g2 x y g1 E1

4 4 lpa3.nb ΛΟΚΛΗΡ ΝΟΥΜε ΤΙ Ο ΠΡ Τε g2 E1 z g1 E2 z E1 z E2 z ΡΑ g2 E1 z h1x, y g1 E2 z h2x, y E1 z h1x, y E2 z h2x, y Ι Λ ΣεΙ ΑΥΤ ΤΙ ΑΝΤΙΚΑΘΙΣΤΟ Με ΣΤΗΝ ΤΡ ΤΗ ΑΠ ΤΙ ΙΑφΟΡΙΚ εξισ ΣεΙ E1 z h1 x, y E2 z h2 x, y E3 x y h1 x, y h2 x, y E3 x y ΠεΙ Ψ ΧΝΟΥΜε ΓΙΑ ΜεΡΙΚ Λ ΣΗ Θ ΤΟΥΜε h2 x, y 0 h1 x, y E3 x ΛΟΚΛΗΡ ΝΟΥΜε ΚΑΙ ΒΡ ΣΚΟΥΜε h1 E3 x ΡΑ ΤΟ Ι ΝΥΣΜΑ ε ΝΑΙ g E2 z, E1 z E3 x, 0 ΝΟΥΜε ΜΙΑ επαλλ ΘεΥΣΗ DE1 z E3 x, z E1 DE2 z, z E2 DE1 z E3 x, x DE2 z, y E3 True True True Ν G ε ΝΑΙ Η ΓεΝΙΚ Λ ΣΗ Τ Τε G g φ r E2 z φx r, E1 z E3 x φy r, φz r ΠΟΥ φ r ΜΙΑ ΟΠΟΙΑ ΠΟΤε ΣΥΝ ΡΤΗΣΗ ΤΟΥ r Ρ ΓΜΑΤΙ επει φ r 0 ΧΟΥΜε G g φ r g φ r g

5 lpa3.nb 5 ΜΑ 5 Μ.2 Α ΑΠΟ ειχθε ΤΙ ΑΝ Η ΙΑΝΥΣΜΑΤΙΚ ΣΥΝ ΡΤΗΣΗ r t ε ΝΑΙ Κ ΘεΤΗ ΣΤΗΝ ΠΑΡΑΓΩΓ ΤΗ Τ Τε ΧεΙ ΣΤΑΘεΡ Μ ΤΡΟ ΚΑΙ ΑΝΤΙΣΤΡ φω. Π ΣΗ ΝΑ ΑΠΟ ειχθε ΤΙ Η ΣΥΝ ΡΤΗΣΗ r t ΧεΙ ΣΤΑΘεΡ Ιε ΘΥΝΣΗ ε Ν ΚΑΙ Μ ΝΟ ε Ν ε ΝΑΙ ΠΑΡΑΛΛΗΛΗ ΠΡΟ ΤΗΝ ΠΑΡΑΓΩΓ ΤΗ. Π ειξη Ν Η ΣΥΝ ΡΤΗΣΗ ε ΝΑΙ Κ ΘεΤΗ ΣΤΗΝ ΠΑΡ ΓΩΓ ΤΗ Τ Τε r t r t 0 Ο ΟΛΟΚΛ ΡΩΜΑ ΤΗ ΣΧ ΣΗ ΑΥΤ ε ΝΑΙ 1 2 r 2 c ΡΑ r 2 c ΝΤ ΣΤΡΟφΑ. ΠΟΘ ΤΟΥΜε ΤΙ ΤΟ Ι ΝΥΣΜΑ ΧεΙ ΣΤΑΘεΡ Μ ΤΡΟ r 2 c ΗΛΑ 1 2 r2 c ΑΡΑΓΩΓ ΖΟΥΜε ΚΑΙ ΒΡ ΣΚΟΥΜε r t r t 0 ΡΑ ΤΑ ΙΑΝ ΣΜΑΤΑ r t ΚΑΙ r t ε ΝΑΙ Κ ΘεΤΑ ΜεΤΑΞ ΤΟΥ ΙΑ ΤΟ ε ΤεΡΟ ΣΚ ΛΟ ΤΟΥ Θ ΜΑΤΟ ΥΠΟΘ ΤΟΥΜε ΤΙ ΤΟ Ι ΝΥΣΜΑ r t ΧεΙ ΣΤΑΘεΡ Ιε ΘΥΝΣΗ. Ο Ι ΝΥΣΜΑ r t r t ε ΝΑΙ ΑΝΑΛΟΓΟ ΤΟΥ r t ΡΑ ΧεΙ ΚΑΙ ΑΥΤ ΣΤΑΘεΡ Ιε ΘΥΝΣΗ. ΠΙ ΠΛ ΟΝ ΧεΙ Μ ΤΡΟ ΣΟ Με ΤΗΝ ΜΟΝ Α. ΡΑ ε ΝΑΙ ΣΤΑΘεΡ ΚΑΙ επομ ΝΩ Η ΠΑΡΑΓΩΓ ΤΟΥ ε ΝΑΙ ΜΗ Ν. ΧΟΥΜε d dt r r 1 r 2 r d dt r r d dt r 0 r d dt r r d dt r 0 ΟΛΛΑΠΛΑΣΙ ΖΟΥΜε ΤΗΝ εξ ΣΩΣΗ ΑΥΤ εξωτερικ Με ΤΟ Ι ΝΥΣΜΑ r ΚΑΙ ΠΑ ΡΝΟΥΜε r r d dt r r d dt r r r d dt r r r d dt r r r d dt r 0 ΚΑΙ επομ ΝΩ r d dt r 0 ΝΤ ΣΤΡΟφΑ ΥΠΟΘ ΤΟΥΜε ΤΙ r d dt r 0 Ο Ι ΝΥΣΜΑ r t r t ΧεΙ ΣΤΑΘεΡ Μ ΤΡΟ ΣΟ Με ΤΗΝ ΜΟΝ Α ΑΝ ΑΠΟ ε ΞΟΥΜε ΤΙ ε ΝΑΙ ΣΤΑΘεΡ Τ Τε ΧεΙ ΚΑΙ ΣΤΑΘεΡ Ιε ΘΥΝΣΗ ΚΑΙ επομ ΝΩ ΚΑΙ ΤΟ r t ΧεΙ ΣΤΑΘεΡ Ιε ΘΥΝΣΗ. ΑΡΑΓΩΓ ΖΟΥΜε ΚΑΙ ΧΟΥΜε d dt r r 1 r 2 dr dt r 1 r d dt r 1 r d 2 r 3 dt r dr r r dt 1 r d 2 r 3 dt r dr r r dt 1 r r d r 3 dt r r d r dt r 1 r d r r 3 dt r 0 ΡΑ ΧεΙ ΣΤΑΘεΡ Ιε ΘΥΝΣΗ. ΤΙ ΠΑΡΑΠ ΝΩ εξισ ΣεΙ Κ ΝΑΜε ΧΡ ΣΗ ΤΩΝ ΣΧ ΣεΩΝ r r r 2 ΚΑΙ r d r dt r d r ΠΟΥ ΒΓΑ ΝεΙ ΑΝ ΠΑΡΑΓΩΓ ΣΟΥΜε ΤΗΝ ΠΡ ΤΗ. dt

6 6 lpa3.nb ΜΑ 6 Μ.3 ΝεΤΑΙ Η επιφ ΝεΙΑ Με Ι ΝΥΣΜΑ Θ ΣΗ r r u, v xu, v hu Cosv, yu, v hu Sinv, zu, v f u Α ε ΞεΤε ΤΙ Η επιφ ΝεΙΑ ΠΑΡΙΣΤ ΝεΙ ΤΗΝ ΠεΡΙΣΤΡΟφ ΤΗ ΚΑΜΠ ΛΗ y hu, zu fu ΣΤΟ YOZ επ Πε Ο, Γ ΡΩ ΑΠ ΤΟΝ ΞΟΝΑ. Α ΒΡεΘε Η επιφ ΝεΙΑ ΑΝ Η ΚΑΜΠ ΛΗ ΑΥΤ ε ΝΑΙ ΝΑ Κ ΚΛΟ Κ ΝΤΡΟΥ 0, a, 0 ΚΑΙ ΑΚΤ ΝΑ Ρ a Τ ΡΟ. Α ΒΡε Τε ΤΟ Κ ΘεΤΟ Ι ΝΥΣΜΑ ΣΤΗΝ επιφ ΝεΙΑ ΤΟΥ Τ ΡΟΥ ΚΑΙ ΤΟ εμβα ΟΝ ΤΗ επιφ ΝεΙΑ. Π ΝΤΗΣΗ Α ΒΡΟ Με ΤΙ ΠΡΟΒΟΛ ΤΗ επιφ ΝεΙΑ ΣΤΑ ΣΥΝΤεΤΑΓΜ ΝΑ επ Πε Α. xu, v hu Cosv yu, v hu Sinv zu, v fu Cosv hu hu Sinv fu ΤΟ επ Πε Ο XOZ ΧΟΥΜε y 0 ΚΑΙ ΡΑ ΧΟΥΜε Solveyu, v 0, v Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. v 0 ΙΑ v 0 ΟΙ εξισ ΣεΙ ΤΙ επιφ ΝεΙΑ Γ ΝΟΝΤΑΙ xxu, v ReplaceAllhu Cosv, v 0 yyu, v ReplaceAllhu Sinv, v 0 zzu, v ReplaceAllfu, v 0 hu 0 fu ΠΟΜ ΝΩ Η ΠΡΟΒΟΛ ΤΗ επιφ ΝεΙΑ ΧεΙ Ι ΝΥΣΜΑ Θ ΣΗ r hu, 0, fu ΗΛΑ ΜΙΑ ΚΑΜΠ ΛΗ. ΤΟ επ Πε Ο YOZ ΧΟΥΜε x 0 ΚΑΙ ΡΑ ΧΟΥΜε Solvexu, v 0, v Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. v Π 2, v Π 2 ΙΑ v Π ΟΙ εξισ ΣεΙ ΤΙ επιφ ΝεΙΑ Γ ΝΟΝΤΑΙ 2

7 lpa3.nb 7 xxu, v ReplaceAllhu Cosv, v Π 2 yyu, v ReplaceAllhu Sinv, v Π 2 zzu, v ReplaceAllfu, v Π 2 0 hu fu ΚΑΙ Η ΠΡΟΒΟΛ ΤΗ επιφ ΝεΙΑ ΧεΙ Ι ΝΥΣΜΑ Θ ΣΗ r 0, hu, fu ΗΛΑ Η ΙΑ ΚΑΜΠ ΛΗ. Ο ε ΤεΡΟ ερ ΤΗΜΑ. Κ ΚΛΟ ΧεΙ ΤΗΝ εξ ΣΩΣΗ Ρ a y a 2 z 2 Ρ 2 Ρ φουμε ΤΗΝ ΠεΡΙφ ΡεΙΑ ΑΥΤ Σε ΠΑΡΑΜεΤΡΙΚ ΜΟΡφ yu Ρ Cosu a zu Ρ Sinu a Ρ Cosu Ρ Sinu Ρ ΓΜΑΤΙ ΑΥΤ ε ΝΑΙ Η ΣΩΣΤ Ι ΤΙ Simplifyyu a 2 zu 2 Ρ 2 True ΠΟΜ ΝΩ Η ΟΣΜ ΝΗ ΒΡ ΣΚεΤΑΙ ΑΝ Θ ΣΟΥΜε fu Ρ Sinu hu a Ρ Cosu Ρ Sinu a Ρ Cosu Ι ΠΑΡΑΜεΤΡΙΚ εξισ ΣεΙ ΤΟΥ Τ ΡΟΥ ε ΝΑΙ xu, v a Ρ Cosu Cosv yu, v a Ρ Cosu Sinv zu, v Ρ Sinu a Ρ Cosu Cosv a Ρ Cosu Sinv Ρ Sinu Ρ ΣΚΟΥΜε ΤΟ Κ ΘεΤΟ Ι ΝΥΣΜΑ ΠΟΥ ε ΝΑΙ ΤΟ Dxu, v, yu, v, zu, v, u Dxu, v, yu, v, zu, v, v r u r v Ρ ΣΚΟΥΜε Ρ Cosv Sinu, Ρ Sinu Sinv, Ρ Cosu a Ρ Cosu Sinv, a Ρ Cosu Cosv, 0 r u Ρ Cosv Sinu, Ρ Sinu Sinv, Ρ Cosu r v a Ρ Cosu Sinv, a Ρ Cosu Cosv, 0 Ο εξωτερικ ΓΙΝ ΜεΝΟ ΤΩΝ Ο ΙΑΝΥΣΜ ΤΩΝ ε ΝΑΙ Η ΟΡ ΖΟΥΣΑ ΤΟΥ Π ΝΑΚΑ

8 8 lpa3.nb MatrixFormi, j, k, Ρ Cosv Sinu, Ρ Sinu Sinv, Ρ Cosu, a Ρ Cosu Sinv, a Ρ Cosu Cosv, 0 i j k Ρ Cosv Sinu Ρ Sinu Sinv Ρ Cosu a Ρ Cosu Sinv a Ρ Cosu Cosv 0 aa i j k Ρ Cosv Sinu Ρ Sinu Sinv Ρ Cosu a Ρ Cosu Sinv a Ρ Cosu Cosv 0 i, j, k, Ρ Cosv Sinu, Ρ Sinu Sinv, Ρ Cosu, a Ρ Cosu Sinv, a Ρ Cosu Cosv, 0 CollectDetaa, i, j, k, Simplify i Ρ Cosu a Ρ Cosu Cosv k Ρ a Ρ Cosu Sinu j Ρ Cosu a Ρ Cosu Sinv aaa Ρ Cosu a Ρ Cosu Cosv, Ρ Cosu a Ρ Cosu Sinv, Ρ a Ρ Cosu Sinu Ρ Cosu a Ρ Cosu Cosv, Ρ Cosu a Ρ Cosu Sinv, Ρ a Ρ Cosu Sinu Ο Κ ΘεΤΟ Ι ΝΥΣΜΑ ε ΝΑΙ aaa Ρ Cosu a Ρ Cosu Cosv, Ρ Cosu a Ρ Cosu Sinv, Ρ a Ρ Cosu Sinu Ο Μ ΚΟ ΤΟΥ ΙΑΝ ΣΜΑΤΟ ΑΥΤΟ ε ΝΑΙ SimplifyΡ Cosu a Ρ Cosu Cosv 2 Ρ Cosu a Ρ Cosu Sinv 2 Ρ a Ρ Cosu Sinu 2 Ρ 2 a Ρ Cosu 2 Ο ΖΗΤΟ ΜεΝΟ εμβα Ν ε ΝΑΙ ΤΟ ΟΛΟΚΛ ΡΩΜΑ ΤΗ ΣΥΝ ΡΤΗΣΗ ΑΥΤ. Ρ ΣΚΟΥΜε IntegrateΡ a Ρ Cosu, u, 0, 2 Π, v, 0, 2 Π 4 a Π 2 Ρ 4 a Π 2 Ρ 2 ΠΑ 2 ΠΡ

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

d u d dt u e u d dt e u d u 1 u dt e 0 2 e Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο

Διαβάστε περισσότερα

Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη.

Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Κυ ρι ε ε λε η σον Ἦχος Πα Α µην Π α σα πνο η αι νε σα τω τον Κυ ρι ον Ἕτερον. Π α σα πνο η αι νε σα α τω τον Κυ υ ρι ι ον 1 ΙΩΑΝΝΟΥ Α. ΝΕΓΡΗ

Διαβάστε περισσότερα

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 10η Δια λεξη Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα

Διαβάστε περισσότερα

6ο Μάθημα Πιθανότητες

6ο Μάθημα Πιθανότητες 6ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτη σεις Α1 Α4 να γρα ψετε στο τετρα διο σας τον αριθμο της ερω τησης και

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

1.3 Εσωτερικό Γινόμενο

1.3 Εσωτερικό Γινόμενο Εσωτερικό Γινόμενο η Μορφή Ασκήσεων: Μας ζητούν να υπολοίσουμε το εσωτερικό ινόμενο δύο διανυσμάτων Έστω α, β δύο διανύσματα του επιπέδου με α =, β = π ( αβ, ) = Να υπολοισθούν τα εσωτερικά ινόμενα: i

Διαβάστε περισσότερα

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ ι ε α τ Τ εγνα α α ετ κ λε τ υργικ ο τημα Η οτ ρ α τ υ αρ Γ ζε τ τη Φ λα δ α απ τ α φ ιτητ τ υ Πα ετ τημ υ τ υ λ νκ ξεκ νη ε αν μ α τ ρ τ Θε α να δημ υργηθε ακαλ τερ Ενα τ υ αμτ ρε ααντατ κρ ετα καλ τερα

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 11η Δια λεξη

Θεωρι α Γραφημα των 11η Δια λεξη Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):

Διαβάστε περισσότερα

Ο Απ λλων αλαμαρι αν ρ εται στην εθνικ κατηυ ρ α γυναικι ν

Ο Απ λλων αλαμαρι αν ρ εται στην εθνικ κατηυ ρ α γυναικι ν Ω α μ Ξ Π ΦΑ ΡΚΩ Ν Ξ Π Γ Τ κνκ Γ μ Ν ψ ο Ω Ω κ ρ Θ Κ ΓΩ Γ Μ ΡΥ χ κ φ Θ Γ Α Ν Ω Γ Π Βθ Ω Π Ν Ω Ν Κ γρ Π Ρ Ρ γ γ Γ Ρ Π Π Φ ΠΡ Φ Γ ΠΕΡ ν ν α Ε μο αν ρ ετα σ ν Γ εθνκ κατγορ α νρ ν ΔΡΩ ΡΔ Τ Μ Γ ΥΡ Χ Ρ Τθ Ρ

Διαβάστε περισσότερα

14/5/ /12/ /5/ /5/2007

14/5/ /12/ /5/ /5/2007 ΜΕΤΑΦΟΡΙΚΕΣ ΕΠ ΙΧ ΕΙΡΗ ΣΕΙΣ FINDA Α.Ε. ΕΤΗΣΙΕΣ Ο ΙΚ Ο Ν Ο Μ ΙΚ ΕΣ Κ Α ΤΑ ΣΤΑ ΣΕΙΣ ΣΥ Μ Φ Ω Ν Α Μ Ε ΤΑ ΙΕΘ Ν Η Π Ρ Ο ΤΥ Π Α Χ Ρ ΗΜ Α ΤΟ Ο ΙΚ Ο Ν Ο Μ ΙΚ ΗΣ Π Λ ΗΡ Ο Φ Ο Ρ ΗΣΗΣ ΤΗΣ Χ Ρ ΗΣΗΣ Π Ο Υ ΕΛ ΗΞ Ε

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

ΠΡΟΚΗΡΥΞΗ. ΘΕΜΑ: «Προκήρυξη πλήρωσης θέσεων Προϊσταμένων Νηπιαγωγείων και Προϊσταμένων Δημοτικών Σχολείων Π.Ε. Καρδίτσας»

ΠΡΟΚΗΡΥΞΗ. ΘΕΜΑ: «Προκήρυξη πλήρωσης θέσεων Προϊσταμένων Νηπιαγωγείων και Προϊσταμένων Δημοτικών Σχολείων Π.Ε. Καρδίτσας» ΛΛΗ Ι Η ΔΗΜΟ Ρ Ι ΥΠΟΥΡ ΙΟ Π ΙΔ Ι Σ Ρ Υ Σ Ι ΘΡΗΣ ΥΜ Ω Π ΡΙ Ρ Ι Η ΔΙ ΥΘΥ ΣΗ Π/ΘΜΙ Σ & Δ ΘΜΙ Σ Π ΙΔ ΥΣΗΣ Θ ΣΣ ΛΙ Σ ΔΙ ΥΘΥ ΣΗ Π ΘΜΙ Σ Π ΙΔ ΥΣΗΣ ΡΔΙ Σ Σ ΜΗΜ Π ΙΔ Υ Ι Ω Θ Μ Ω χ Δ νση : Πλ σ ή Πόλη : 43132 ί

Διαβάστε περισσότερα

Πρόλογος στην ελληνικ κδοση... xvii. Πρόλογος... xix

Πρόλογος στην ελληνικ κδοση... xvii. Πρόλογος... xix ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος στην ελληνικ κδοση................................. xvii Πρόλογος................................................... xix M ρος Πρ το Π Σ ΠΡΟΕΤΟΙΜΑΖΟΥΜΕ ΤΑ Ε ΟΜΕΝΑ ΓΙΑ ΑΝΑΛΥΣΗ 1. Π

Διαβάστε περισσότερα

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28

Διαβάστε περισσότερα

JEAN-CHARLES BLATZ 02XD34455 01RE52755

JEAN-CHARLES BLATZ 02XD34455 01RE52755 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096

Διαβάστε περισσότερα

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς 9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 5η Δια λεξη

Θεωρι α Γραφημα των 5η Δια λεξη Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras ΔΕΛΤΙΟ ΤΥΠΟΥ Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras Στο πλαι룱綟σιο της Παγκο룱綟 σμιας Εβδομα룱綟 δας Επιχειρηματικο룱綟 τητας*, o ΕΣΥΝΕΔΕ και η Ομοσπονδι룱綟α ΕΣΥΝΕ, σε συνεργασι룱綟α

Διαβάστε περισσότερα

Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ

Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ TΑ TΡΙΑ ΣΥΝΗΘΗ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ O P(,, ) O φ φ φ P(, φ, ) P(,, φ) O φ (α) (β) (γ) (α) Κατεσιαό σύστηµα συτεταγµέω,,. (σχήµα (α)) (β) Σύστηµα

Διαβάστε περισσότερα

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 2η Δια λεξη

Θεωρι α Γραφημα των 2η Δια λεξη Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος 2015 23 / 47 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) =

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

20/5/ /5/ /5/ /5/2006

20/5/ /5/ /5/ /5/2006 ΜΕΤΑΦΟΡΙΚΕΣ ΕΠ ΙΧ ΕΙΡΗ ΣΕΙΣ FINDA Α.Ε. ΥΠΟ Ε Κ Κ Α Θ Α Ρ Ι Σ Η ΕΤΗΣΙΕΣ Ο ΙΚ Ο Ν Ο Μ ΙΚ ΕΣ Κ Α ΤΑ ΣΤΑ ΣΕΙΣ ΕΚ Κ Α Θ Α Ρ ΙΣΗΣ ΣΥ Μ Φ Ω Ν Α Μ Ε ΤΑ ΙΕΘ Ν Η Λ Ο Γ ΙΣΤΙΚ Α Π Ρ Ο ΤΥ Π Α Χ Ρ ΗΜ Α ΤΟ Ο ΙΚ Ο Ν Ο

Διαβάστε περισσότερα

ΠΟΛΥΕΛΕΟΣ ''Λόγον Ἀγαθόν''

ΠΟΛΥΕΛΕΟΣ ''Λόγον Ἀγαθόν'' «ΑΕΛΙΟΣ ΧΟΡΟΣ» Ι.. ΣΙΩΟΣ ΕΤΡΑΣ ΟΛΥΕΛΕΟΣ ''Λόγον Ἀγθόν'' Ἦχος 1. ο γο ον γ θο ον Α λ λη η η λ Ε ξη ρ υ ξ το η η η κ ρ δ µ λο ο ο γον γ θον Χ ρ πν τ ν σ σ π νυ υ υ µνη η η η τ µη η η τηρ Χρ στ τ Θ η η η

Διαβάστε περισσότερα

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ Ε ο ζ δ μ ΝΝ λ Α σ λ Π Ι Λ Ρ υ λ δ ο Ρ β ε Δ Ο υ Π ο π λ ρ υ Ι ξ ρ ρ Ν μ υ β γ α ρ δ ψ λ ε Δ υ λ Π Κ Ο υ ξ δ Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ

Διαβάστε περισσότερα

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης. Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 9η Δια λεξη

Θεωρι α Γραφημα των 9η Δια λεξη Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα

Διαβάστε περισσότερα

ΧΙΟΣ ΕΚΕΜΒΡΙΟΣ 2001. κδοση:

ΧΙΟΣ ΕΚΕΜΒΡΙΟΣ 2001. κδοση: ΧΙΟΣ ΕΚΕΜΒΡΙΟΣ 2001 κδοση: Ροδοκαν κη 18, Χ ος 82100, Τηλ.: 0271 0 41287 Σχεδιασµός - Επιµ λεια: Γεωργ α Λουκ -Μ τση Ηλεκτρονικ σελιδοπο ηση: Ηλι να Στεφ κη Π νακας εξ φυλλου: ννα Μιχαλ κη-μιχ λου (1900-1900)

Διαβάστε περισσότερα

Smart Shop uu ss ii nn g g RR FF ii dd Παύλος ΚΚ ατ σσ αρ όό ς Μ Μ MM Ε Ε ΞΞ ΥΥ ΠΠ ΝΝ ΟΟ ΜΜ ΑΑ ΓΓ ΑΑ ΖΖ Ι Ι ΡΡ ΟΟ ΥΥ ΧΧ ΙΙ ΣΣ ΜΜ ΟΟ ΥΥ E E TT HH N N ΧΧ ΡΡ ΗΗ ΣΣ ΗΗ TT OO Y Y RR FF II DD Απευθύνεται σσ

Διαβάστε περισσότερα

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du = ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos

Διαβάστε περισσότερα

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y ΛΥΣΕΙΣ 6. Οι ασκήσεις από το βιβλίο των Marsden - romba. 7.5. Θεωρούμε την παραμετρικοποίηση rx, y = x, y, a 2 x 2 y 2, όπου το x, y διατρέχει τον δίσκο στο xy-επίπεδο που ορίζεται από την x 2 +y 2 a 2.

Διαβάστε περισσότερα

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων ΚΕΦΑΛΑΙΟ 3 Βασικά Χαρακτηριστικά Αριθμητικών εδομένων Α ντι κείμε νο του κε φα λαί ου εί ναι: Να κα τα νο ή σου με τα βα σι κά χαρα κτη ρι στι κά των α ριθ μη τι κών δεδο μέ νων (τά ση, δια σπο ρά, α συμ

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Ιο νιο Πανεπιστη μιο, Κε ρκυρα 17-5-2012 Παύλος Σταμπουλι δης, Με λος ΔΣ Hellenic Startup

Διαβάστε περισσότερα

2ο Μάθημα Πιθανότητες

2ο Μάθημα Πιθανότητες 2ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 2ο Μάθημα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ (ΠΕΡΙΕΧΕΙ ΑΚΗΕΙ ΚΑΙ ΑΠΟ ΣΗΝ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ Ε.Μ.Ε) ΑΚΗΗ 1 Έςτω ςυνεήσ ςυνάρτηςη :RR, με (0)=2 η οποία ικανοποιεί τη ςέςη ( ) 4 = 6 ια κά ε R α) Να βρείτε τισ τιμέσ (2) και (-2) β) Να απο είξετε τι υπάρει

Διαβάστε περισσότερα

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Ο Ε Υ Τ Ι Κ Ο Ι Ο Ρ Υ Μ Α Κ Α Β Α Λ Α Σ Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ν Ε Φ Α Ρ Μ Ο Γ Ώ Ν Τ Μ Η Μ Α Η Λ Ε Κ Τ Ρ Ο Λ Ο Γ Ι Α Σ i l t r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ ΑΥΤΟΜΑΤ

Διαβάστε περισσότερα

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Η εταιρεία Kiefer ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Πηγε ς Ενε ργειας στην Ελλα δα. Αναλαμβα νει ε ργα ως EPC

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα.

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΔΣ6. Δίνονταί οί πίνακες Σ1(Κ, Κ) καί Π1(Κ, Κ) που περίέχουν τα αποτελέσματα των

Διαβάστε περισσότερα

Προσοµοίωση Ανάλυση Απ ο τ ε λε σµ άτ ω ν ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Ανάλυση Απ ο τ ε λε σµ άτ ω ν Τα απ ο τ ε λ έ σ µ ατ α απ ό τ η ν π αρ αγ ω γ ή κ αι τ η χ ρ ή σ η τ υ χ αί ω ν δ ε ι γ µ

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

Πτερυγιοφόροι σωλήνες

Πτερυγιοφόροι σωλήνες ΛΕΒΗΤΕΣ ΑΤΜΟΥ Πτερυγιοφόροι σωλήνε ΑΤΜΟΛΕΒΗΤΕΣ Εύκολη λειτουργία και συντήρηση Για όλου του τύπου καυήρων και καυσίµων Ο οπίσθιο θάλαµο αναροφή καυσαερίων είναι λυόµενο, γεγονό που επιτρέπει τον πλήρη

Διαβάστε περισσότερα

Αποτελεσματικός Προπονητής

Αποτελεσματικός Προπονητής ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΜΑΘΗΜΑ ΜΕ ΒΑΣΗ ΤΗΝ ΠΡΟΤΑΣΗ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΜΑΘΗΜΑΤΑ A- KAI A+

ΠΡΟΤΥΠΟ ΜΑΘΗΜΑ ΜΕ ΒΑΣΗ ΤΗΝ ΠΡΟΤΑΣΗ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΜΑΘΗΜΑΤΑ A- KAI A+ ΠΡΟΤΥΠΟ ΜΑΘΗΜΑ ΜΕ ΒΑΣΗ ΤΗΝ ΠΡΟΤΑΣΗ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΜΑΘΗΜΑΤΑ A- KAI A+ Περιορισµοί Προτεραιότητα θα πρέπει να δοθεί στη δηµιουργία ψηφιακών προπτυχιακών µαθηµάτων καθώς απευθύνονται σε σαφώς µεγαλύτερο «κοινό».

Διαβάστε περισσότερα

των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03

των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03 των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚOΙ ΝΩΩ ΝΙ ΚΩΩΝ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα

Διαβάστε περισσότερα

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve

Διαβάστε περισσότερα

) 0 ) 2 & 2 & 0 + 6! ) & & & & & ), Γ , Γ 8 (?. Κ Ε 7 ) ) Μ & 7 Ν & & 0 7 & & Γ 7 & & 7 & Ν 2 & Γ Γ ( & & ) Η ++. Ε Ο 9 8 ) 8& & ) & Ε

) 0 ) 2 & 2 & 0 + 6! ) & & & & & ), Γ , Γ 8 (?. Κ Ε 7 ) ) Μ & 7 Ν & & 0 7 & & Γ 7 & & 7 & Ν 2 & Γ Γ ( & & ) Η ++. Ε Ο 9 8 ) 8& & ) & Ε #! % & ( + ),./! +./+., ( ( 1 #23 + + ), 1 (453.+ 6.+ 6, 7 1 89 3.! :.! :, 1 (453.. / 2 ; ? Α 7 ; Β / / 4 > (? / / ) 8 Χ :/. ++.. +. : 6 : ) )4 ) ) ( 4 )Φ 7 % 6 : : +.. ++. ) & & & & ), Γ, Γ 8 (?.

Διαβάστε περισσότερα

VAGONETTO. Ωρες: 09:00 17:00. t: (+30) e: w: Kρατήσεις: Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας

VAGONETTO. Ωρες: 09:00 17:00. t: (+30) e: w:  Kρατήσεις: Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας VAGONETTO Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας Ωρες: 09:00 17:00 Kρατήσεις: t: (+30) 2265 078819 e: info@vagonetto.gr w: www.vagonetto.gr 5 1 o χ λ μ Ε. Ο. Λ α μ ί α ς Ά μ φ ι σ σ α ς Τ. Κ. 3 3

Διαβάστε περισσότερα

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Συναρτήσεις Έστω συνάρτηση γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Να δείξετε ότι (), για κάθε R ( ) +, για κάθε R Έστω συνάρτηση µε πεδίο ορισµού και σύνολο τιµών το R και τέτοια ώστε ( ) ( ) e +,

Διαβάστε περισσότερα

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΤΗ ΑΓΙΑ ΚΑΙ ªΕΓΑΛΗ ΔΕΥΤΕΡΑ. Eις τους Αίνους. Ε ρ χο με νος ο Κυ ρι ος προς το ε κου ου σι ο ον πα α α θος τοις Α πο στο λοις ε λε γε εν εν τη η η η ο ο ο ο

Διαβάστε περισσότερα

Τ Ο Υ Π Α Γ Ι Α Τ Η Β Υ Ρ Ω Ν Λ Ο Γ Α Ρ Ι Α Ε Μ Ο Ι Ε Κ Μ Ε Τ Α Λ Ε Υ Ε Ε Ω Ν ΚΑ Ι Ο Λ Ο Γ Α Ρ Ι Α Ε Μ Ο Ε Α Π Ο Τ Ε Λ Ε Ε Μ Α Τ Α Χ Ρ Η Ε Ε Ω Ε

Τ Ο Υ Π Α Γ Ι Α Τ Η Β Υ Ρ Ω Ν Λ Ο Γ Α Ρ Ι Α Ε Μ Ο Ι Ε Κ Μ Ε Τ Α Λ Ε Υ Ε Ε Ω Ν ΚΑ Ι Ο Λ Ο Γ Α Ρ Ι Α Ε Μ Ο Ε Α Π Ο Τ Ε Λ Ε Ε Μ Α Τ Α Χ Ρ Η Ε Ε Ω Ε Τ. Ε. I. E X ΟΛΗ: Τ Μ Η Μ Α : ΚΑΒΑΛΑΕ α ί Ο Ι Κ Η Ε Η Ε & Ο Ι Κ Ο Ν Ο Μ Ι Α Ε Λ Ο Γ Ι Ε Τ Ι Κ Η Ε Π Τ Υ Χ Ι Α Κ Η Εί= ΓΑΕΙΑ Τ Ο Υ Π Α Γ Ι Α Τ Η Β Υ Ρ Ω Ν Θ Ε Μ Α Λ Ο Γ Α Ρ Ι Α Ε Μ Ο Ι Ε Κ Μ Ε Τ Α Λ Ε Υ

Διαβάστε περισσότερα

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2011-2012 ΜαθηματικάγιαΟικονομολόγουςΙI-Μάθημα 7 ο - ΟΜΟΓΕΝΗΣ-ΠΕΠΛΕΓΜΕΝΕΣ-ΣΕΙΡΕΣ TAYLOR- McLAURIN ΚΛΙΣΗ-GRADIENT Εάν µια συνάρτηση f(x,y) έχει µερικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ MyΤeachers.gr ΟΝΟΜΑ : ΗΜΕΡΟΜΗΝΙΑ:./../.. ΒΑΘΜΟΣ : /100 ΔΙΑΡΚΕΙΑ : 180 ΛΕΠΤΑ ΘΕΜΑ Α ΘΕΜΑΤΑ Α1. Έστω μια συνάρτηση η οποία είναι συνεχής σε ένα διάστημα. Αν σε κάθε εσωτερικό σημείο του, τότε να δείξετε

Διαβάστε περισσότερα

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 7: Ακρότατα, τύπος Taylor Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Κλίση συνάρτησης f Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Αν σε κάθε σημείο Px, y,z ενός τμήματος Δ του χώρου μία τιμή, ορίζεται μια συνάρτηση. f x, y,z : Δ, Δ αντιστοιχίσουμε την οποία ονομάζουμε σημειακή

Διαβάστε περισσότερα

20/5/ /5/ /5/ /5/2005

20/5/ /5/ /5/ /5/2005 ΜΕΤΑΦΟΡΙΚΕΣ ΕΠ ΙΧ ΕΙΡΗ ΣΕΙΣ FINDA Α.Ε. ΥΠΟ Ε Κ Κ Α Θ Α Ρ Ι Σ Η ΟΙΚΟΝΟΜΙΚΕΣ ΚΑ Τ Α ΣΤ Α ΣΕΙΣ Γ ΙΑ Τ Η Ν Χ Ρ Η ΣΗ Π ΟΥ ΕΛ Η Ξ Ε Τ Η Ν 19.5.2006 ΠΕΡΙΕΧΟΜΕΝΑ Έ κ θ εσ η Eλέ γ χ ο υ Ε λεγ κ τ ώ ν 3 Κ α τ ά

Διαβάστε περισσότερα

ναπληρωματικι λη ιδικη αθηγητη αθηγητη τ υ μηματο ηλευτικη του Ι Δυτικη Ελλ δα με γ ωστικ αντικε μεν ε νολογικοι Πανεπι τη μ υ ι πρου π νακα απ δεκτ ν

ναπληρωματικι λη ιδικη αθηγητη αθηγητη τ υ μηματο ηλευτικη του Ι Δυτικη Ελλ δα με γ ωστικ αντικε μεν ε νολογικοι Πανεπι τη μ υ ι πρου π νακα απ δεκτ ν ΥΠ Υ Γ Ι ΠΑΙΔ Ι Σ Ρ Υ ΑΣ ΘΡ ΙΣΚ Υ Α Ω Λ ΓΙΚ ΠΑΙΔ Υ ΙΚ ΙΔ Υ ΔΥ ΙΚ Σ ΛΛ Δ Σ Ψ Α Σ Λ Υ Ι Σ ηλ Δ ν η Αλεξ νδρ υ Πληρ φ ρ ε Ζαγαρ π λ υ Α α ηλ φων Π τρα ι Α Π ι ι Πρ ακτικ λη ιδικη πταμελοι Επιτ π ι μφωνα με

Διαβάστε περισσότερα

AƒÃ... K Η Eƒ. π ƒã à π... ÎÈ Ú Î ÈÓÔ ÚÈÔ ÈÒÓ! Tόσα καλά το χρόνο αυτό όσα σπόρια στο ρόδι για τα 10 χρόνια του αλφα πι ISBN:

AƒÃ... K Η Eƒ. π ƒã à π... ÎÈ Ú Î ÈÓÔ ÚÈÔ ÈÒÓ! Tόσα καλά το χρόνο αυτό όσα σπόρια στο ρόδι για τα 10 χρόνια του αλφα πι ISBN: Tα κάλαντα (Xριστουγεννιάτικα και Πρωτοχρονιάτικα) είναι από το κείµενο του N.. Σωτηράκη H XΙΑΚΉ ΛΑïΚΉ MΟΎΣΑ ΣΤΑ KΆΛΑΝΤΑ. XIAKH EΠIΘEΩPHΣH τόµος 11ος, τεύχος 31ο, 1973. Nα σας τα πούµε; AƒÃHª π π ƒã Ã

Διαβάστε περισσότερα

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ

Διαβάστε περισσότερα

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, ΙΩΑΝΝΗΣ ΚΟΝΤΟΓΙΑΝΝΗΣ, ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ, ΙΟΥΝΙΟΣ 207 ΟΝΟΜΑ ΦΟΙΤΗΤΗ:.............................. Οδηγίες. Συμπληρώστε το όνομά

Διαβάστε περισσότερα

των Ξε να γών Ρόδου Ot04R14

των Ξε να γών Ρόδου Ot04R14 των Ξε να γών Ρόδου Ot04R14 να γούς που εργάζονται στη Ρόδο, οι οποίοι πα ρέ χουν τις υπηρεσίες τους στους εργοδότες τους τουριστικούς πράκτορες πραγµατικά µε σχέση εξηρτηµένης εργασίας Δ. ΚΑ ΘO ΡΙ ΣΜOΣ

Διαβάστε περισσότερα

! # %& # () & +( (!,+!,. / #! (!

! # %& # () & +( (!,+!,. / #! (! ! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /

Διαβάστε περισσότερα

Ευχαριστίες Η δ ι π λ ω µ α τι κή ε ρ γ α σ ί α α π ο τε λ ε ί το ε π ι σ τέ γ α σ µ α µ ι α ς π ρ ο σ π ά θ ε ι α ς π ο υ δ ε ν δ ι α ρ κε ί έ ξ ι µ

Ευχαριστίες Η δ ι π λ ω µ α τι κή ε ρ γ α σ ί α α π ο τε λ ε ί το ε π ι σ τέ γ α σ µ α µ ι α ς π ρ ο σ π ά θ ε ι α ς π ο υ δ ε ν δ ι α ρ κε ί έ ξ ι µ ΕΘΝΙΚΟ Μ ΕΤ Σ ΟΒ ΙΟ Π ΟΛ Υ Τ ΕΧ ΝΕΙΟ Σ Χ ΟΛ Η Π ΟΛ ΙΤ ΙΚΩ Ν Μ Η Χ Α ΝΙΚΩ Ν TΟΜ ΕΑ Σ Υ Α Τ ΙΚΩ Ν Π ΟΡ Ω Ν Υ Ρ Α Υ Λ ΙΚΩ Ν & ΘΑ Λ Α Σ Σ ΙΩ Ν ΕΡ Γ Ω Ν ΙΠ Λ Ω Μ Α Τ ΙΚΗ ΕΡ Γ Α Σ ΙΑ «Απογραφή κ αι αποτί µ η

Διαβάστε περισσότερα

ΑΣΚΗΣΗ (γραμμικός προγραμματισμός) Μια εταιρεία χρησιμοποιεί δύο διαφορετικούς τύπους ζωοτροφών (τον τύπο Ι και τον τύπο ΙΙ), ως πρώτες ύλες, τις οποίες αναμιγνύει για την εκτροφή γαλοπούλων ώστε να πετύχει

Διαβάστε περισσότερα

R t. H t n t Σi = l. MRi n t 100

R t. H t n t Σi = l. MRi n t 100 30. 12. 98 EL Επ σηµη Εφηµερ δα των Ευρωπαϊκ ν Κοινοτ των L 356/1 Ι (Πρ ξει για την ισχ των οπο ων απαιτε ται δηµοσ ευση) ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 2818/98 ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΚΕΝΤΡΙΚΗΣ ΤΡΑΠΕΖΑΣ τη 1η εκεµβρ ου

Διαβάστε περισσότερα

σας καλωσορίζω και ζητώ να σταθείτε σ αυτή τη φλόγα. Στον κεντρικό

σας καλωσορίζω και ζητώ να σταθείτε σ αυτή τη φλόγα. Στον κεντρικό 4η Συνάντηση: «Δικτύωμα Κόμβοι Χριστού» 18 Ιανουαρίου 2017 Άννα: Επικαλούμαι τον Συλλογικό Χριστό. Το Πνεύμα το Άγιο. Τον Ουράνιο Πατέρα Μητέρα δημιουργό της ζωής. Τους Αγίους Αγγέλους και Αρχαγγέλους,

Διαβάστε περισσότερα

Πάει το κρύο του χειμώνα

Πάει το κρύο του χειμώνα βαθμός δυσκολίας: διάρκεια: ~ 3:50 Πάει το κρύο του χειμώνα Fugge il verno dei dolori (Scherzi musicali) ελληνικοί στίχοι κατά το πρωτότυπο, Αντώνης Κοντογεωργίου Ritornello Claudio Monteverdi, 1567163

Διαβάστε περισσότερα

Κυ ρι ε ε κε κρα α ξα προ ο ος σε ε ει σα

Κυ ρι ε ε κε κρα α ξα προ ο ος σε ε ει σα ΤΗ Ζ ΤΟΥ ΜΗΝΟΣ ΑΥΓΟΥΣΤΟΥ ΜΝΗΜΗ ΤΟΥ ΤΟΥ ΟΣΙΟΥ ΚΑΙ ΘΕΟΦΟΡΟΥ ΠΑΤΡΟΣ ΗΜΩΝ ΝΙΚΑΝΟΡΟΣ ΤΟΥ ΘΑΥΜΑΤΟΥΡΓΟΥ Ἡ µουσική καταγραφή τῶν µελῶν ἔγινε ἀπό τὰ χειρόγραφα µουσικά κείµενα τοῦ π. Χρίστου Κυριακοπούλου Μετὰ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Α : «Το ξεκίνημα»

ΚΕΦΑΛΑΙΟ Α : «Το ξεκίνημα» ΚΕΦΑΛΑΙΟ Α : «Το ξεκίνημα» ΜΑΘΗΜΑ 1: «Τα πρώτα βήματα» ( σ ε λ. 8-10) 1. Πώς μοιάζ ε ι η ζ ω ή το υ ανθ ρ ώπο υ; Α ΠΑΝΤΗ ΣΗ: σε λ. 8, 1, «Η ζ ωή μοι άζ ε ι...βήματα» 2. Τι σ υναντά ο ά νθ ρωπ ος σ ε κ

Διαβάστε περισσότερα

! # % &! ( )! % +,.! / 0 1 )2 3

! # % &! ( )! % +,.! / 0 1 )2 3 ! !! # % &! ( )! % +,.! / 0 1 )2 3 ) 4 5! 5 ) 6 2 2 ) 2 3 #! 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 83 % ) 1

Διαβάστε περισσότερα

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΜαθηματικάγιαΟικονομολόγους II-Μάθημα 5 ο -6 ο Όριο-Συνέχεια-Παράγωγος-Διαφορικό

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΜαθηματικάγιαΟικονομολόγους II-Μάθημα 5 ο -6 ο Όριο-Συνέχεια-Παράγωγος-Διαφορικό ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ009-010 ΜαθηματικάγιαΟικονομολόγους II-Μάθημα 5 ο -6 ο Όριο-Συνέχεια-Παράγωγος-Διαφορικό ΟΡΙΣΜΟΣΟΡΙΟΥ Θεωρούμε την συνάρτηση z=f(x,y)/d όπου D ανοικτό

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135.

ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135. ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελίδα 135. Α2. α) Η πρόταση είναι ψευδής. β) Αιτιολόγηση: Σελίδα 99 σχολικού βιβλίου (η f(x)= x είναι συνεχής στο x=0

Διαβάστε περισσότερα

!!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,,

!!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,, !!# % & ( % ) % % +,,. / 0 1!!# 2 / 3 (. +,,! 454 454 6 7 #! 89 : 3 ; &< 4 =>> ; &4 + ! #!!! % & ( ) ) + + ) 3 +, +. 0 1 2. # 0! 3 2 &!.. 4 3 5! 6., 7!.! 8 7 9 : 0 & 8 % &6 0 9 ( 6! ;

Διαβάστε περισσότερα

ε πι λο γές & σχέ σεις στην οι κο γέ νεια

ε πι λο γές & σχέ σεις στην οι κο γέ νεια ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11

Διαβάστε περισσότερα

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8

Διαβάστε περισσότερα

Κωνσταντίνος Θ. Ευαγγελάτος. για αμιγή χορωδία (SSA, SAA, TTB, TBB)

Κωνσταντίνος Θ. Ευαγγελάτος. για αμιγή χορωδία (SSA, SAA, TTB, TBB) Κωνσταντίνος Θ. Ευαγγελάτος για αμιγή χορωδία (SSA, SAA, TTB, TBB) ΔΙΑΝΕΜΕΤΑΙ ΔΩΡΕΑΝ χορηγία της Πολιτιστικής Eταιρείας Αθηνών, Poeta (fb: Poeta Politistiki) Αθήνα 017 Εκδόσεις Πολιτιστική Εταιρεία Αθηνών

Διαβάστε περισσότερα

του ερ γα το τε χνι κού προ σω πι κού Πο το ποιΐ ας - O ξο ποιΐας κ.λπ. Ν. Ηρακλείου Kt07R11

του ερ γα το τε χνι κού προ σω πι κού Πο το ποιΐ ας - O ξο ποιΐας κ.λπ. Ν. Ηρακλείου Kt07R11 του ερ γα το τε χνι κού προ σω πι κού Πο το ποιΐ ας - O ξο ποιΐας κ.λπ. Ν. Ηρακλείου Kt07R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (Σ.Σ.Ε. & Δ.Α.) ΤΩΩΝ ΕΡΓΑΖOΜΕΝΩΩΝ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΠOΤOΠOΙΪΑΣ,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ANAΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΗΣ ΓΙΑ ΚΑΤΑΡΤΙΣΗ ΣΥΜΒΑΣΗΣ ΜΙΣΘΩΣΗΣ ΕΡΓΟΥ Αριθμ.

Διαβάστε περισσότερα

των Oι κο δό µων συ νερ γεί ων O32R09

των Oι κο δό µων συ νερ γεί ων O32R09 των Oι κο δό µων µο νί µων συ νερ γεί ων O32R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ OΙ ΚO Δ O ΜΩΩΝ ΜO ΝΙ ΜΩΩΝ ΣY ΝΕΡ ΓΕΙ ΩΩΝ ΒΙ O ΜΗ ΧΑ ΝΙ ΩΩΝ - ΒΙ O ΤΕ ΧΝΙ ΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α. ΓΙΑ

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 5: Αλυσιδωτή παραγώγιση, διαφορίσιμες συναρτήσεις, διαφορικό Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ (τόπος) (ημερομηνία) ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ Δ.Ο.Υ.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ (τόπος) (ημερομηνία) ΓΕΝ. ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΣΟΔΩΝ Δ.Ο.Υ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ (τόπος) (ημερομηνία) Δ.Ο.Υ. ΕΚΘΕΣΗ ΕΛΕΓΧΟΥ Ο Προϊστάμενος της Δ.Ο.Υ. αφού έλαβε υπόψη του: 1. Τη με αριθ. εκπρόθεσμη ιροποποιηιική δήλωση χου/χης με Α Φ Μ. 2.

Διαβάστε περισσότερα

,, &6 % )7) 8559

,, &6 % )7) 8559 ! # # %& () +,. / /0 1 2 0 3,,. 4 5. &6 % )7) 8559 ( 7(6, ( ( ( (6 & () ( ()()& : # %& ()( &+,) (../0%1.(& 2.& 3124&5,3 (6 7,8& 9)3,) (: ; 3 5). 413,)5& ?()%& 3),/ ; 8&;;)&.6> < )3,))(

Διαβάστε περισσότερα