6ο Μάθημα Πιθανότητες

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6ο Μάθημα Πιθανότητες"

Transcript

1 6ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 1 / 35

2 Άδειες Χρη σης Το παρο ν εκπαιδευτικο υλικο υπο κειται σε α δειες χρη σης Creative Commons. Για εκπαιδευτικο υλικο, ο πως εικο νες, που υπο κειται σε α λλου τυ που α δεια χρη σης, η α δεια χρη σης αναφε ρεται ρητω ς. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 2 / 35

3 Χρηματοδο τηση Το παρο ν εκπαιδευτικο υλικο ε χει αναπτυχθει στα πλαι σια του εκπαιδευτικου ε ργου του διδα σκοντα. Το ε ργο Ανοικτα Ακαδημαι κα Μαθη ματα για το Πανεπιστη μιο Πατρω ν ε χει χρηματοδοτη σει μο νο την αναδιαμο ρφωση του εκπαιδευτικου υλικου. Το ε ργο υλοποιει ται στα πλαι σια του επιχειρησιακου προγρα μματος Εκπαι δευση και Δια Βι ου Μα θηση και συγχρηματοδοτει ται απο την Ευρωπαι κη Ένωση (Ευρωπαι κο Κοινοτικο Ταμει ο) και απο εθνικου ς πο ρους. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 3 / 35

4 Περιεχο μενα 6ης Δια λεξης 1 Ανισο τητα Markov 2 Διασπορα 3 Συνδιασπορα 4 Ανισο τητα Chebyshev 5 Παραδει γματα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 4 / 35

5 1 Ανισο τητα Markov 2 Διασπορα 3 Συνδιασπορα 4 Ανισο τητα Chebyshev 5 Παραδει γματα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 5 / 35

6 1. Ανισο τητα Markov Θεω ρημα Χ μη αρνητικη t > 0 } : Pr{X t } E(X) t Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 6 / 35

7 1. Ανισο τητα Markov Θεω ρημα Χ μη αρνητικη t > 0 } : Pr{X t } E(X) t Φυσικη σημασι α t = 2 µ Pr{X 2 µ} µ 2 µ = 1 2 t = 3 µ Pr{X 3 µ} 1 3 Γενικα : Pr{X t µ} 1 t Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 6 / 35

8 1. Ανισο τητα Markov - Απο δειξη E(X) = x Pr{X = x} x Pr{X = x} x x t t Pr{X = x} = t Pr{X = x} = t Pr{X t} x t x t Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 7 / 35

9 1 Ανισο τητα Markov 2 Διασπορα 3 Συνδιασπορα 4 Ανισο τητα Chebyshev 5 Παραδει γματα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 8 / 35

10 2. Διασπορα - Ορισμο ς Ορισμο ς διασπορα ς (variance) [ Var(X) = E (X µ) 2] = (x µ) 2 Pr{X = x} x ο που µ = E(X) σ = Var(X) (τυπικη απο κλιση) Φυσική σημασία: με τρο αποκλι σεων απο τη με ση τιμη (με ση τιμη τετραγω νου αποκλι σεων απο τη με ση τιμη - πιθανοτικα ζυγισμε νο α θροισμα αυτω ν των αποκλι σεων) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 9 / 35

11 2. Variance - Ιδιο τητες Ιδιο τητες 1) Var(X) = (X 2 ) E 2 (X) 2) Αν X, Y ανεξα ρτητες Var(X + Y) = Var(X) + Var(Y) (προσθετικο τητα) 3) Var(c X) = c 2 Var(X) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 10 / 35

12 2. Variance - Ιδιο τητες Απόδειξη 1) [ Var(X) = E (X µ) 2] = E [ X 2 2 µ X + µ 2] = = E(X 2 ) 2 µ E(X) + E(µ 2 ) = E(X 2 ) 2 µ 2 + µ 2 = E(X 2 ) µ 2 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 11 / 35

13 2. Variance - Ιδιο τητες Απόδειξη 2) Var(X + Y) = E [ (X + Y) 2] E 2 (X + Y) = E [ X X Y + Y 2] [E(X) + E(Y)] 2 = E(X 2 ) + 2 E(X Y) + E(Y 2 ) E 2 (X) 2 E(X) E(Y) E 2 (Y) = (λο γω ανεξαρτησι ας ισχυ ει: E(X Y) = E(X) E(Y)) = E(X 2 ) E 2 (X) + E(Y 2 ) E 2 (Y) = = Var(X) + Var(Y) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 12 / 35

14 3. Συνδιασπορα - Ορισμο ς Ορισμο ς συνδιασπορα ς (covariance) Καλου με συνδιασπορα (covariance) δυ ο τυχαι ων μεταβλητω ν X, Y την: Cov(X, Y) = E[(X E(X)) (Y E(Y))] Βασικη ιδιο τητα: Ει ναι Cov(X, Y) = E[XY E(X)Y E(Y)X + E(X)E(Y)] = = E(XY) E(X)E(Y) E(Y)E(X) + E(X)E(Y) Άρα Cov(X, Y) = E(XY) E(X)E(Y) Φυσικη σημασι α: Αν X,Y ανεξα ρτητες E(XY) = E(X)E(Y) Cov(X, Y) = 0 Δηλαδη η συνδιασπορα ει ναι με τρο της εξα ρτησης δυ ο τ.μ. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 13 / 35

15 3. Συνδιασπορα - Παρατη ρηση Παρατη ρηση: Το αντι στροφο δεν ισχυ ει! δηλαδη η συνδιασπορα μπορει να ει ναι 0 ακο μα και ο ταν οι τυχαι ες μεταβλητε ς ει ναι εξαρτημε νες. πχ. Pr{X = 0} = Pr{X = 1} = Pr{X = 1} = 1 3 { 0, αν X 0 και ε στω Y = 1, αν X = 0 Οπο τε προφανω ς X Y = 0, οπο τε E(XY) = 0. Αλλα E(X) = = 0 και E(Y) = 0 Pr{X 0} + 1 Pr{X = 0} = 1 3 Άρα Cov(X, Y) = E(XY) E(X)E(Y) = 0 ενω οι X και Y ει ναι προφανω ς εξαρτημε νες. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 14 / 35

16 3. Συνδιασπορα - Ιδιο τητες Ιδιο τητες (i) Cov(X, Y) = Cov(Y, X) (ii) Cov(X, X) = Var(X) n n (iii) Var( X i ) = Var(X i ) + i i=1 i=1 Cov(X i, X j ) j i Απο δειξη της (ιι): Cov(X, X) = E(X X) E(X)E(X) = = E(X 2 ) E 2 (X) = = Var(X) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 15 / 35

17 1 Ανισο τητα Markov 2 Διασπορα 3 Συνδιασπορα 4 Ανισο τητα Chebyshev 5 Παραδει γματα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 16 / 35

18 4. Ανισο τητα Chebyshev Θεω ρημα Pr{ X µ t} Var(X) t 2 Φυσική σημασία: Var(X) Pr{ X µ t} μικρε ς αποκλι σεις, υψηλη συγκε ντρωση γυ ρω απο τη με ση τιμη π.χ. Pr{ X µ 2 σ} σ2 4 σ 2 = 1 4 Pr{ X µ 2 σ} 0.75 (δηλαδη οποιαδη ποτε τ.μ. συγκεντρω νεται ± 2 τυπικε ς αποκλι σεις γυ ρω απο τη με ση τιμη με πιθανο τητα 0.75). Επι σης: Pr{ X µ 3 σ} σ2 9 σ 2 = 1 9 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 17 / 35

19 4. Ανισο τητα Chebyshev [ Απόδειξη: Var(X) = E (X µ) 2] = x (x µ) 2 f(x) (x µ) 2 Pr {X = x} t 2 Pr {X = x} x µ t x µ t = t 2 Pr {X = x} = t 2 Pr { X µ t} x µ t Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 18 / 35

20 4. Ανισο τητα Chebyshev - Παρα δειγμα Ένα παρα δειγμα ο που η Chebyshev δι νει ακριβε ς αποτε λεσμα X = k, 1 2 k 2 k, 1 2 k 2 0, 1 1 k 2 1 µ = k 2 k 2 k 1 2 k = 0 Var(X) = (k 0) k 2 +( k 0)2 2 k 2 +(0 0)2 = = 1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 19 / 35

21 4. Ανισο τητα Chebyshev - Παρα δειγμα (Συνε χεια) Απο την Chebyshev ε χω: Pr{ X k} = Pr{ X µ k} Var(X) k 2 = 1 k 2 Απο την pdf ε χω: Pr{ X k} = Pr{X k} + Pr{X k} = Pr{X = k} + Pr{X = k} = 1 2 k k 2 = 1 k 2 δηλαδη το α νω φρα γμα ει ναι ακριβε ς. Αλλα πολλε ς φορε ς τα α νω φρα γματα της Chebyshev δεν ει ναι πολυ ακριβη μελετα με υψηλο τερες ροπε ς Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 20 / 35

22 1 Ανισο τητα Markov 2 Διασπορα 3 Συνδιασπορα 4 Ανισο τητα Chebyshev 5 Παραδει γματα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 21 / 35

23 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

24 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

25 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Έστω Χ η τ.μ. των αποτελεσμα των του ζαριου. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

26 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Έστω Χ η τ.μ. των αποτελεσμα των του ζαριου. Ει ναι E(X) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

27 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Έστω Χ η τ.μ. των αποτελεσμα των του ζαριου. Ει ναι E(X) = = ( )1 6 = 21 6 = 7 2 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

28 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Έστω Χ η τ.μ. των αποτελεσμα των του ζαριου. Ει ναι E(X) = = ( )1 6 = 21 6 = 7 2 Ει ναι E(X 2 ) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

29 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Έστω Χ η τ.μ. των αποτελεσμα των του ζαριου. Ει ναι E(X) = = ( )1 6 = 21 6 = 7 2 Ει ναι E(X 2 ) = = 91 6 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

30 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Έστω Χ η τ.μ. των αποτελεσμα των του ζαριου. Ει ναι E(X) = = ( )1 6 = 21 6 = 7 2 Ει ναι E(X 2 ) = = 91 6 Άρα Var(X) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

31 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Έστω Χ η τ.μ. των αποτελεσμα των του ζαριου. Ει ναι E(X) = = ( )1 6 = 21 6 = 7 2 Ει ναι E(X 2 ) = = 91 6 Άρα Var(X) = E(X 2 ) E 2 (X) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

32 5. Παρα δειγμα 1 Να υπολογιστει η διασπορα κατα την ρι ψη ενο ς ζαριου Λυ ση: Έστω Χ η τ.μ. των αποτελεσμα των του ζαριου. Ει ναι E(X) = = ( )1 6 = 21 6 = 7 2 Ει ναι E(X 2 ) = = 91 6 Άρα Var(X) = E(X 2 ) E 2 (X) = 91 6 ( ) 7 2 = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 22 / 35

33 5. Παρα δειγμα 2 Η τ.μ. X ε χει με ση τιμη μ και διασπορα σ 2. Να βρεθου ν η με ση τιμη και η διασπορα της Y = X µ σ Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 23 / 35

34 5. Παρα δειγμα 2 Η τ.μ. X ε χει με ση τιμη μ και διασπορα σ 2. Να βρεθου ν η με ση τιμη και η διασπορα της Y = X µ σ Λυ ση: Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 23 / 35

35 5. Παρα δειγμα 2 Η τ.μ. X ε χει με ση τιμη μ και διασπορα σ 2. Να βρεθου ν η με ση τιμη και η διασπορα της Y = X µ σ Λυ ση: ( ) X µ E(Y) = E σ = 1 (E(X) µ) = 0 σ = 1 σ E(X µ) = 1 [E(X) E(µ)] = σ Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 23 / 35

36 5. Παρα δειγμα 2 Η τ.μ. X ε χει με ση τιμη μ και διασπορα σ 2. Να βρεθου ν η με ση τιμη και η διασπορα της Y = X µ σ Λυ ση: ( ) X µ E(Y) = E σ = 1 σ E(X µ) = 1 [E(X) E(µ)] = σ = 1 (E(X) µ) = 0 σ [ (X ) ] µ 2 E(Y 2 ) = E = 1 σ σ 2 E [ (X µ) 2] = 1 σ 2 Var(X) = 1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 23 / 35

37 5. Παρα δειγμα 2 Η τ.μ. X ε χει με ση τιμη μ και διασπορα σ 2. Να βρεθου ν η με ση τιμη και η διασπορα της Y = X µ σ Λυ ση: ( ) X µ E(Y) = E σ = 1 σ E(X µ) = 1 [E(X) E(µ)] = σ = 1 (E(X) µ) = 0 σ [ (X ) ] µ 2 E(Y 2 ) = E = 1 σ σ 2 E [ (X µ) 2] = 1 σ 2 Var(X) = 1 Οπο τε Var(Y) = E(Y 2 ) E 2 (Y) = = 1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 23 / 35

38 5. Παρα δειγμα 3 Έστω τ.μ. X, Y : X Y (δηλαδη σε κα θε σημει ο του δειγματοχω ρου η X παι ρνει τιμη μεγαλυ τερη η ι ση απο την Y). Να δει ξετε ο τι E(X) E(Y) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 24 / 35

39 5. Παρα δειγμα 3 Έστω τ.μ. X, Y : X Y (δηλαδη σε κα θε σημει ο του δειγματοχω ρου η X παι ρνει τιμη μεγαλυ τερη η ι ση απο την Y). Να δει ξετε ο τι E(X) E(Y) Απο δειξη: Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 24 / 35

40 5. Παρα δειγμα 3 Έστω τ.μ. X, Y : X Y (δηλαδη σε κα θε σημει ο του δειγματοχω ρου η X παι ρνει τιμη μεγαλυ τερη η ι ση απο την Y). Να δει ξετε ο τι E(X) E(Y) Απο δειξη: X Y X Y 0 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 24 / 35

41 5. Παρα δειγμα 3 Έστω τ.μ. X, Y : X Y (δηλαδη σε κα θε σημει ο του δειγματοχω ρου η X παι ρνει τιμη μεγαλυ τερη η ι ση απο την Y). Να δει ξετε ο τι E(X) E(Y) Απο δειξη: X Y X Y 0 Αλλα (X Y) = (x y)p(x, y) y x ο που P(x, y) η απο κοινου pdf Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 24 / 35

42 5. Παρα δειγμα 3 Έστω τ.μ. X, Y : X Y (δηλαδη σε κα θε σημει ο του δειγματοχω ρου η X παι ρνει τιμη μεγαλυ τερη η ι ση απο την Y). Να δει ξετε ο τι E(X) E(Y) Απο δειξη: X Y X Y 0 Αλλα (X Y) = (x y)p(x, y) y x ο που P(x, y) η απο κοινου pdf Άρα (X Y) 0 E(X) E(Y) 0 E(X) E(Y) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 24 / 35

43 5. Παρα δειγμα 4 Να δει ξετε την ανισο τητα του Boole χρησιμοποιω ντας με σες τιμε ς δεικνυουσω ν μεταβλητω ν. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 25 / 35

44 5. Παρα δειγμα 4 Να δει ξετε την ανισο τητα του Boole χρησιμοποιω ντας με σες τιμε ς δεικνυουσω ν μεταβλητω ν. Απο δειξη: Έστω γεγονο τα A 1, A 2,..., A n. Θε λουμε να δει ξουμε ο τι: n Pr{ n i=1a i } Pr{A i } i=1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 25 / 35

45 5. Παρα δειγμα 4 Να δει ξετε την ανισο τητα του Boole χρησιμοποιω ντας με σες τιμε ς δεικνυουσω ν μεταβλητω ν. Απο δειξη: Έστω γεγονο τα A 1, A 2,..., A n. Θε λουμε να δει ξουμε ο τι: n Pr{ n i=1a i } Pr{A i } i=1 Έστω τ.μ. X 1, X 2,..., X n που δει χνουν αν συνε βη η ο χι κα θε ε να απο τα A i, δηλαδη : { 1, αν συνε βη το Ai X i = 0, διαφορετικα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 25 / 35

46 5. Παρα δειγμα 4 Να δει ξετε την ανισο τητα του Boole χρησιμοποιω ντας με σες τιμε ς δεικνυουσω ν μεταβλητω ν. Απο δειξη: Έστω γεγονο τα A 1, A 2,..., A n. Θε λουμε να δει ξουμε ο τι: n Pr{ n i=1a i } Pr{A i } i=1 Έστω τ.μ. X 1, X 2,..., X n που δει χνουν αν συνε βη η ο χι κα θε ε να απο τα A i, δηλαδη : { 1, αν συνε βη το Ai X i = 0, διαφορετικα n Έστω X = X i οπο τε η X μετρα ει τον αριθμο των γεγονο των i=1 που πραγματοποιη θηκαν. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 25 / 35

47 5. Παρα δειγμα 4 - Συνε χεια Έστω Y = { 1, αν X 1 0, διαφορετικα δηλαδη η Y δει χνει αν πραγματοποιη θηκε η ο χι τουλα χιστον ε να γεγονο ς. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 26 / 35

48 5. Παρα δειγμα 4 - Συνε χεια Έστω Y = { 1, αν X 1 0, διαφορετικα δηλαδη η Y δει χνει αν πραγματοποιη θηκε η ο χι τουλα χιστον ε να γεγονο ς. Προφανω ς X Y Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 26 / 35

49 5. Παρα δειγμα 4 - Συνε χεια Έστω Y = { 1, αν X 1 0, διαφορετικα δηλαδη η Y δει χνει αν πραγματοποιη θηκε η ο χι τουλα χιστον ε να γεγονο ς. Προφανω ς X Y Άρα E(X) E(Y) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 26 / 35

50 5. Παρα δειγμα 4 - Συνε χεια Έστω Y = { 1, αν X 1 0, διαφορετικα δηλαδη η Y δει χνει αν πραγματοποιη θηκε η ο χι τουλα χιστον ε να γεγονο ς. Προφανω ς X Y Άρα E(X) E(Y) ( n ) Αλλα (X) = E X i = i=1 n E(X i ) = i=1 n 1 Pr{A i } i=1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 26 / 35

51 5. Παρα δειγμα 4 - Συνε χεια Έστω Y = { 1, αν X 1 0, διαφορετικα δηλαδη η Y δει χνει αν πραγματοποιη θηκε η ο χι τουλα χιστον ε να γεγονο ς. Προφανω ς X Y Άρα E(X) E(Y) ( n ) Αλλα (X) = E X i = i=1 n E(X i ) = i=1 n 1 Pr{A i } i=1 και (Y) = 1 Pr{X 1} = Pr{X 1} = Pr{ n i=1a i } Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 26 / 35

52 5. Παρα δειγμα 5 Μι α γραμματε ας βα ζει τυχαι α n επιστολε ς σε n φακε λους. Ποια ει ναι η με ση τιμη του αριθμου των επιστολω ν που μπαι νουν στο σωστο φα κελο? Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 27 / 35

53 5. Παρα δειγμα 5 Μι α γραμματε ας βα ζει τυχαι α n επιστολε ς σε n φακε λους. Ποια ει ναι η με ση τιμη του αριθμου των επιστολω ν που μπαι νουν στο σωστο φα κελο? Λυ ση: Έστω δεικνυ ουσες τ.μ. X i (i = 1, 2,..., n) : { 1, αν η επιστολη i μπαι νει στο σωστο φα κελο X i = 0, διαφορετικα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 27 / 35

54 5. Παρα δειγμα 5 Μι α γραμματε ας βα ζει τυχαι α n επιστολε ς σε n φακε λους. Ποια ει ναι η με ση τιμη του αριθμου των επιστολω ν που μπαι νουν στο σωστο φα κελο? Λυ ση: Έστω δεικνυ ουσες τ.μ. X i (i = 1, 2,..., n) : { 1, αν η επιστολη i μπαι νει στο σωστο φα κελο X i = 0, διαφορετικα Άρα X = n X i ει ναι ο αριθμο ς των επιστολω ν σε σωστο φα κελο. i=1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 27 / 35

55 5. Παρα δειγμα 5 Μι α γραμματε ας βα ζει τυχαι α n επιστολε ς σε n φακε λους. Ποια ει ναι η με ση τιμη του αριθμου των επιστολω ν που μπαι νουν στο σωστο φα κελο? Λυ ση: Έστω δεικνυ ουσες τ.μ. X i (i = 1, 2,..., n) : Άρα X = { 1, αν η επιστολη i μπαι νει στο σωστο φα κελο X i = 0, διαφορετικα n X i ει ναι ο αριθμο ς των επιστολω ν σε σωστο φα κελο. i=1 Ει ναι E(X i ) = 1 Pr{ επιστολη i σε σωστο φα κελο} = (n 1)! = = 1 n! n Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 27 / 35

56 5. Παρα δειγμα 5 Μι α γραμματε ας βα ζει τυχαι α n επιστολε ς σε n φακε λους. Ποια ει ναι η με ση τιμη του αριθμου των επιστολω ν που μπαι νουν στο σωστο φα κελο? Λυ ση: Έστω δεικνυ ουσες τ.μ. X i (i = 1, 2,..., n) : Άρα X = { 1, αν η επιστολη i μπαι νει στο σωστο φα κελο X i = 0, διαφορετικα n X i ει ναι ο αριθμο ς των επιστολω ν σε σωστο φα κελο. i=1 Ει ναι E(X i ) = 1 Pr{ επιστολη i σε σωστο φα κελο} = (n 1)! = = 1 n! n Άρα E(X) = E ( n i=1 X ) i = n i=1 E(X i) = n i=1 1 n = n 1 n = 1 Άρα κατα με ση τιμη 1 επιστολη θα μπει σε σωστο φα κελο. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 27 / 35

57 5. Παρα δειγμα 6 Να βρεθει η διασπορα στο παρα δειγμα 5 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 28 / 35

58 5. Παρα δειγμα 6 Να βρεθει η διασπορα στο παρα δειγμα 5 Λυ ση: Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 28 / 35

59 5. Παρα δειγμα 6 Να βρεθει η διασπορα στο παρα δειγμα 5 Λυ ση: Ει ναι X = n X i, ο που X i = i=1 { 1, με πιθανο τητα p = 1 n 0, με πιθανο τητα 1 p Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 28 / 35

60 5. Παρα δειγμα 6 Να βρεθει η διασπορα στο παρα δειγμα 5 Λυ ση: Ει ναι X = n X i, ο που X i = i=1 { 1, με πιθανο τητα p = 1 n 0, με πιθανο τητα 1 p Ει ναι Var(X i ) = E(X 2 i ) E 2 (X i ) = 1 2 p (1 p) p 2 = = p p 2 = p(1 p) = 1 n n 1 n Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 28 / 35

61 5. Παρα δειγμα 6 Να βρεθει η διασπορα στο παρα δειγμα 5 Λυ ση: Ει ναι X = n X i, ο που X i = i=1 { 1, με πιθανο τητα p = 1 n 0, με πιθανο τητα 1 p Ει ναι Var(X i ) = E(X 2 i ) E 2 (X i ) = 1 2 p (1 p) p 2 = = p p 2 = p(1 p) = 1 n n 1 n Επι σης Cov(X i, X j ) = E(X i X j ) E(X i )E(X j ) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 28 / 35

62 5. Παρα δειγμα 6 Να βρεθει η διασπορα στο παρα δειγμα 5 Λυ ση: Ει ναι X = n X i, ο που X i = i=1 { 1, με πιθανο τητα p = 1 n 0, με πιθανο τητα 1 p Ει ναι Var(X i ) = E(X 2 i ) E 2 (X i ) = 1 2 p (1 p) p 2 = = p p 2 = p(1 p) = 1 n n 1 n Επι σης Cov(X i, X j ) = E(X i X j ) E(X i )E(X j ) Αλλα E(X i X j ) = 1 Pr{X i = 1 X j = 1} = = Pr{X i = 1}Pr{X j = 1 X i = 1} = 1 n 1 n 1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 28 / 35

63 5. Παρα δειγμα 6 Να βρεθει η διασπορα στο παρα δειγμα 5 Λυ ση: Ει ναι X = n X i, ο που X i = i=1 { 1, με πιθανο τητα p = 1 n 0, με πιθανο τητα 1 p Ει ναι Var(X i ) = E(X 2 i ) E 2 (X i ) = 1 2 p (1 p) p 2 = = p p 2 = p(1 p) = 1 n n 1 n Επι σης Cov(X i, X j ) = E(X i X j ) E(X i )E(X j ) Αλλα E(X i X j ) = 1 Pr{X i = 1 X j = 1} = = Pr{X i = 1}Pr{X j = 1 X i = 1} = 1 n 1 ( ) n Άρα Cov(X i, X j ) = n(n 1) 1 = n n 2 (n 1) Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 28 / 35

64 5. Παρα δειγμα 6 - Συνε χεια Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 29 / 35

65 5. Παρα δειγμα 6 - Συνε χεια Οπο τε απο τη σχε ση n n Var( X i ) = Var(X i ) + i=1 i=1 i Cov(X i, X j ) j i Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 29 / 35

66 5. Παρα δειγμα 6 - Συνε χεια Οπο τε απο τη σχε ση n n Var( X i ) = Var(X i ) + Cov(X i, X j ) i=1 i=1 i j i Προκυ πτει ο τι Var(X) = n n 1 1 n 2 + n(n 1) n 2 (n 1) = n n n = 1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 29 / 35

67 5. Παρα δειγμα 7 (the weak law of large numbers) Έστω X 1, X 2,... μι α ακολουθι α ανεξα ρτητων τ.μ. με την ι δια κατανομη και ι δια πεπερασμε νη με ση τιμη E(X i ) = µ και διασπορα { Var(X i ) = σ 2. Το τε, } ϵ > 0 : X X n Pr µ n ϵ 0 καθω ς n Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 30 / 35

68 5. Παρα δειγμα 7 (the weak law of large numbers) Έστω X 1, X 2,... μι α ακολουθι α ανεξα ρτητων τ.μ. με την ι δια κατανομη και ι δια πεπερασμε νη με ση τιμη E(X i ) = µ και διασπορα { Var(X i ) = σ 2. Το τε, } ϵ > 0 : X X n Pr µ n ϵ 0 καθω ς n Απο δειξη: Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 30 / 35

69 5. Παρα δειγμα 7 (the weak law of large numbers) Έστω X 1, X 2,... μι α ακολουθι α ανεξα ρτητων τ.μ. με την ι δια κατανομη και ι δια πεπερασμε νη με ση τιμη E(X i ) = µ και διασπορα { Var(X i ) = σ 2. Το τε, } ϵ > 0 : X X n Pr µ n ϵ 0 καθω ς n Απο δειξη: ( ) X1 + + X n Ει ναι E = 1 n n n E(X i ) = 1 n n µ = µ i=1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 30 / 35

70 5. Παρα δειγμα 7 (the weak law of large numbers) Έστω X 1, X 2,... μι α ακολουθι α ανεξα ρτητων τ.μ. με την ι δια κατανομη και ι δια πεπερασμε νη με ση τιμη E(X i ) = µ και διασπορα { Var(X i ) = σ 2. Το τε, } ϵ > 0 : X X n Pr µ n ϵ 0 καθω ς n Απο δειξη: ( ) X1 + + X n Ει ναι E = 1 n n και (λο γω ανεξαρτησι ας): ( ) X1 + + X n Var = 1 n n 2 n i=1 n E(X i ) = 1 n n µ = µ i=1 Var(X i ) = 1 n 2 n σ2 = σ2 n Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 30 / 35

71 5. Παρα δειγμα 7 (the weak law of large numbers) Έστω X 1, X 2,... μι α ακολουθι α ανεξα ρτητων τ.μ. με την ι δια κατανομη και ι δια πεπερασμε νη με ση τιμη E(X i ) = µ και διασπορα { Var(X i ) = σ 2. Το τε, } ϵ > 0 : X X n Pr µ n ϵ 0 καθω ς n Απο δειξη: ( ) X1 + + X n Ει ναι E = 1 n n n E(X i ) = 1 n n µ = µ και (λο γω ανεξαρτησι ας): ( ) X1 + + X n Var = 1 n n n 2 Var(X i ) = 1 n 2 n σ2 = σ2 n i=1 { } X X n σ Άρα: Pr µ 2 n ϵ n ϵ 2 0 i=1 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 30 / 35

72 Φυσικη σημασι α Φυσικη σημασι α: Ο με σος ο ρος μιας ακολουθι ας n ανεξα ρτητων τυχαι ων μεταβλητω ν με ι δια κατανομη και με ση τιμη συγκεντρω νεται ισχυρα γυ ρω απο αυτη τη με ση τιμη, καθω ς το n μεγαλω νει και τει νει στο α πειρο. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 31 / 35

73 Φυσικη σημασι α Φυσικη σημασι α: Ο με σος ο ρος μιας ακολουθι ας n ανεξα ρτητων τυχαι ων μεταβλητω ν με ι δια κατανομη και με ση τιμη συγκεντρω νεται ισχυρα γυ ρω απο αυτη τη με ση τιμη, καθω ς το n μεγαλω νει και τει νει στο α πειρο. π.χ. αν { ρι ξω n φορε ς ε να νο μισμα και 1, αν αποτε λεσμα κεφαλη X i = 0, αν αποτε λεσμα γρα μματα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 31 / 35

74 Φυσικη σημασι α Φυσικη σημασι α: Ο με σος ο ρος μιας ακολουθι ας n ανεξα ρτητων τυχαι ων μεταβλητω ν με ι δια κατανομη και με ση τιμη συγκεντρω νεται ισχυρα γυ ρω απο αυτη τη με ση τιμη, καθω ς το n μεγαλω νει και τει νει στο α πειρο. π.χ. αν { ρι ξω n φορε ς ε να νο μισμα και 1, αν αποτε λεσμα κεφαλη X i = 0, αν αποτε λεσμα γρα μματα το τε E(X i ) = = 1 2 = µ και επομε νως: Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 31 / 35

75 Φυσικη σημασι α Φυσικη σημασι α: Ο με σος ο ρος μιας ακολουθι ας n ανεξα ρτητων τυχαι ων μεταβλητω ν με ι δια κατανομη και με ση τιμη συγκεντρω νεται ισχυρα γυ ρω απο αυτη τη με ση τιμη, καθω ς το n μεγαλω νει και τει νει στο α πειρο. π.χ. αν { ρι ξω n φορε ς ε να νο μισμα και 1, αν αποτε λεσμα κεφαλη X i = 0, αν αποτε λεσμα γρα μματα το τε { E(X i ) = = 1 2 = µ και επομε νως: X X n Pr 1 } n 2 ϵ 0 καθω ς n δηλαδη ο αριθμο ς των αποτελεσμα των κεφαλη σε n επαναλη ψεις συγκεντρω νεται πολυ κοντα στο n 2 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 31 / 35

76 Φυσικη σημασι α Φυσικη σημασι α: Ο με σος ο ρος μιας ακολουθι ας n ανεξα ρτητων τυχαι ων μεταβλητω ν με ι δια κατανομη και με ση τιμη συγκεντρω νεται ισχυρα γυ ρω απο αυτη τη με ση τιμη, καθω ς το n μεγαλω νει και τει νει στο α πειρο. π.χ. αν { ρι ξω n φορε ς ε να νο μισμα και 1, αν αποτε λεσμα κεφαλη X i = 0, αν αποτε λεσμα γρα μματα το τε { E(X i ) = = 1 2 = µ και επομε νως: X X n Pr 1 } n 2 ϵ 0 καθω ς n δηλαδη ο αριθμο ς των αποτελεσμα των κεφαλη σε n επαναλη ψεις συγκεντρω νεται πολυ κοντα στο n 2 Παρατη ρηση: Ωστο σο, σε κα θε ρι ψη η πιθανο τητα για κεφαλη ει ναι πα ντα 1 2 ανεξαρτη τως της ιστορι ας! π.χ. Pr{ κεφαλη κεφαλη στις 100 τελευται ες ρι ψεις} = 1 2 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 31 / 35

77 Ο ισχυρο ς νο μος των μεγα λων αριθμω ν Ένας ισχυρο τερος νο μος: Ο ισχυρο ς νο μος των μεγα λων αριθμω ν Με πιθανο τητα 1, X X n n µ καθω ς n Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 32 / 35

78 Ο ισχυρο ς νο μος των μεγα λων αριθμω ν Ένας ισχυρο τερος νο μος: Ο ισχυρο ς νο μος των μεγα λων αριθμω ν Με πιθανο τητα 1, X X n µ καθω ς n n Φυσικη σημασι α: Σε ανεξα ρτητες επαναλη ψεις ενο ς πειρα ματος, ε στω{ 1, αν το γεγονο ς Ε συμβαι νει στην i-οστη επανα ληψη X i = 0, διαφορετικα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 32 / 35

79 Ο ισχυρο ς νο μος των μεγα λων αριθμω ν Ένας ισχυρο τερος νο μος: Ο ισχυρο ς νο μος των μεγα λων αριθμω ν Με πιθανο τητα 1, X X n µ καθω ς n n Φυσικη σημασι α: Σε ανεξα ρτητες επαναλη ψεις ενο ς πειρα ματος, ε στω{ 1, αν το γεγονο ς Ε συμβαι νει στην i-οστη επανα ληψη X i = 0, διαφορετικα και ε στω P(E) η πιθανο τητα να συμβει το E. Προφανω ς E(X i ) = P(E), α ρα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 32 / 35

80 Ο ισχυρο ς νο μος των μεγα λων αριθμω ν Ένας ισχυρο τερος νο μος: Ο ισχυρο ς νο μος των μεγα λων αριθμω ν Με πιθανο τητα 1, X X n µ καθω ς n n Φυσικη σημασι α: Σε ανεξα ρτητες επαναλη ψεις ενο ς πειρα ματος, ε στω{ 1, αν το γεγονο ς Ε συμβαι νει στην i-οστη επανα ληψη X i = 0, διαφορετικα και ε στω P(E) η πιθανο τητα να συμβει το E. Προφανω ς E(X i ) = P(E), α ρα #πραγματοποιη σεων του E P(E) με πιθανο τητα 1 καθω ς ο #επαναλη ψεων αριθμο ς των επαναλη ψεων τει νει στο α πειρο. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 32 / 35

81 Η Διαφορα των δυ ο νο μων Η Διαφορα των δυ ο νο μων: Ο ασθενη ς νο μος λε ει ο τι για οποιοδη ποτε μεγα λο n, ο με σος ο ρος των αποτελεσμα των των πρω των n επαναλη ψεων θα ει ναι κοντα στη με ση τιμη µ. Δεν εξασφαλι ζει ο μως ο τι για περισσο τερες του n επαναλη ψεις οι αποκλι σεις θα παραμε νουν μικρε ς, δηλαδη μεγα λες αποκλι σεις μπορει να εμφανιστου ν α πειρες φορε ς (αν και σε αραια διαστη ματα) Ισχυρο ς νο μος: μεγα λες αποκλι σεις μο νο σε πεπερασμε νο αριθμο επαναλη ψεων, με πιθανο τητα 1. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 33 / 35

82 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

83 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

84 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

85 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

86 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

87 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = = Var(X 1 ) + ( 1) 2 Var(X 2 ) + Cov(X 1, X 2 ) + Cov( X 2, X 1 ) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

88 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = = Var(X 1 ) + ( 1) 2 Var(X 2 ) + Cov(X 1, X 2 ) + Cov( X 2, X 1 ) = = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

89 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = = Var(X 1 ) + ( 1) 2 Var(X 2 ) + Cov(X 1, X 2 ) + Cov( X 2, X 1 ) = = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) = = Var(X 1 ) + Var(X 2 ) + 2E(X 1 ( X 2 )) 2E(X 1 )E( X 2 ) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

90 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = = Var(X 1 ) + ( 1) 2 Var(X 2 ) + Cov(X 1, X 2 ) + Cov( X 2, X 1 ) = = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) = = Var(X 1 ) + Var(X 2 ) + 2E(X 1 ( X 2 )) 2E(X 1 )E( X 2 ) = = Var(X 1 ) + Var(X 2 ) 2E(X 1 X 2 ) + 2E(X 1 )E(X 2 ) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

91 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = = Var(X 1 ) + ( 1) 2 Var(X 2 ) + Cov(X 1, X 2 ) + Cov( X 2, X 1 ) = = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) = = Var(X 1 ) + Var(X 2 ) + 2E(X 1 ( X 2 )) 2E(X 1 )E( X 2 ) = = Var(X 1 ) + Var(X 2 ) 2E(X 1 X 2 ) + 2E(X 1 )E(X 2 ) = = Var(X 1 ) + Var(X 2 ) 2Cov(X 1, X 2 ) = ( 3) = 28 Άρα Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

92 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = = Var(X 1 ) + ( 1) 2 Var(X 2 ) + Cov(X 1, X 2 ) + Cov( X 2, X 1 ) = = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) = = Var(X 1 ) + Var(X 2 ) + 2E(X 1 ( X 2 )) 2E(X 1 )E( X 2 ) = = Var(X 1 ) + Var(X 2 ) 2E(X 1 X 2 ) + 2E(X 1 )E(X 2 ) = = Var(X 1 ) + Var(X 2 ) 2Cov(X 1, X 2 ) = ( 3) = 28 Άρα Pr{ X 1 X 2 > 15} = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

93 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = = Var(X 1 ) + ( 1) 2 Var(X 2 ) + Cov(X 1, X 2 ) + Cov( X 2, X 1 ) = = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) = = Var(X 1 ) + Var(X 2 ) + 2E(X 1 ( X 2 )) 2E(X 1 )E( X 2 ) = = Var(X 1 ) + Var(X 2 ) 2E(X 1 X 2 ) + 2E(X 1 )E(X 2 ) = = Var(X 1 ) + Var(X 2 ) 2Cov(X 1, X 2 ) = ( 3) = 28 Άρα Pr{ X 1 X 2 > 15} = Pr{ X 1 X 2 0 > 15} Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

94 5. Παρα δειγμα 8 Έστω E(X 1 ) = 75, E(X 2 ) = 75, Var(X 1 ) = 10, Var(X 2 ) = 12 και Cov(X 1, X 2 ) = 3. Βρει τε α νω φρα γμα για την Pr{ X 1 X 2 > 15}. Λυ ση: Ει ναι E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 0 και Var(X 1 X 2 ) = Var[X 1 + ( 1)X 2 ] = = Var(X 1 ) + Var[( 1)X 2 ] + i j Cov[X 1, ( 1)X 2 ] = = Var(X 1 ) + ( 1) 2 Var(X 2 ) + Cov(X 1, X 2 ) + Cov( X 2, X 1 ) = = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) = = Var(X 1 ) + Var(X 2 ) + 2E(X 1 ( X 2 )) 2E(X 1 )E( X 2 ) = = Var(X 1 ) + Var(X 2 ) 2E(X 1 X 2 ) + 2E(X 1 )E(X 2 ) = = Var(X 1 ) + Var(X 2 ) 2Cov(X 1, X 2 ) = ( 3) = 28 Άρα Pr{ X 1 X 2 > 15} = Pr{ X 1 X 2 0 > 15} Var(X 1 X 2 ) = Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 34 / 35

95 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα Πιθανότητες 35 / 35

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5 5ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

2ο Μάθημα Πιθανότητες

2ο Μάθημα Πιθανότητες 2ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 2ο Μάθημα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Lecture 8: Random Walks

Lecture 8: Random Walks Randomized Algorithms Lecture 8: Random Walks Sotiris Nikoletseas Associate Professor CEID - ETY Course 2016-2017 Sotiris Nikoletseas, Associate Professor Randomized Algorithms - Lecture 8 1 / 33 Overview

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 10η Δια λεξη Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα

Διαβάστε περισσότερα

10ο Μάθημα Πιθανότητες

10ο Μάθημα Πιθανότητες 10ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 10ο Μάθημα

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 5η Δια λεξη

Θεωρι α Γραφημα των 5η Δια λεξη Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 11η Δια λεξη

Θεωρι α Γραφημα των 11η Δια λεξη Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 7η Δια λεξη

Θεωρι α Γραφημα των 7η Δια λεξη Θεωρι α Γραφημα των 7η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος 2015 143 / 167 Hamiltonian γραφη ματα κύκλος Hamilton:

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains The Probabilistic Method - Probabilistic Techniques Lecture 8: Markov Chains Sotiris Nikoletseas Chistoforos Raptopoulos Computer Engineering and Informatics Department 205-206 Chistoforos Raptopoulos

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

d u d dt u e u d dt e u d u 1 u dt e 0 2 e Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 2η Δια λεξη

Θεωρι α Γραφημα των 2η Δια λεξη Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος 2015 23 / 47 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) =

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 9η Δια λεξη

Θεωρι α Γραφημα των 9η Δια λεξη Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα

Διαβάστε περισσότερα

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων ΚΕΦΑΛΑΙΟ 3 Βασικά Χαρακτηριστικά Αριθμητικών εδομένων Α ντι κείμε νο του κε φα λαί ου εί ναι: Να κα τα νο ή σου με τα βα σι κά χαρα κτη ρι στι κά των α ριθ μη τι κών δεδο μέ νων (τά ση, δια σπο ρά, α συμ

Διαβάστε περισσότερα

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο

Διαβάστε περισσότερα

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17

Διαβάστε περισσότερα

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτη σεις Α1 Α4 να γρα ψετε στο τετρα διο σας τον αριθμο της ερω τησης και

Διαβάστε περισσότερα

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11

Διαβάστε περισσότερα

Χαιρετισμοί. Περιεχόμενα Ενότητας

Χαιρετισμοί. Περιεχόμενα Ενότητας Χαιρετισμοί Περιεχόμενα Ενότητας Χαιρετισμός του Διευθυντή Μέσης Τεχνικής και Επαγγελματικής Εκπαίδευσης, κ. Ηλία Μαρκάτζιη Χαιρετισμός από τον Πρόεδρο του Συνδέσμου Γονέων και Κηδεμόνων της Σχολής, κ.

Διαβάστε περισσότερα

( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,,

( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,, ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ. Μορφή 0 με 0. Λύση: 0 ( ) 0 0 ή 0... Μορφή 0 με 0 Λύση: 0.. Μορφή 0 με 0 Λύση: Βρίσκουμε,, και τη διακρίνουσα 4 Αν 0 (ή, ετερόσημοι) η εξίσωση έχει δύο ρίζες πραγματικές και άνισες

Διαβάστε περισσότερα

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Η εταιρεία Kiefer ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Πηγε ς Ενε ργειας στην Ελλα δα. Αναλαμβα νει ε ργα ως EPC

Διαβάστε περισσότερα

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά Πρώϊος Μιλτιάδης Αθαναηλίδης Γιάννης Ηθική στα Σπορ Θεωρία και οδηγίες για ηθική συμπεριφορά ΘΕΣΣΑΛΟΝΙΚΗ 2004 1 ΗΘΙΚΗ ΣΤΑ ΣΠΟΡ ΘΕΩΡΙΑ ΚΑΙ ΟΔΗΓΙΕΣ ΓΙΑ ΗΘΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ : Εκδόσεις Χριστοδουλίδη Α. & Π.

Διαβάστε περισσότερα

Αρ χές Ηγε σί ας κα τά Πλά τω να

Αρ χές Ηγε σί ας κα τά Πλά τω να . Αρ χές Ηγε σί ας κα τά Πλά τω να ΚΕΙΜΕΝΟ: Υπτγος ε.α. Ά ρης Δια μα ντό που λος, Ψυχο λό γος, Δι δά κτω ρ Φι λο σο φί ας χή, στο σώ μα και στο πνεύ μα, 84 ΣΤΡΑΤΙΩΤΙΚΗ ΕΠΙΘΕΩΡΗΣΗ ΝΟΕΜΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΠΡΑΣΙΝΟ ΤΑΜΕΙΟ - ΕΝΕΡΓΕΙΑΚΟ ΓΡΑΦΕΙΟ ΑΙΓΑΙΟΥ ΧΩΡΟΘΕΤΗΣΗ ΑΠΕ ΣΕ ΝΗΣΙΩΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΡΑΣΙΝΟ ΤΑΜΕΙΟ - ΕΝΕΡΓΕΙΑΚΟ ΓΡΑΦΕΙΟ ΑΙΓΑΙΟΥ ΧΩΡΟΘΕΤΗΣΗ ΑΠΕ ΣΕ ΝΗΣΙΩΤΙΚΑ ΣΥΣΤΗΜΑΤΑ POWERPOINT 2011 ΡΥΘΜΙΣΤΙΚΟ ΣΧΕ ΙΟ ΓΙΑ ΤΟΝ ΠΡΟΣ ΙΟΡΙΣΜΟ ΤΩΝ ΒΕΛΤΙΣΤΩΝ ΧΩΡΙΚΩΝ ΚΑΤΑΝΟΜΩΝ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΕΩΝ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ ΚΑΙ ΤΗΝ ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΤΟΠΙΟΥ ΣΕ ΝΗΣΙΑ ΤΟΥ ΑΙΓΑΙΟΥ Για την υποστη ριξη του ε ργου

Διαβάστε περισσότερα

Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη.

Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Κυ ρι ε ε λε η σον Ἦχος Πα Α µην Π α σα πνο η αι νε σα τω τον Κυ ρι ον Ἕτερον. Π α σα πνο η αι νε σα α τω τον Κυ υ ρι ι ον 1 ΙΩΑΝΝΟΥ Α. ΝΕΓΡΗ

Διαβάστε περισσότερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Ιο νιο Πανεπιστη μιο, Κε ρκυρα 17-5-2012 Παύλος Σταμπουλι δης, Με λος ΔΣ Hellenic Startup

Διαβάστε περισσότερα

ΕΛΕΓΚΤΙΚΗ ΥΠΗΡΕΣΙΑ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΕΚΘΕΣΗ ΓΙΑ ΤΗΝ ΤΟΠΙΚΗ ΑΥΤΟΔΙΟΙΚΗΣΗ 2015

ΕΛΕΓΚΤΙΚΗ ΥΠΗΡΕΣΙΑ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΕΚΘΕΣΗ ΓΙΑ ΤΗΝ ΤΟΠΙΚΗ ΑΥΤΟΔΙΟΙΚΗΣΗ 2015 1.5 ΔΗΜΟΣ ΠΑΦΟΥ 1. Διαγωνισμο ς για την Ανα πλαση του Παραδοσιακου Εμπορικου Κε ντρου και της Πλατειάς Κε ννεντυ στην Πα φο. - Αρ. Διαγωνισμου 23/2015. Τον Σεπτε μβριο 2015, με επιστολη μας προς τον Δη

Διαβάστε περισσότερα

Πολυμεταβλητή Στατιστική Ανάλυση. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Πολυμεταβλητή Στατιστική Ανάλυση. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Πολυμεταβλητή Στατιστική Ανάλυση Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Στην πρα ξη τα δεδομένα ενο ς ερευνητη ει ναι απο τη φυ ση τους

Διαβάστε περισσότερα

Ευγενία Κατσιγιάννη* & Σπύρος Κρίβας**

Ευγενία Κατσιγιάννη* & Σπύρος Κρίβας** ÅðéóôçìïíéêÞ Åðåôçñßäá Ðáéäáãùãéêïý ÔìÞìáôïò Ä.Å. Πανεπιστημίου Ιωαννίνων, 20 (2007), 41-55 Ευγενία Κατσιγιάννη* & Σπύρος Κρίβας** Αντιλήψεις γονέων και δασκάλων απέναντι στην κοινωνική ένταξη των ατόμων

Διαβάστε περισσότερα

των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03

των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03 των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚOΙ ΝΩΩ ΝΙ ΚΩΩΝ

Διαβάστε περισσότερα

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ

Διαβάστε περισσότερα

των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09

των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09 των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚOΙ ΝΩΩ ΝΙ ΚΩΩΝ ΛΕΙ

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

Δομές Ελέγχου και Επανάληψης

Δομές Ελέγχου και Επανάληψης Εργαστήριο 3 ο Δομές Ελέγχου και Επανάληψης Εισαγωγή Σκοπο ς του εργαστηρι ου αυτου ει ναι η εισαγωγη στην εκτε λεση εντολω ν υπο συνθη κη και στις δομές επανάληψης. Δομές Ελέγχου Η ικανότητα να μπορεί

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

Λο γι στών & Βοη θών Λο γι στών βι ο µη χα νι κών και λοι πών ε πι χει ρή σε ων όλης της χώρας O23R09

Λο γι στών & Βοη θών Λο γι στών βι ο µη χα νι κών και λοι πών ε πι χει ρή σε ων όλης της χώρας O23R09 Λο γι στών & Βοη θών Λο γι στών βι ο µη χα νι κών και λοι πών ε πι χει ρή σε ων όλης της χώρας O23R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΛO ΓΙ ΣΤΩΩΝ ΚΑΙ ΒOΗ ΘΩΩΝ ΛO ΓΙ ΣΤΩΩΝ

Διαβάστε περισσότερα

VAGONETTO. Ωρες: 09:00 17:00. t: (+30) e: w: Kρατήσεις: Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας

VAGONETTO. Ωρες: 09:00 17:00. t: (+30) e: w:  Kρατήσεις: Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας VAGONETTO Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας Ωρες: 09:00 17:00 Kρατήσεις: t: (+30) 2265 078819 e: info@vagonetto.gr w: www.vagonetto.gr 5 1 o χ λ μ Ε. Ο. Λ α μ ί α ς Ά μ φ ι σ σ α ς Τ. Κ. 3 3

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0

F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0 ΜΑ 1 Μ.2 Ν ΟΙ ΠΑΡ ΓΩΓΟΙ fx ΚΑΙ fy ΥΠ ΡΧΟΥΝ ΚΑΙ ε ΝΑΙ ΙΑφΟΡ ΣΙΜε Σε Κ ΠΟΙΑ ΠεΡΙΟΧ ΤΟΥ a, b Τ Τε ΝΑ ΑΠΟ ειχθε ΤΙ fxy fyx. Α εξετ ΣεΤε ΑΝ fxy fyx ΣΤΟ 0, 0 ΓΙΑ ΤΗΝ ΣΥΝ ΡΤΗΣΗ f x, y xy x2 y 2 ΓΙΑ x, y 0, 0

Διαβάστε περισσότερα

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29 ΠΕΡΙEΧΟΜΕΝΑ Οδηγός χρησιμοποίησης του βιβλίου και των τριών ψηφιακών δίσκων (DVD)...11 Σκο πός του βι βλί ου και των 3 ψηφιακών δί σκων...15 Λί γα λό για α πό το Σχο λι κό Σύμ βου λο Φυ σι κής Α γω γής...17

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΕΙΣ ΕΝΕΡΓΕΙΑΚΩΝ ΥΠΗΡΕΣΙΩΝ (EEY) ESCO s και ΣΥΜΒΑΣΕΙΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗΣ (ΣΕΑ)

ΕΠΙΧΕΙΡΗΣΕΙΣ ΕΝΕΡΓΕΙΑΚΩΝ ΥΠΗΡΕΣΙΩΝ (EEY) ESCO s και ΣΥΜΒΑΣΕΙΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗΣ (ΣΕΑ) ΕΠΙΧΕΙΡΗΣΕΙΣ ΕΝΕΡΓΕΙΑΚΩΝ ΥΠΗΡΕΣΙΩΝ (EEY) ESCO s και ΣΥΜΒΑΣΕΙΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗΣ (ΣΕΑ) Η ΕΛΛΗΝΙΚΗ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ Θεσσαλονίκη, 9 Σεπτεμβρίου 2014 Κώστας ΚΩΝΣΤΑΝΤΙΝΟΥ Δρ. Μηχανολόγος Μηχανικός Διευθυντής

Διαβάστε περισσότερα

των Δ εν δρο αν θοκηπουρών Ξενοδοχειακών επιχειρήσεων O08R12

των Δ εν δρο αν θοκηπουρών Ξενοδοχειακών επιχειρήσεων O08R12 των Δ εν δρο αν θοκηπουρών Ξενοδοχειακών επιχειρήσεων O08R12 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ Δ ΕΝΔ ΡΟΑΝΘΟΚΗΠΟΥΡΩΩΝ ΞΕ ΝO Δ O ΧΕΙ Α ΚΩΩΝ Ε ΠΙ ΧΕΙ ΡΗ ΣΕ ΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ

Διαβάστε περισσότερα

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA Α. Γενικά Η VOLTERRA, ως Προμηθευτη ς Ηλεκτρικη ς Ενε ργειας και ε χοντας ως αντικειμενικο στο

Διαβάστε περισσότερα

Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ

Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ ΓΚΛΗ ΜΑ ΤΑ ΔΗ Ω ΣΕΙΣ 1941-1944 Ε ΓΚΛΗ ΜΑ ΤΑ ΔΗ Ω ΣΕΙΣ 19 Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ 1941-1944 ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ:

Διαβάστε περισσότερα

Αποτελεσματικός Προπονητής

Αποτελεσματικός Προπονητής ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï

Διαβάστε περισσότερα

ε πι λο γές & σχέ σεις στην οι κο γέ νεια

ε πι λο γές & σχέ σεις στην οι κο γέ νεια ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο

Διαβάστε περισσότερα

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ. σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

Τῇ Τρίτῃ τῆς Διακαινησίμου. Μνήμην ἐπιτελοῦμεν. τῶν Ἁγίων ἐνδόξων νεοφανῶν καί Θαυματουργῶν. Ὁσιομαρτύρων Ραφαήλ και Νικολάου,

Τῇ Τρίτῃ τῆς Διακαινησίμου. Μνήμην ἐπιτελοῦμεν. τῶν Ἁγίων ἐνδόξων νεοφανῶν καί Θαυματουργῶν. Ὁσιομαρτύρων Ραφαήλ και Νικολάου, Τῇ Τρίτῃ τῆς ιακαινησίμου Μνήμην ἐπιτελοῦμεν τῶν Ἁγίων ἐνδόξων νεοφανῶν καί Θαυματουργῶν Ὁσιομαρτύρων Ραφαήλ και Νικολάου, καί τῆς Ἁγίας αρθενομάρτυρος Εἰρήνης, τῶν ἐν Θερμῇ τῆς Λέσβου ΕΝ Τῼ ΜΕΓΑΛῼ ΕΣΕΡΙΝῼ

Διαβάστε περισσότερα

των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10

των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10 των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10 2 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΕΡ ΓΑΖO ΜΕ ΝΩΩΝ ΣΕ

Διαβάστε περισσότερα

των Oι κο δό µων συ νερ γεί ων O32R09

των Oι κο δό µων συ νερ γεί ων O32R09 των Oι κο δό µων µο νί µων συ νερ γεί ων O32R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ OΙ ΚO Δ O ΜΩΩΝ ΜO ΝΙ ΜΩΩΝ ΣY ΝΕΡ ΓΕΙ ΩΩΝ ΒΙ O ΜΗ ΧΑ ΝΙ ΩΩΝ - ΒΙ O ΤΕ ΧΝΙ ΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α. ΓΙΑ

Διαβάστε περισσότερα

Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης**

Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης** ÅðéóôçìïíéêÞ Åðåôçñßäá Ðáéäáãùãéêïý ÔìÞìáôïò Ä.Å. Πανεπιστημίου Ιωαννίνων, 20 (2007), 23-39 Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης** Η συγκρότηση μιας ευκλείδειας έννοιας της ευθείας γραμμής με τη διαμεσολάβηση

Διαβάστε περισσότερα

Κε φά λαιο. Έννοιες, Ο ρι σμοί και Βα σι κές Προ ϋ πο θέ σεις. Αναπηρία και ειδική φυσική αγωγή

Κε φά λαιο. Έννοιες, Ο ρι σμοί και Βα σι κές Προ ϋ πο θέ σεις. Αναπηρία και ειδική φυσική αγωγή Κε φά λαιο 1 Έννοιες, Ο ρι σμοί και Βα σι κές Προ ϋ πο θέ σεις Αναπηρία και ειδική φυσική αγωγή Η έν νοια της α ναπη ρί ας εί ναι πολυ διά στα τη και α ντι κα το πτρί ζει την αλ λη λε πί δρα ση του ε κά

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

των εργαζοµένων στα Συµβολαιογραφεία όλης της χώρας K67R09

των εργαζοµένων στα Συµβολαιογραφεία όλης της χώρας K67R09 των εργαζοµένων στα Συµβολαιογραφεία όλης της χώρας K67R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑΖO ΜΕ ΝΩΩΝ ΣΤΑ ΣYΜ ΒO ΛΑΙ O ΓΡΑ ΦΕΙ Α O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α. ΓΙΑ ΤΗΝ ΚΩΩ

Διαβάστε περισσότερα

Η Ο ΜΑ ΔΙ ΚΗ. της ζω ής

Η Ο ΜΑ ΔΙ ΚΗ. της ζω ής Η Ο ΜΑ ΔΙ ΚΗ ΨΥ ΧΗ η αν θο δέ σµη της ζω ής ΚΕΙΜΕΝΟ: Υ πτγος ε.α. Ά ρης Δια μα ντό που λος, Διδάκτωρ Φιλοσοφίας-Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση ΕΙ ΣΑ ΓΩ ΓΙ ΚΕΣ ΕΝ ΝΟΙΕΣ Ό πως υ πάρ χει

Διαβάστε περισσότερα

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ

Διαβάστε περισσότερα

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ

Διαβάστε περισσότερα

των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11

των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11 των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚΑ ΘΗ ΓΗ ΤΩΩΝ ΦΡO ΝΤΙ ΣΤΗ ΡΙ ΩΩΝ ΞΕ ΝΩΩΝ ΓΛΩΩΣ ΣΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.

Διαβάστε περισσότερα

R t. H t n t Σi = l. MRi n t 100

R t. H t n t Σi = l. MRi n t 100 30. 12. 98 EL Επ σηµη Εφηµερ δα των Ευρωπαϊκ ν Κοινοτ των L 356/1 Ι (Πρ ξει για την ισχ των οπο ων απαιτε ται δηµοσ ευση) ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 2818/98 ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΚΕΝΤΡΙΚΗΣ ΤΡΑΠΕΖΑΣ τη 1η εκεµβρ ου

Διαβάστε περισσότερα

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ ΤΥΙΚΑ & ΜΑΚΑΡΙΣΜΟΙ Ἦχος Νη Μ Α Ν µην Ευ λο γει η ψυ χη µου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ λο γει η ψυ χη µου τον Κυ ρι ον και πα αν τα τα εν τος µου το ο νο µα το α γι ον αυ του Ευ λο γει η ψυ

Διαβάστε περισσότερα

Θ Ρ Η Σ Κ Ε Ι Α- Π Ο Λ Ι Τ Ι Σ Μ Ο Σ & Α Ξ Ι Ε Σ

Θ Ρ Η Σ Κ Ε Ι Α- Π Ο Λ Ι Τ Ι Σ Μ Ο Σ & Α Ξ Ι Ε Σ Θ Ρ Η Σ Κ Ε Ι Α- Π Ο Λ Ι Τ Ι Σ Μ Ο Σ & Α Ξ Ι Ε Σ Στον πο λι τι σμό των μη χα νών έ χει δι α φα νεί ο ρι στι κά ό τι δεν προβλέ πε ται θέ ση γι α τη λει τουρ γί α της ψυ χής. Τους δύ ο τε λευ ταίους αι

Διαβάστε περισσότερα

Σκελετοί, μυστικά και η εορτή της αλή θειας

Σκελετοί, μυστικά και η εορτή της αλή θειας Σκελετοί, μυστικά και η εορτή της αλή θειας Είναι αλή θεια ό τι, ό ταν έχεις πίσω σου σαρά ντα χρό νια αδιά κοπης και αξιό λογης καλλιτεχνικής παραγωγής, πρέπει να μπορείς κά θε φορά να διαχειρίζεσαι τον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 2016-2017 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegean.gr Τηλ: 2271035468

Διαβάστε περισσότερα

Ðñü ëï ãïò. Κα λή σας ε πι τυ χί α!

Ðñü ëï ãïò. Κα λή σας ε πι τυ χί α! Ðñü ëï ãïò Το εγ χει ρίδιο αυ τό α πευ θύ νε ται κυ ρί ως σε προ πο νη τές και προ πο νήτριες, αλ λά και σε α θλη τές και α θλή τριες της Πε το σφαί ρι σης. Πα ρου σιά ζει κά ποιες ι δέ ες και τε χνι κές

Διαβάστε περισσότερα

Φοιτητικό στεγαστικό επίδομα - Νέα Κ.Υ.Α.

Φοιτητικό στεγαστικό επίδομα - Νέα Κ.Υ.Α. Φοιτητικό στεγαστικό επίδομα - Νέα Κ.Υ.Α. Κοινή Υπουργική απόφαση εξέδωσαν τα υπουργεία Παιδείας και Οικονομικών με την οποία επανακαθορίζονται οι διαδικασίες και τα δικαιολογητικά για τη χορήγηση του

Διαβάστε περισσότερα

των Ξε να γών Ρόδου Ot04R14

των Ξε να γών Ρόδου Ot04R14 των Ξε να γών Ρόδου Ot04R14 να γούς που εργάζονται στη Ρόδο, οι οποίοι πα ρέ χουν τις υπηρεσίες τους στους εργοδότες τους τουριστικούς πράκτορες πραγµατικά µε σχέση εξηρτηµένης εργασίας Δ. ΚΑ ΘO ΡΙ ΣΜOΣ

Διαβάστε περισσότερα

Μάνατζμεντ και Μάνατζερς

Μάνατζμεντ και Μάνατζερς Κ Ε ΦΑ ΛΑΙΟ 1 Μάνατζμεντ και Μάνατζερς Κά θε μέ ρα ε πι σκε πτό μα στε διά φο ρους ορ γα νισμούς με γά λους ή μι κρούς και ερ χό μα στε σε επα φή με τους υ παλ λή λους και τους μά να τζερ ς. Α νά λο γα

Διαβάστε περισσότερα

Κυ ρι ε ε κε κρα α ξα προ ο ος σε ε ει σα

Κυ ρι ε ε κε κρα α ξα προ ο ος σε ε ει σα ΤΗ Ζ ΤΟΥ ΜΗΝΟΣ ΑΥΓΟΥΣΤΟΥ ΜΝΗΜΗ ΤΟΥ ΤΟΥ ΟΣΙΟΥ ΚΑΙ ΘΕΟΦΟΡΟΥ ΠΑΤΡΟΣ ΗΜΩΝ ΝΙΚΑΝΟΡΟΣ ΤΟΥ ΘΑΥΜΑΤΟΥΡΓΟΥ Ἡ µουσική καταγραφή τῶν µελῶν ἔγινε ἀπό τὰ χειρόγραφα µουσικά κείµενα τοῦ π. Χρίστου Κυριακοπούλου Μετὰ

Διαβάστε περισσότερα

Η ΛΕ ΚΤΡΟ ΝΙ ΚΟ Ε ΠΙΧΕΙ ΡΕΙΝ

Η ΛΕ ΚΤΡΟ ΝΙ ΚΟ Ε ΠΙΧΕΙ ΡΕΙΝ Η ΛΕ ΚΤΡΟ ΝΙ ΚΟ Ε ΠΙΧΕΙ ΡΕΙΝ KEΙΜΕΝΟ: Λγος (ΠΒ) Νι κό λα ος Ι. Πέ ντσας (MS.c, MBA), Λγος (ΠΖ) Δη μή τριος Λ. Πισ σα νί δης (MBA) ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Eισαγωγή Κα τά τη διάρ κεια της τε

Διαβάστε περισσότερα

áåé þñïò ÔÏÌÏÓ 2 VOLUME 2 ÔÅÕ ÏÓ 1 ISSUE 1

áåé þñïò ÔÏÌÏÓ 2 VOLUME 2 ÔÅÕ ÏÓ 1 ISSUE 1 áåé þñïò ÊÅÉ ÌÅÍÁ Ð ÏËÅÏÄÏÌÉ ÁÓ, Ù ÑÏÔ ÁÎÉÁÓ ÊÁÉ ÁÍÁÐÔÕ ÎÇÓ ÔÏÌÏÓ 2 VOLUME 2 ÔÅÕ ÏÓ 1 ISSUE 1 ÌÁ ÏÓ 2003 MAY 2003 ΣΥΝΤΑΚΤΙΚH ΕΠΙΤΡΟΠH - Πανεπιστήµιο Θεσσαλίας ΚΟΚΚΩΣΗΣ ΧΑΡΗΣ ΟΙΚΟΝΟΜΟΥ ΗΜΗΤΡΗΣ ΓΟΥΣΙΟΣ ΗΜΗΤΡΗΣ

Διαβάστε περισσότερα

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve

Διαβάστε περισσότερα

Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ

Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ ΚΕΙΜΕΝΟ: Ευ γέ νιος Αρ. Για ρέ νης, Α ντει σαγ γε λέ ας Στρα το δι κεί ου Ιω αν νί νων, Δι δά κτο ρας στο Πά ντειο Πα νε πι στή μιο Α πό την κλα σι κή φά λαγ γα

Διαβάστε περισσότερα

Α ΡΙΘ ΜΟΣ ΟΙ ΚΗ ΜΑ- ΤΩΝ ΚΑΙ Υ ΝΑ ΜΕΝΟ ΝΑ Ε ΞΥ ΠΗ ΡΕ ΤΗ ΘΕΙ ΠΡΟΣΩΠΙΚΟ. 3 ξε νώ νες Α ΣΣ ΠΡΟΣΩΠΙΚΟ. Ξε νώ νες Α ΣΣ Κοζάνη. Κ.

Α ΡΙΘ ΜΟΣ ΟΙ ΚΗ ΜΑ- ΤΩΝ ΚΑΙ Υ ΝΑ ΜΕΝΟ ΝΑ Ε ΞΥ ΠΗ ΡΕ ΤΗ ΘΕΙ ΠΡΟΣΩΠΙΚΟ. 3 ξε νώ νες Α ΣΣ ΠΡΟΣΩΠΙΚΟ. Ξε νώ νες Α ΣΣ Κοζάνη. Κ. ΞΕ ΝΩ ΝΕΣ Οι ξε νώ νες λει τουρ γούν µε σκο πό την προ σω ρι νή διαµονή, κυ ρί ως των νε ο το ποθε τη µέ νων Μον. Αξ κών - Αν θστών και των µε λών των οικο γε νειών τους που τυ χόν τους συ νο δεύ ουν µέ

Διαβάστε περισσότερα

L 77/4 EL Το βασικ πεδ ο τη ρευνα αποτελε ται απ τα µ λη των ιδιωτικ ν νοικοκυρι ν που κατοικο ν στην οικονοµικ επικρ τεια κ θε κρ του µ

L 77/4 EL Το βασικ πεδ ο τη ρευνα αποτελε ται απ τα µ λη των ιδιωτικ ν νοικοκυρι ν που κατοικο ν στην οικονοµικ επικρ τεια κ θε κρ του µ L 77/3 ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 577/98 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ τη 9η Μαρτ ου 1998 για τη διεν ργεια δειγµατοληπτικ ρευνα εργατικο δυναµικο στην Κοιν τητα ΤΟ ΣΥΜΒΟΥΛΙΟ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΕΝΩΣΗΣ, Έχοντα υπ ψη: τη συνθ κη

Διαβάστε περισσότερα

ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ

ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ Η ε πο χή μας χα ρα κτη ρί ζε ται, ή του λά χι στον έ τσι θα έ πρε πε, α πό πλη θώ ρα ε πιλο γών ε λεύ θερου χρό νου. Η δια θε σι μό τη τα πα ράλ λη λα κα τάλ λη λης

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ

ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΚΕΙ ΜΕ ΝΟ-ΦΩ ΤΟΓΡΑ ΦΙΕΣ: Υ πτγος ε.α. Ορ θό δο ξος Ζω τιά δης ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ Το Με τάλ λιο Ε ξαι

Διαβάστε περισσότερα

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

x P (x) c P (x) = c P (x), x S : x c

x P (x) c P (x) = c P (x), x S : x c Κεφάλαιο 9 Ανισότητες, από κοινού κατανομή, Νόμος των Μεγάλων Αριθμών 9.1 Ανισότητες Markov και Chebychev Ξεκινάμε αυτό το κεφάλαιο με δύο σημαντικά αποτελέσματα τα οποία, πέραν της μεγάλης χρησιμότητάς

Διαβάστε περισσότερα

Χει ρι στών Μη χα νη µά των Λα το µεί ων Μαρµάρου, Πέτρας & Χώ µα τος ό λης της χώρας O53R10& O54R10

Χει ρι στών Μη χα νη µά των Λα το µεί ων Μαρµάρου, Πέτρας & Χώ µα τος ό λης της χώρας O53R10& O54R10 Χει ρι στών Μη χα νη µά των Λα το µεί ων Μαρµάρου, Πέτρας & Χώ µα τος ό λης της χώρας O53R10& O54R10 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΧΕΙ ΡΙ ΣΤΩΩΝ ΕΚ ΣΚΑ ΠΤΙ ΚΩΩΝ, Α ΝY

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

ΔΙΑΛΥΜΑΤΑ ΤΡΟΠΟΙ ΕΚΦΡΑΣΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ ΔΙΑΛΥΜΑΤΩΝ. ΕΡΗ ΜΠΙΖΑΝΗ 4 ΟΣ ΟΡΟΦΟΣ, ΓΡΑΦΕΙΟ

ΔΙΑΛΥΜΑΤΑ ΤΡΟΠΟΙ ΕΚΦΡΑΣΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ ΔΙΑΛΥΜΑΤΩΝ. ΕΡΗ ΜΠΙΖΑΝΗ 4 ΟΣ ΟΡΟΦΟΣ, ΓΡΑΦΕΙΟ ΔΙΑΛΥΜΑΤΑ ΤΡΟΠΟΙ ΕΚΦΡΑΣΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ ΔΙΑΛΥΜΑΤΩΝ ΕΡΗ ΜΠΙΖΑΝΗ 4 ΟΣ ΟΡΟΦΟΣ, ΓΡΑΦΕΙΟ 2 eribizani@chem.uoa.gr 2107274573 1 ΔΙΑΛΥΜΑΤΑ (1) Διάλυμα: κάθε ομογενές σύστημα, αποτελούμενο από δυο ή περισσότερες

Διαβάστε περισσότερα

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες Ο ΡΟ ΛΟΣ ΤΩΝ ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες ΚΕΙΜΕΝΟ: Α να στά σιος Γ. Ρούσ σης Κοι νω νιο λό γος - Ε γκλη μα το λό

Διαβάστε περισσότερα

Α θη ναι ος πο λι τι κος και στρα τη γος του πρω του μι σου του 5ου αιωνα π.χ.

Α θη ναι ος πο λι τι κος και στρα τη γος του πρω του μι σου του 5ου αιωνα π.χ. ΚΙ ΜΩΝ Α θη ναι ος πο λι τι κος και στρα τη γος του πρω του μι σου του 5ου αιωνα π.χ. ΚΕΙΜΕΝΟ: Χρή στος Α να γνώ στου, Απόφοιτος Φιλοσοφικής Σχολής, τμήμα Φιλολογίας Αριστοτελείου Πανεπιστημείου Θράκης

Διαβάστε περισσότερα

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ Ο Ό μη ρος και ο Η σί ο δος έ χουν δη μιουρ γή σει κα τά τον Η ρό δο το 1, τους ελ λη νι κούς θε ούς. Ο Ό μη ρος στη θε ο γο νί α του έ χει ιε ραρ

Διαβάστε περισσότερα

Διονύσιος Λουκέρης* & Ιωάννα Συρίου**

Διονύσιος Λουκέρης* & Ιωάννα Συρίου** ÅðéóôçìïíéêÞ Åðåôçñßäá Ðáéäáãùãéêïý ÔìÞìáôïò Ä.Å. Πανεπιστημίου Ιωαννίνων, 20 (2007), 111-131 Διονύσιος Λουκέρης* & Ιωάννα Συρίου** Η σχο λι κή α πο τε λε σμα τι κό τη τα και ο ρό λος της στην ποιο τι

Διαβάστε περισσότερα

των Πε ρι ο δευ ό ντων Πω λη τών Πλα σιέ ό λης της χώρας O33R11

των Πε ρι ο δευ ό ντων Πω λη τών Πλα σιέ ό λης της χώρας O33R11 των Πε ρι ο δευ ό ντων Πω λη τών Πλα σιέ ό λης της χώρας O33R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΠΕ ΡΙ O Δ ΕY O ΝΤΩΩΝ ΠΩΩ ΛΗ ΤΩΩΝ-ΠΛΑ ΣΙΕ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α. ΓΙΑ ΤΗΝ ΚΩΩ

Διαβάστε περισσότερα

Πολιτική (και) επικοινωνία

Πολιτική (και) επικοινωνία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Πολιτική (και) επικοινωνία Ενότητα 8: Η προεκλογική εκστρατεία: Εξελίξεις και χαρακτηριστικά Ιωάννης Καραγιάννης Τμήμα Πολιτικής Επιστήμης Περιοδολο γηση της προεκλογικής

Διαβάστε περισσότερα

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ 12 Το γε γο νός ό τι δια βά ζεις αυ τό το βι βλί ο ση μαί νει ό τι έ χεις μολυν θεί α πό έ να μι κρόβιο το μι κρό βιο του πο δο σφαί ρου και σίγου

Διαβάστε περισσότερα

ΜΕΡΟΣ ΠΡΩΤΟ: ΒΑΜΒΑΚΙ - ΚΛΩΣΤΙΚΑ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1. ΒΑΜΒΑΚΙ Ε ΞΑ ΠΛΩ ΣΗ ΚΑΙ ΟΙ ΚΟ ΝΟ ΜΙ ΚΗ ΣΗ ΜΑ ΣΙΑ Γε νι κά

ΜΕΡΟΣ ΠΡΩΤΟ: ΒΑΜΒΑΚΙ - ΚΛΩΣΤΙΚΑ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1. ΒΑΜΒΑΚΙ Ε ΞΑ ΠΛΩ ΣΗ ΚΑΙ ΟΙ ΚΟ ΝΟ ΜΙ ΚΗ ΣΗ ΜΑ ΣΙΑ Γε νι κά Περιεχόμενα ΜΕΡΟΣ ΠΡΩΤΟ: ΒΑΜΒΑΚΙ - ΚΛΩΣΤΙΚΑ ΕΙΣΑΓΩΓΗ... 17 ΚΕΦΑΛΑΙΟ 1. ΒΑΜΒΑΚΙ... 19 1. Ε ΞΑ ΠΛΩ ΣΗ ΚΑΙ ΟΙ ΚΟ ΝΟ ΜΙ ΚΗ ΣΗ ΜΑ ΣΙΑ... 19 1.1. Γε νι κά... 19 1.2. Η καλ λιέρ γεια του βαμ βα κιού στην Ελ λά

Διαβάστε περισσότερα

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής Κωνσταντίνος Αλεξανδρής, PhD Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής β βελτιωμένη έκδοση ΘΕΣΣΑΛΟΝΙΚΗ 2011 ΠΕΡΙEΧΟΜΕΝΑ Εισαγωγή... 11 ΠΡΩΤΗ ΕΝΟΤΗΤΑ 1.0 Η Αθλητική

Διαβάστε περισσότερα

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι Φ Λ Ι Ι ι αγωγτ ρι μ Π λλι πρα τν πρ βλτ ματα χαι χαταστι αει τη αθημ ριν ζω μπ ρ ι ν να περιγραφ ν με τη β θεια ν διαγρι μματ ζ απ τελ μεν υ απ να ι ν λ ημε ων αι να ν λ γραμμι ν π υ να ενι ν υν υγ ε

Διαβάστε περισσότερα