Θεωρι α Γραφημα των 5η Δια λεξη

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρι α Γραφημα των 5η Δια λεξη"

Transcript

1 Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

2 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο ει ναι συνεκτικο και ακυκλικο ονομα ζεται δένδρο Δάσος: Ένα μη συνεκτικο γρα φημα χωρι ς κυ κλους ονομα ζεται δάσος Οι συνεκτικε ς συνιστω σες ενο ς δα σους ει ναι δε νδρα Φύλλο: Κορυφη δε νδρου με βαθμο 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

3 Λήμμα 5.1: Έστω ε να δε νδρο T. Το τε E(T) = V(T) 1 Απόδειξη : Γνωρι ζουμε ο τι: εα ν ε να γρα φημα G ει ναι συνεκτικο, το τε E(G) V(G) 1 E(T) V(T) 1 Έστω E(T) > V(T) 1 V(T) (1) [γιατι T συνεκτικο ] e(t) = E(T) V(T) V(T) V(T) = 1 [e(t)= πυκνο τητα] Γνωρι ζουμε ο τι: Εα ν e(g) q το τε το G περιε χει κυ κλο(υς) T περιε χει κυ κλο(υς). άτοπο E(T) V(T) 1 (2) (1),(2) E(T) = V(T) 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

4 Λήμμα 5.2: Κα θε δε νδρο T με V(T) 2 ε χει τουλα χιστον 2 φυ λλα Απόδειξη : Έστω ο τι ε χει το πολυ 1 φυ λλο x με d(x) = 1 u V(T)\x d(u) 2 2 E(T) = d(v) = 1 + d(v) 1 + 2( V(T) 1) v V(T) v V(T)\u 2 E(T) 2 V(T) 1 E(T) V(T) 1/2 [ E(T) ακε ραιος] E(T) V(T) άτοπο, γιατι T δε νδρο και E(T) = V(T) 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

5 Θεώρημα 5.3: Έστω απλο γρα φημα T. Το T ει ναι δε νδρο ανν υπα ρχει ακριβω ς 1 μονοπα τι ανα μεσα σε κα θε ζευ γος κορυφω ν του T Απόδειξη : Έστω κορυφε ς u, v V(T) που συνδε ονται με 2 μονοπα τια, ε στω P 1 (u, v) και P 2 (u, v) ακμη e = (x, y) : e P 1 (u, v), e / P 2 (u, v) G = (P 1 P 2 )\e συνεκτικο (x, y)-μονοπα τι P στο G P {e} κυ κλος. άτοπο αφου T δε νδρο Έστω 1 μονοπα τι ανα μεσα σε κα θε ζευ γος κορυφω ν του T T συνεκτικο. Θα δει ξω ο τι το T δεν ε χει κυ κλο [με επαγωγη στο V(T) ] Βα ση: V(T) = 2 χωρι ς κυ κλο Ε.Υ. Κα θε γρα φημα T με V(T) < k, k 3, για το οποι ο ακριβω ς 1 μονοπα τι ανα μεσα σε κα θε ζευ γος κορυφω ν του ει ναι δε νδρο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

6 Ε.Β. Έστω γρα φημα T με V(T) = k Έστω ε να μεγιστοτικο (u, v)-μονοπα τι P(u, v) του T Κα θε γει τονας του u P(u, v) διαφορετικα το P(u, v) δεν ει ναι με γιστο Έστω d(u) 2 τουλα χιστον d(u) (u, v)-μονοπα τια u 1 2 d(u) v άτοπο γιατι το (u, v)-μονοπα τι ει ναι μοναδικο d(u) = 1 [ο μοια d(v) = 1] [Μο λις ει δαμε μια εναλλακτικη απο δειξη για το Λη μμα5.2] Έστω w ο γει τονας της u στο T Η διαγραφη του u απο το T δεν επηρεα ζει τα υπο λοιπα μονοπα τια του T T\ {u} ει ναι δε νδρο [απο Ε.Υ.] Στο T\ {u} η προσθη κη της κορυφη ς u και της ακμη ς (w, u) δεν δημιουργει κυ κλο ενω το νε ο γρα φημα ει ναι το T Το T ει ναι συνεκτικο Το T δεν ε χει κυ κλο =========== Το T ει ναι δε νδρο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

7 Θεώρημα 5.4[Χαρακτηρισμός των δένδρων]: Έστω ε να γρα φημα T με V(T) 1. Οι παρακα τω προτα σεις ει ναι ισοδυ ναμες: i. Το T ει ναι συνεκτικο και χωρι ς κυ κλους [ο ορισμο ς του δε νδρου] ii. Το T ει ναι συνεκτικο και E(T) = V(T) 1 iii. Το T δεν ε χει κυ κλους και E(T) = V(T) 1 iv. Για κα θε ζευ γος κορυφω ν u, v V(T) ακριβω ς 1 (u, v)-μονοπα τι v. Το T ει ναι συνεκτικο και κα θε ακμη του ει ναι γε φυρα Απόδειξη [Να λυθεί σαν άσκηση]: Σημείωση: Η ισοδυναμι α i. iv. ει ναι το Θεω ρημα 5.1. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

8 Θεώρημα 5.5: Έστω γρα φημα G με V(G) 1. Το τε το G περιε χει ως υπογρα φημα του κα θε δε νδρο T με k δ(g) ακμε ς Απόδειξη [Με επαγωγή ως προς το k]: Βα ση: Ε.Υ. k = 0 Το δε νδρο αποτελει ται απο 1 κορυφη Το T ει ναι υπογρα φημα του G Έστω ο τι 0 k k κα θε δε νδρο με k ακμε ς ει ναι υπογρα φημα κα θε γραφη ματος G με δ(g) k Ε.Β. Θα δει ξουμε ο τι το αυθαι ρετο δε νδρο με k + 1 ακμε ς ει ναι υπογρα φημα κα θε γραφη ματος G με δ(g) k + 1 Έστω αυθαι ρετο δε νδρο T με k + 1 ακμε ς Έστω αυθαι ρετο γρα φημα G με δ(g) k + 1 k 0 k + 1 > 0 Το T ε χει 2 ακμε ς Το T ε χει τουλα χιστον 2 φυ λλα Έστω u ε να φυ λλο του T και w η γειτονικη κορυφη του Έστω το T = T\ {u}. Το T ει ναι δε νδρο με k ακμε ς και V(T ) = k + 1 d(w) k (3) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

9 δ(g) k + 1 > k Ε.Υ. = Το T ει ναι υπογρα φημα του G Έστω w G η κορυφη του G στην οποι α αντιστοιχει ο κο μβος w του T = T\ {u} δ(g) k + 1 d(w G ) k + 1 Υπα ρχει μια κορυφη γειτονικη της w G στο G στην οποι α δεν ε χει αντιστοιχιθει καμμι α γειτονικη του w στο T. Έστω u G η κορυφη αυτη Επεκτει νουμε την αντιστοι χιση του T\ {u} στο G αντιστοιχι ζοντας την κορυφη u V(T) στην u G V(G) Άρα το T ει ναι υπογρα φημα του G Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

10 Σκελετικα Δε νδρα Σκελετικό δένδρο [Spanning Tree]: Έστω γρα φημα G. Ένα παραγο μενο υπογρα φημα T του G το οποι ο ει ναι δε νδρο ονομα ζεται σκελετικό δένδρο του G Σημείωση: Ένα παραγο μενο υπογρα φημα του G δημιουργει ται με την διαγραφη ακμω ν απο το G. Δένδρο με ετικέτες: Δε νδρο T ο που σε κα θε κορυφη u V(T) ε χει αντιστοιχιθει διακριτο ς ακε ραιος απο το συ νολο {1, 2,..., V(T) }. Έστω l : v(t) {1, 2,..., V(T) } η συνα ρτηση που αντιστοιχει ετικε τες στις κορυφε ς του T Η l ει ναι 1 1 και επι Ένα δε νδρο T με συνα ρτηση ετικετω ν l συμβολι ζεται με < T, l > Ισομορφισμός δένδρου με ετικέτες: Δυ ο δε νδρα < T 1, l 1 > και < T 2, l 2 > ει ναι ισόμορφα αν υπα ρχει ισομορφισμο ς σ : T 1 T 2 : v V(T 1 )l 1 (v) = l 2 (σ(v)) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

11 Ακολουθία Prüfer: Μι α ακολουθι α n 2 ο ρων απο τους φυσικου ς αριθμου ς {1, 2,..., n} ονομα ζεται ακολουθία Prüfer τάξης n Παρα δειγμα: Η < 5, 4, 4, 2, 2, 3, 7 > ει ναι μια ακολουθι α Pru fer βαθμου 9 Θεώρημα 5.6[Cayley]: Ο αριθμο ς των διαφορετικω ν δε νδρων με ετικε τες ει ναι n n 2 ο που n ο αριθμο ς των κορυφω ν του δε νδρου Απόδειξη : Έστω T n το συ νολο των δε νδρων με ετικε τες που ε χουν n κορυφε ς Έστω W n το συ νολο των ακολουθιω ν Pru fer τα ξης n Θα κατασκευα σουμε μια αμφιμονοση μαντη συνα ρτηση ϕ : T n W n Η ϕ ονομα ζεται κω δικας Pru fer W n = n n 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

12 Αναδρομικο ς ορισμο ς του κω δικα Pru fer ϕ : T n W n [ως προς το n] Υποθε τουμε ο τι οι κορυφε ς του V ε χουν ονο ματα/ετικε τες στο συ νολο {1,..., n} Βα ση: n = 2 μοναδικο δε νδρο T: Ορι ζουμε ϕ(t) = ϵ [η κενη λε ξη] n n 2 = 2 0 = 1, W 2 = {ϵ} = 1 Αναδρομικο ς ορισμο ς: Έστω u(t) το φυ λλο του T με την μικρο τερη ετικε τα Έστω e(t) η ακμη του T που προσπι πτει στη u(t) Έστω o(t) η κορυφη στο α λλο α κρο της e(t) T : T \u(t ) e(t ) u(t ) o(t ) Το T\u(T) ε χει n 1 κορυφε ς ϕ(t) =< o(t), ϕ(t\u(t)) > Πρε πει να δει ξουμε ο τι ο ντως ε χουμε ορι σει μια αμφιμονοση μαντη αντιστοιχι α Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

13 Παρα δειγμα: T 0 T 1 = T 0 \ {3} T 2 = T 1 \ {5} T 3 = T 2 \ {4} < 4, ϕ(t 1 ) > < 4, ϕ(t 2 ) > < 2, ϕ(t 3 ) > < 2, ϕ(t 4 ) > A < 4, 4, 2, 2, 2, 1, 1 > < 4, 2, 2, 2, 1, 1 > < 2, 2, 2, 1, 1 > < 2, 2, 1, 1 > B T 4 = T 3 \ {6} T 5 = T 4 \ {7} T 6 = T 5 \ {2} T 7 = T 6 \ {8} A < 2, ϕ(t 5 ) > < 1, ϕ(t 6 ) > < 1, ϕ(t 7 ) > ϵ B < 2, 1, 1 > < 1, 1 > < 1 > Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

14 Λήμμα 5.7: Για οποιοδη ποτε δε νδρο T η κορυφη u ει ναι φυ λλο ανν η u δεν εμφανι ζεται στον κωδικο ϕ(t) Απόδειξη : Έστω ο τι η u ει ναι φυ λλο και ε στω ο τι εμφανι ζεται στον κωδικο ϕ(t) Η u προστε θηκε στο ϕ(t) κατα την δια ρκεια της κατασκευη ς του Η u η ταν γειτονικη προς το ελα χιστο φυ λλο u(h) του υποδε νδρου H [του βη ματος στο οποι ο προστε θηκε] το οποι ο ει χε με γεθος > 2 [διαφορετικα δεν θα ει χε προστεθει καμι α κορυφη ] Η u δεν ει ναι φυ λλο στο υποδε νδρο H Αλλα, η u ει ναι φυ λλο στο T, α ρα ει ναι φυ λλο και στο H άτοπο Έστω ο τι η u δεν εμφανι ζεται στο ϕ(t) και ε στω ο τι η u δεν ει ναι φυ λλο του T Η u δεν ει ναι φυ λλο d(u) 2 τουλα χιστον 2 προσπι πτουσες στην u ακμε ς μια ακμη που προσπι πτει στην u και το α λλο α κρο της αφαιρει ται (ως φυ λλο) κατα την κατασκευη του ϕ(t) Το τε απο κατασκευη η u εμφανι ζεται στο ϕ(t) άτοπο Λη μμα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

15 Λήμμα 5.8: Ο κω δικας Pru fer ϕ : T n W n ει ναι αμφιμονοση ματνη αντιστοιχι α Απόδειξη [Με επαγωγή στο n]: Βα ση: n = 2 Αντιστοιχει το μοναδικο δε νδρο T με V(T) = 2 στην κενη λε ξη ϵ Ε.Υ. Έστω ο τι η ακολουθι α Pru fer ϕ : T n W n για κα θε n < n, n 3 ει ναι αμφιμονοση μαντη Ε.Β. 1 1 Θα δει ξουμε ο τι η ϕ : T n W n ει ναι αμφιμονοση μαντη [Αμφιμονοση μαντη: 1 1 και επι ] Έστω δεν ει ναι 1 1 διαφορετικα T 1, T 2 T n : ϕ(t 1 ) = ϕ(t 2 ) Έστω u το ελα χιστο στοιχει ο του {1, 2,..., n} το οποι ο δεν εμφανι ζεται στον ϕ(t 1 ) Το u ει ναι το ελα χιστο φυ λλο των T 1 και T 2 Έστω v ει ναι το πρω το στοιχει ο της ϕ(t 1 ) Η ακμη e = (u, v) ανη κει στο T 1 και το T 2 T 1 = T 1 \ {u}, T 2 = T 2 \ {u} Απο τον ορισμο Pru fer: ϕ(t 1 ) = ϕ(t 2 ) Απο Ε.Υ. T 1 = T 2 Απο κατασκευη των T 1, T 2 T 1 = T 2 άτοπο Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

16 επι Έστω μια αυθαι ρετη ακολουθι α Pru fer W =< w 1, w 2,..., w n 2 > W n Έστω u ει ναι το ελα χιστο στοιχει ο που δεν εμφανι ζεται στην ακολουθι α Απο Ε.Υ. δε νδρο T με συ νολο κορυφω ν το V(T)\ {u}: ϕ(t ) =< w 2, w 3,..., w n 2 > Προσθε τοντας την ακμη e = (u, w 1 ) στο T σχηματι ζουμε το δε νδρο T με ϕ(t) =< w 1, ϕ(t ) >=< w 1, w 2,..., w n 2 > Λη μμα Θεω ρημα Cayley Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος / 122

Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 10η Δια λεξη Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 7η Δια λεξη

Θεωρι α Γραφημα των 7η Δια λεξη Θεωρι α Γραφημα των 7η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος 2015 143 / 167 Hamiltonian γραφη ματα κύκλος Hamilton:

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 9η Δια λεξη

Θεωρι α Γραφημα των 9η Δια λεξη Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 11η Δια λεξη

Θεωρι α Γραφημα των 11η Δια λεξη Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 3η Δια λεξη

Θεωρι α Γραφημα των 3η Δια λεξη Θεωρι α Γραφημα των 3η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος 2015 48 / 71 Μονοπα τια-κυ κλοι και Αποστα σεις Έστω ε

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 1η Δια λεξη

Θεωρι α Γραφημα των 1η Δια λεξη Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι

Διαβάστε περισσότερα

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Β. Μεταφτση ς 15 Δεκεμβρι ου 2016 1 Παραστάσεις Ομάδων Έστω a, b, c,... ε να συ νολο απο διακριτα συ μβολα και a 1, b 1, c 1,... νε α συ μβολα. Μια λέξη W στα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ, Ν.Π.Δ.Δ. ΚΑΙ O.Τ.Α. Α. ΓΙΑ ΤΗΝ ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ Ε ΛΗ ΦΘΗ ΣΑΝ Υ ΠO ΨΗ 1. H 15/1981

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα.

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΔΣ6. Δίνονταί οί πίνακες Σ1(Κ, Κ) καί Π1(Κ, Κ) που περίέχουν τα αποτελέσματα των

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Εισαγωγή Η επι λο γή ενό ς co m p a ct συ στή µ α το ς β ι ολο γι κο ύ κα θ α ρι σµ ο ύ θ α πρέπει να πραγµ α τοπο ι είτα ι β ά σει τη ς α

Διαβάστε περισσότερα

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains The Probabilistic Method - Probabilistic Techniques Lecture 8: Markov Chains Sotiris Nikoletseas Chistoforos Raptopoulos Computer Engineering and Informatics Department 205-206 Chistoforos Raptopoulos

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ ΤΥΙΚΑ & ΜΑΚΑΡΙΣΜΟΙ Ἦχος Νη Μ Α Ν µην Ευ λο γει η ψυ χη µου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ λο γει η ψυ χη µου τον Κυ ρι ον και πα αν τα τα εν τος µου το ο νο µα το α γι ον αυ του Ευ λο γει η ψυ

Διαβάστε περισσότερα

καιρο, αυτο ς πε θανε απ ο,τι φαι νεται πολυ αργο τερα. Για ποιον λο γο συνε βη αυτο, Φαι δωνα;

καιρο, αυτο ς πε θανε απ ο,τι φαι νεται πολυ αργο τερα. Για ποιον λο γο συνε βη αυτο, Φαι δωνα; ΠΛΑΤΩΝΟΣ ΦΑΙΔΩΝ ΕΧΕΚΡΑΤΗΣ: Εσυ ο ι διος, Φαι δωνα, βρε θηκες στο πλευρο του Σωκρα τη εκει νη την ημε ρα, που η πιε το δηλητη ριο στη φυλακη, η τα α κουσες απο κα ποιον α λλο; ΦΑΙΔΩΝ: Η μουν ο ι διος εκει,

Διαβάστε περισσότερα

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι Φ Λ Ι Ι ι αγωγτ ρι μ Π λλι πρα τν πρ βλτ ματα χαι χαταστι αει τη αθημ ριν ζω μπ ρ ι ν να περιγραφ ν με τη β θεια ν διαγρι μματ ζ απ τελ μεν υ απ να ι ν λ ημε ων αι να ν λ γραμμι ν π υ να ενι ν υν υγ ε

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94. ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09

των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΦOΡ ΤO ΕΚ ΦOΡ ΤΩΩ ΤΩΩΝ ΠΡΑ ΚΤO ΡΕΙ ΩΩΝ ΜΕ ΤΑ ΦO ΡΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

Πρός τούς ἀδελφούς μου

Πρός τούς ἀδελφούς μου Πρός τούς ἀδελφούς μου Συμεων μητροπολιτου νεασ ΣμυρνηΣ Πρός τούς ἀδελφούς μου EOρτια ΠοιμαντικA μηνyματα Ἐπιμέλεια ἔκδοσης: Βασίλης Ἀργυριάδης Ἐκδόσεις κολοκοτρώνη 49, Ἀθήνα 105 60 τηλ.: 210 3226343

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

Lecture 8: Random Walks

Lecture 8: Random Walks Randomized Algorithms Lecture 8: Random Walks Sotiris Nikoletseas Associate Professor CEID - ETY Course 2016-2017 Sotiris Nikoletseas, Associate Professor Randomized Algorithms - Lecture 8 1 / 33 Overview

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο

Διαβάστε περισσότερα

Joseph A. Luxbacher. Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας. ΠοΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία

Joseph A. Luxbacher. Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας. ΠοΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία Joseph A. Luxbacher Μετάφραση - Επιμέλεια: Πέτρος Νάτσης, Αστέριος Πατσιαούρας ΠοΔΟΣΦΑΙΡΟ Βήματα για την επιτυχία ΘΕΣΣΑΛΟΝΙΚΗ 2008 ΠΟΔΟΣΦΑΙΡΟ. Βήματα για την επιτυχία. Joseph A. Luxbacher Μετάφραση - Επιμέλεια:

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ANAΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Αθήνα, 24/03/2015 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ 21698/2015 ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΗΣ ΓΙΑ ΚΑΤΑΡΤΙΣΗ

Διαβάστε περισσότερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Ιο νιο Πανεπιστη μιο, Κε ρκυρα 17-5-2012 Παύλος Σταμπουλι δης, Με λος ΔΣ Hellenic Startup

Διαβάστε περισσότερα

ε πι λο γές & σχέ σεις στην οι κο γέ νεια

ε πι λο γές & σχέ σεις στην οι κο γέ νεια ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο

Διαβάστε περισσότερα

Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ

Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ Η ΤΑ ΚΤΙ ΚΗ ΤΕ ΧΝΗ ΤΩΝ ΑΡ ΧΑΙΩΝ ΕΛ ΛΗ ΝΩΝ ΚΕΙΜΕΝΟ: Ευ γέ νιος Αρ. Για ρέ νης, Α ντει σαγ γε λέ ας Στρα το δι κεί ου Ιω αν νί νων, Δι δά κτο ρας στο Πά ντειο Πα νε πι στή μιο Α πό την κλα σι κή φά λαγ γα

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω

Διαβάστε περισσότερα

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά Πρώϊος Μιλτιάδης Αθαναηλίδης Γιάννης Ηθική στα Σπορ Θεωρία και οδηγίες για ηθική συμπεριφορά ΘΕΣΣΑΛΟΝΙΚΗ 2004 1 ΗΘΙΚΗ ΣΤΑ ΣΠΟΡ ΘΕΩΡΙΑ ΚΑΙ ΟΔΗΓΙΕΣ ΓΙΑ ΗΘΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ : Εκδόσεις Χριστοδουλίδη Α. & Π.

Διαβάστε περισσότερα

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ 12 Το γε γο νός ό τι δια βά ζεις αυ τό το βι βλί ο ση μαί νει ό τι έ χεις μολυν θεί α πό έ να μι κρόβιο το μι κρό βιο του πο δο σφαί ρου και σίγου

Διαβάστε περισσότερα

ΠΕΡΙEΧΟΜΕΝΑ. Εισαγωγή... 11

ΠΕΡΙEΧΟΜΕΝΑ. Εισαγωγή... 11 ΠΕΡΙEΧΟΜΕΝΑ Εισαγωγή... 11 ΠΡΩΤΗ ΕΝΟΤΗΤΑ 1.0 Η Αθλητική Βιομηχανία...15 1.1 Εισαγωγή...15 1.2 Ορισμός του Όρου Βιομηχανία...16 1.3 Ένα Μοντέλο Περιγραφής της Αθλητικής Βιομηχανίας...17 1.3.1 Τμήμα Παραγωγής

Διαβάστε περισσότερα

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ. σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει

Διαβάστε περισσότερα

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ Ο Ό μη ρος και ο Η σί ο δος έ χουν δη μιουρ γή σει κα τά τον Η ρό δο το 1, τους ελ λη νι κούς θε ούς. Ο Ό μη ρος στη θε ο γο νί α του έ χει ιε ραρ

Διαβάστε περισσότερα

ΔΙΑΚΟΣ ΑΛΕΞΑΝΡΟΣ ΥΠΛΓΟΣ (ΠΖ)

ΔΙΑΚΟΣ ΑΛΕΞΑΝΡΟΣ ΥΠΛΓΟΣ (ΠΖ) ΥΠΛΓΟΣ (ΠΖ) ΔΙΑΚΟΣ ΑΛΕΞΑΝΡΟΣ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ: ΛΕΙV Πα να γιώ της Πα σπά της Mα θη τής Γυ μνα σί ου α ντι δρού σε στις ι τα λι κές διατα γές και α πα γο ρεύ σεις. Σε μια ε πέ τειο της 25 ης Μαρ τί ου

Διαβάστε περισσότερα

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα

Διαβάστε περισσότερα

Ο ΑΓΙΟΣ ΓΡΗΓΟΡΙΟΣ ΠΑΛΑΜΑΣ ΠΑΤΕΡΑΣ ΤΗΣ Θ ΟΙΚΟΥΜΕΝΙΚΗΣ ΣΥΝΟΔΟΥ

Ο ΑΓΙΟΣ ΓΡΗΓΟΡΙΟΣ ΠΑΛΑΜΑΣ ΠΑΤΕΡΑΣ ΤΗΣ Θ ΟΙΚΟΥΜΕΝΙΚΗΣ ΣΥΝΟΔΟΥ Πρωτ. Γε ωρ γί ου Με ταλ λη νοῦ Ὁμοτίμου Καθηγητοῦ Θεολογικῆς Σχολῆς Ἀθηνῶν Ο ΑΓΙΟΣ ΓΡΗΓΟΡΙΟΣ ΠΑΛΑΜΑΣ ΠΑΤΕΡΑΣ ΤΗΣ Θ ΟΙΚΟΥΜΕΝΙΚΗΣ ΣΥΝΟΔΟΥ Ἔκδοση: Ἱερά Μονή Μεγάλου Μετεώρου Ἰïýëéïò 2009 Ἅγια Μετέωρα Τ.Κ.

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό έντρο

Ελάχιστο Συνδετικό έντρο Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος

Διαβάστε περισσότερα

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29 ΠΕΡΙEΧΟΜΕΝΑ Οδηγός χρησιμοποίησης του βιβλίου και των τριών ψηφιακών δίσκων (DVD)...11 Σκο πός του βι βλί ου και των 3 ψηφιακών δί σκων...15 Λί γα λό για α πό το Σχο λι κό Σύμ βου λο Φυ σι κής Α γω γής...17

Διαβάστε περισσότερα

ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ. του, εί ναι ση μα ντι κό να ει πω θούν εν συ ντομί α με ρι κά στοι χεί α για το πο λι τι σμι κό πε ριβάλ

ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ. του, εί ναι ση μα ντι κό να ει πω θούν εν συ ντομί α με ρι κά στοι χεί α για το πο λι τι σμι κό πε ριβάλ ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ ΟΙ ΒΑ ΣΙ ΚΕΣ ΑΡ ΧΕΣ ΤΗΣ ΦΙ ΛΟ ΣΟ ΦΙΑΣ ΤΟΥ, Ο ΡΟ ΛΟΣ ΤΟΥ Α ΡΙ ΣΤΟ- ΤΕ ΛΗ ΣΤΗ ΔΙΑ ΔΟ ΣΗ ΤΩΝ ΘΕ ΣΕ ΩΝ ΤΟΥ ΚΑΙ Η Υ ΠΟ ΔΟ ΧΗ ΤΩΝ ΦΙ- ΛΟ ΣΟ ΦΙ ΚΩΝ ΤΟΥ ΘΕ ΣΕ- ΩΝ ΣΤΗΝ Ε ΠΟ ΧΗ ΤΟΥ ΚΙΚΕ ΡΩ ΝΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής Κωνσταντίνος Αλεξανδρής, PhD Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής β βελτιωμένη έκδοση ΘΕΣΣΑΛΟΝΙΚΗ 2011 ΠΕΡΙEΧΟΜΕΝΑ Εισαγωγή... 11 ΠΡΩΤΗ ΕΝΟΤΗΤΑ 1.0 Η Αθλητική

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ ι ε α τ Τ εγνα α α ετ κ λε τ υργικ ο τημα Η οτ ρ α τ υ αρ Γ ζε τ τη Φ λα δ α απ τ α φ ιτητ τ υ Πα ετ τημ υ τ υ λ νκ ξεκ νη ε αν μ α τ ρ τ Θε α να δημ υργηθε ακαλ τερ Ενα τ υ αμτ ρε ααντατ κρ ετα καλ τερα

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΔΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΓΕΝΙΚΟΥ ΕΠΙΤΕΛΕΙΟΥ ΣΤΡΑΤΟΥ ΕΤΟΣ ΙΔΡΥΣΕΩΣ 1883 ΤΕΥΧΟΣ 2/2011 (ΜΑΡ.-ΑΠΡ.) ΕΤΗΣΙΑ ΣYΝΔΡΟΜΗ

ΔΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΓΕΝΙΚΟΥ ΕΠΙΤΕΛΕΙΟΥ ΣΤΡΑΤΟΥ ΕΤΟΣ ΙΔΡΥΣΕΩΣ 1883 ΤΕΥΧΟΣ 2/2011 (ΜΑΡ.-ΑΠΡ.) ΕΤΗΣΙΑ ΣYΝΔΡΟΜΗ ΔΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΓΕΝΙΚΟΥ ΕΠΙΤΕΛΕΙΟΥ ΣΤΡΑΤΟΥ ΕΤΟΣ ΙΔΡΥΣΕΩΣ 1883 ΤΕΥΧΟΣ 2/2011 (ΜΑΡ.-ΑΠΡ.) ΕΤΗΣΙΑ ΣYΝΔΡΟΜΗ ΕΣΩΤΕΡΙΚΟΥ Αξιωματικοί Στρατού Ξηράς ε.α. 2,94 Ιδιώτες, Σύλλογοι κ.λπ. 5,87 ΕΞΩΤΕΡΙΚΟΥ (ΕΥΡΩΠΑΪΚΗ

Διαβάστε περισσότερα

14 Ἰουνίου. Προφήτου Ἐλισσαίου. Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα

14 Ἰουνίου. Προφήτου Ἐλισσαίου. Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα Nε ε δο ο ο ξα Πα α τρι ι ι ι και Υι υι ω και Α γι ι ω Πνε ευ µα α α τι Προ φη τα κη η η ρυ υξ Χρι ι ι στου του

Διαβάστε περισσότερα

Αποτελεσματικός Προπονητής

Αποτελεσματικός Προπονητής ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï

Διαβάστε περισσότερα

ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ

ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΚΕΙ ΜΕ ΝΟ-ΦΩ ΤΟΓΡΑ ΦΙΕΣ: Υ πτγος ε.α. Ορ θό δο ξος Ζω τιά δης ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ Το Με τάλ λιο Ε ξαι

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 7ο (Σ, Τ, Φ, Υ, Φ,Φ Χ, Πά) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 7ο (Σ, Τ,

Διαβάστε περισσότερα

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3 Δενδρικά Γραφήματα 93 ΚΕΦΑΛΑΙΟ 3 ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ 3.1 Εισαγωγή 3.2 Βασικές Ιδιότητες Δένδρων 3.3 Απαρίθμηση Δένδρων 3.4 Γενετικά Δένδρα 3.5 Ελάχιστα Γενετικά Δένδρα Προαπαιτούμενη Γνώση Πολύ καλή γνώση

Διαβάστε περισσότερα

ΣΤΕΦΑΝΟΣ ΠΑΡΑΣΚΕΥΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΟΡΦΙΑΤΗΣ. ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ θεωριes και μεθοδοι

ΣΤΕΦΑΝΟΣ ΠΑΡΑΣΚΕΥΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΟΡΦΙΑΤΗΣ. ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ θεωριes και μεθοδοι ΣΤΕΦΑΝΟΣ ΠΑΡΑΣΚΕΥΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΟΡΦΙΑΤΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ θεωριes και μεθοδοι ΘΕΣΣΑΛΟΝΙΚΗ 2003 ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ θεωριες και μεθοδοι ΣΤΕΦΑΝΟΣ ΠΑΡΑΣΚΕΥΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΟΡΦΙΑΤΗΣ

Διαβάστε περισσότερα

ΠΥ ΡΟ ΒΟ ΛΙΚΟΥ Τ Ο Υ Ε Λ Λ Η Ν Ι Κ Ο Υ Μ Η Ε Ν Ε Ρ Γ Α Π Υ Ρ Ο Β Ο Λ Α H Ι Δ Ρ Υ Σ Η Τ Ο Υ Ε Λ Λ Η Ν Ι Κ Ο Υ Π Υ - Ρ Ο Β Ο Λ Ι Κ Ο Υ

ΠΥ ΡΟ ΒΟ ΛΙΚΟΥ Τ Ο Υ Ε Λ Λ Η Ν Ι Κ Ο Υ Μ Η Ε Ν Ε Ρ Γ Α Π Υ Ρ Ο Β Ο Λ Α H Ι Δ Ρ Υ Σ Η Τ Ο Υ Ε Λ Λ Η Ν Ι Κ Ο Υ Π Υ - Ρ Ο Β Ο Λ Ι Κ Ο Υ Μ Η Ε Ν Ε Ρ Γ Α Π Υ Ρ Ο Β Ο Λ Α Τ Ο Υ Ε Λ Λ Η Ν Ι Κ Ο Υ ΠΥ ΡΟ ΒΟ ΛΙΚΟΥ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ: Ταξχος ε.α. Κων στα ντί νος Τέ φας H Ι Δ Ρ Υ Σ Η Τ Ο Υ Ε Λ Λ Η Ν Ι Κ Ο Υ Π Υ - Ρ Ο Β Ο Λ Ι Κ Ο Υ Α πό τους πρώ

Διαβάστε περισσότερα

Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης

Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Πα υ ρι ε ε κε κρα ξα α προ ο ος σε ε ει σα κου σο ο ο ον μου ει σα α κου ου σο ον μου ου Κυ υ υ ρι ι ι ι ε Κυ ρι ε ε κε κρα α ξα προ ος σε ε ει σα κου σο ο ο ον μου

Διαβάστε περισσότερα

των O δο ντο τε χνι τών Α θη νών - Πει ραι ώς & Περιχώρων Ot06R11

των O δο ντο τε χνι τών Α θη νών - Πει ραι ώς & Περιχώρων Ot06R11 των O δο ντο τε χνι τών Α θη νών - Πει ραι ώς & Περιχώρων Ot06R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ O Δ O ΝΤO ΤΕ ΧΝΙ ΤΩΩΝ Α ΘΗ ΝΩΩΝ - ΠΕΙ ΡΑΙ ΩΩΣ & ΠΕ ΡΙ ΧΩΩ ΡΩΩΝ Α. ΓΙΑ

Διαβάστε περισσότερα

ΕΙ ΣΑ ΓΩ ΓΗ ΣΤΙΣ Ε ΠΙ ΧΕΙ ΡΗ ΣΕΙΣ

ΕΙ ΣΑ ΓΩ ΓΗ ΣΤΙΣ Ε ΠΙ ΧΕΙ ΡΗ ΣΕΙΣ ΕΙ ΣΑ ΓΩ ΓΗ ΣΤΙΣ Ε ΠΙ ΧΕΙ ΡΗ ΣΕΙΣ CIMIC CIMIC CIMIC ΚΕΙΜΕΝΟ: Υπλγος (ΜΧ) Ευ ρι πί δης Κ. Χα νιάς ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση CIMIC εί ναι τα αρ χι κά των λέ ξε ων Civil Military Co-operation

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Διερεύνηση Πρώτα σε Βάθος (DFS) 2. Τοπολογική Ταξινόμηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Depth-First Search Πρώτα σε Βάθος διερεύνηση (Depth-First Search) είναι

Διαβάστε περισσότερα

Η ΠΑΙ ΔΕΙΑ ΤΟΥ ΜΕ ΓΑ ΛΟΥ Α ΛΕ ΞΑΝ ΔΡΟΥ

Η ΠΑΙ ΔΕΙΑ ΤΟΥ ΜΕ ΓΑ ΛΟΥ Α ΛΕ ΞΑΝ ΔΡΟΥ Η ΠΑΙ ΔΕΙΑ ΤΟΥ ΜΕ ΓΑ ΛΟΥ Α ΛΕ ΞΑΝ ΔΡΟΥ ΚΕΙΜΕΝΟ: Υ πτγος ε.α. Γε ώρ γιος Βα σι λεί ου Ο Μέ γας Α λέ ξαν δρος, ο τέ λειος αυ τός εκ πρό σω πος του με γα λείου του ελ λη νι κού κό σμου, εί ναι α σφα λώς μί

Διαβάστε περισσότερα

Όροι Συμμετοχής στον διαγωνισμό Ξέρεις από Πήλιο;

Όροι Συμμετοχής στον διαγωνισμό Ξέρεις από Πήλιο; Όροι Συμμετοχής στον διαγωνισμό Ξέρεις από Πήλιο; 1. Διοργανωτής διαγωνισμού Η εταιρεία ΜΙΝΤ-ΙΣΤ Ε.Π.Ε. Γραφείο Ταξιδίων και Τουρισμού, που εδρεύει στην Αθήνα, Λεωφ. Βασ. Σοφίας 105-107, Τ.Κ. 115 21 (εφεξής

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Ανα πτυξη των ηλεκτρονικω ν πηγω ν του ΣΕΑΒ με τη χρη ση ανοιχτου λογισμικου

Ανα πτυξη των ηλεκτρονικω ν πηγω ν του ΣΕΑΒ με τη χρη ση ανοιχτου λογισμικου Ηλεκτρονικές πηγές ΣΕΑΒ Ανα πτυξη των ηλεκτρονικω ν πηγω ν του ΣΕΑΒ με τη χρη ση ανοιχτου λογισμικου Λεωνίδας Πισπιρίγγας Προγραμματιστής- Διαχειριστής συστημάτων HEAL-Link Συ νδεσμος Ελληνικω ν Ακαδημαϊκω

Διαβάστε περισσότερα

Σύλλογος Φίλων Περιθαλπομένων Νοσοκομείου Η ΣΩΤ ΗΡ ΙΑ

Σύλλογος Φίλων Περιθαλπομένων Νοσοκομείου Η ΣΩΤ ΗΡ ΙΑ ΜΗΝΙΑIΑ ΕΦΗΜΕΡIΔΑ ΚΩΔΙΚΟΣ 7812 Φεβρουάριος 2016 11 ο Έτος Φύλλο 119 ο Tηλ.: 2107763638 Fax: 2107707211 E-mail: info@sylfilon.gr Web Site: www.sylfilon.gr Το προσωπικό και κοινωνικό ασυνείδητο Σύλλογος

Διαβάστε περισσότερα

EL Επ σηµη Εφηµερ δα των Ευρωπαϊκ ν Κοινοτ των L 226/17 (15) τι θα πρ πει να προβλεφθε η δυνατ τητα να επιτραπε η εµπορ α, εντ τη Κοιν τητα,

EL Επ σηµη Εφηµερ δα των Ευρωπαϊκ ν Κοινοτ των L 226/17 (15) τι θα πρ πει να προβλεφθε η δυνατ τητα να επιτραπε η εµπορ α, εντ τη Κοιν τητα, L 226/16 EL Επ σηµη Εφηµερ δα των Ευρωπαϊκ ν Κοινοτ των 13. 8. 98 Ο ΗΓΙΑ 98/56/ΕΚ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ τη 20 Ιουλ ου 1998 για την εµπορ α πολλαπλασιαστικο υλικο καλλωπιστικ ν φυτ ν ΤΟ ΣΥΜΒΟΥΛΙΟ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ

Διαβάστε περισσότερα

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση

Διαβάστε περισσότερα

24 Πλημμυρισμένα. 41 Γίνε

24 Πλημμυρισμένα. 41 Γίνε Anderson s Ltd Εφαρμογές Υψηλής Τεχνολογίας - Εκδόσεις : Γ Σεπτεμβρίου 103 Αθήνα 10434 Τ: 210-88 21 109 F: 210-88 21 718 W: www.odp.gr E: web@odp.gr 42 Γρήγορο Εγχειρίδιο για τον Διαχειριστή 24 Πλημμυρισμένα

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης

ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης ΦΟΡΕΑΣ: Υπουργείο / Αποκεντρωµένη ιοίκηση..... ΕΙ ΙΚΟΣ ΦΟΡΕΑΣ: Γενική γραµµατεία... / Περιφέρεια..... Αναφορά για το µήνα: Ετος: 2012 ΣΑ έργου (Π Ε) Υποχρεώσεις πιστοποιηµένων εργασιών χωρίς τιµολόγιο

Διαβάστε περισσότερα

Η Ο ΜΑ ΔΙ ΚΗ. της ζω ής

Η Ο ΜΑ ΔΙ ΚΗ. της ζω ής Η Ο ΜΑ ΔΙ ΚΗ ΨΥ ΧΗ η αν θο δέ σµη της ζω ής ΚΕΙΜΕΝΟ: Υ πτγος ε.α. Ά ρης Δια μα ντό που λος, Διδάκτωρ Φιλοσοφίας-Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση ΕΙ ΣΑ ΓΩ ΓΙ ΚΕΣ ΕΝ ΝΟΙΕΣ Ό πως υ πάρ χει

Διαβάστε περισσότερα

των O δη γών Του ρι στι κών Λε ω φο ρεί ων Κρή της Ερµής Ot05R15

των O δη γών Του ρι στι κών Λε ω φο ρεί ων Κρή της Ερµής Ot05R15 των O δη γών Του ρι στι κών Λε ω φο ρεί ων Κρή της Ερµής Ot05R15 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ O Δ Η ΓΩΩΝ ΤOY ΡΙ ΣΤΙ ΚΩΩΝ ΛΕ ΩΩ ΦO ΡΕΙ ΩΩΝ ΚΡΗ ΤΗΣ Α. ΓΙΑ ΤΗΝ ΚΩΩ Δ Ι

Διαβάστε περισσότερα

Βημα 2. Μετακίνηση Εμβόλου (Μπρος-Πίσω) και Πλάγιος Βηματισμός: Ατομικές Επιθετικές Κινήσεις... 43

Βημα 2. Μετακίνηση Εμβόλου (Μπρος-Πίσω) και Πλάγιος Βηματισμός: Ατομικές Επιθετικές Κινήσεις... 43 ΠΕΡΙEΧΟΜΕΝΑ Εισαγωγικό μέρος Πρόλογος... 11 Πρόλογος της Αμερικάνικης Έκδοσης... 12 Κλιμάκωση των Βημάτων για Επιτυχία... 14 Το Παιχνίδι της Χειροσφαίρισης (HANDBALL)... 16 Γήπεδο και εξοπλισμός... 19

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΕΠΙΤΕΛΕΙΟ ΣΤΡΑΤΟΥ ΔΙΕΥΘΥΝΣΗ ΕΝΗΜΕΡΩΣΕΩΣ ΚΑΙ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ

ΓΕΝΙΚΟ ΕΠΙΤΕΛΕΙΟ ΣΤΡΑΤΟΥ ΔΙΕΥΘΥΝΣΗ ΕΝΗΜΕΡΩΣΕΩΣ ΚΑΙ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΓΕΝΙΚΟ ΕΠΙΤΕΛΕΙΟ ΣΤΡΑΤΟΥ ΔΙΕΥΘΥΝΣΗ ΕΝΗΜΕΡΩΣΕΩΣ ΚΑΙ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...4 Πεζικό...9 Τεθωρακισμένα...11 Πυροβολικό...12 Μηχανικό...13 Διαβιβάσεις...14 Ειδικές Δυνάμεις...15 Στρατονομία...16

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)

Διαβάστε περισσότερα

ΠΕΤΡΟΥ ΤΟΥ ΠΕΛΟΠΟΝΝΗΣΙΟΥ ΣΥΝΤΟΜΟΝ ΔΟΞΑΣΤΑΡΙΟΝ ΤΟΜΟΣ Β.

ΠΕΤΡΟΥ ΤΟΥ ΠΕΛΟΠΟΝΝΗΣΙΟΥ ΣΥΝΤΟΜΟΝ ΔΟΞΑΣΤΑΡΙΟΝ ΤΟΜΟΣ Β. ΠΕΤΡΟΥ ΤΟΥ ΠΕΛΟΠΟΝΝΗΣΙΟΥ ΣΥΝΤΟΜΟΝ ΔΟΞΑΣΤΑΡΙΟΝ ΤΟΜΟΣ Β. ΠΕΤΡΟΥ ΤΟΥ ΠΕΛΟΠΟΝΝΗΣΙΟΥ Ἀοιδίμου Λαμπαδαρίου τῆς Μεγάλης τοῦ Χριστοῦ Ἐκκλησίας (+1778) ΣΥΝΤΟΜΟΝ ΔΟΞΑΣΤΑΡΙΟΝ Ἀντιγραφὲν ἐκ τῆς πρώτης ἐκδόσεως Πέτρου

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

R t. H t n t Σi = l. MRi n t 100

R t. H t n t Σi = l. MRi n t 100 30. 12. 98 EL Επ σηµη Εφηµερ δα των Ευρωπαϊκ ν Κοινοτ των L 356/1 Ι (Πρ ξει για την ισχ των οπο ων απαιτε ται δηµοσ ευση) ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 2818/98 ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΚΕΝΤΡΙΚΗΣ ΤΡΑΠΕΖΑΣ τη 1η εκεµβρ ου

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10γ: Αλγόριθμοι Γραφημάτων- Διερεύνηση Πρώτα σε Βάθος (DFS)- Τοπολογική Ταξινόμηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

2006 (20/5/06 31/12/06)

2006 (20/5/06 31/12/06) ΤΣΙΜΕΝΤΑ Χ ΑΛ Κ Ι Ο Σ ΙΕΘ ΝΗ Σ Α.Ε. ΥΠΟ Ε Κ Κ Α Θ Α Ρ Ι Σ Η ΟΙΚΟΝΟΜΙΚΕΣ ΚΑ Τ Α ΣΤ Α ΣΕΙΣ ΜΕΤ Α ΣΧ Η ΜΑ Τ ΙΣΜΟΥ ΣΥ ΜΦ Ω ΝΑ ΜΕ Τ Α ΙΕΘ ΝΗ Π Ρ ΟΤ Υ Π Α Χ Ρ Η ΜΑ Τ ΟΟΙΚΟΝΟΜΙΚΗ Σ Π Λ Η Ρ ΟΦ ΟΡ Η ΣΗ Σ Γ ΙΑ Τ

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

ΝΟΕΜ ΒΡΙΟΣ ΝΟΕΜ ΒΡΙΟΣ ΙΣΤΟΡΙΚΕΣ ΜΝΗΜΕΣ. 333 π.χ. Η ΜΑΧΗ ΤΗΣ ΙΣ ΣΟΥ

ΝΟΕΜ ΒΡΙΟΣ ΝΟΕΜ ΒΡΙΟΣ ΙΣΤΟΡΙΚΕΣ ΜΝΗΜΕΣ. 333 π.χ. Η ΜΑΧΗ ΤΗΣ ΙΣ ΣΟΥ ΙΣΤΟΡΙΚΕΣ ΜΝΗΜΕΣ ΝΟΕΜ ΒΡΙΟΣ ΝΟΕΜ ΒΡΙΟΣ 333 π.χ. Η ΜΑΧΗ ΤΗΣ ΙΣ ΣΟΥ Στην πε διά δα της Ισ σού, τον Νο έμ βριο του έτους 333 π.χ., έ λα βε χώ ρα μία από τις ση μα ντι κό τε ρες μά χες του έν δο ξου Έλληνα

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

teliki maketa ΚΕΧΑΡΙΤΩΜΕΝΗ.qxp_Layout 1 19/2/16 1:58 μ.μ. Page 3 Ἡ Κεχαριτωμένη

teliki maketa ΚΕΧΑΡΙΤΩΜΕΝΗ.qxp_Layout 1 19/2/16 1:58 μ.μ. Page 3 Ἡ Κεχαριτωμένη Ἡ Κεχαριτωμένη Συμεων μητροπολιτου νεασ ΣμυρνηΣ Ἡ Κεχαριτωμένη ΛΟΓΟΙ ΣΤΙΣ ΘΕΟΜΗΤΟΡΙΚΕΣ ΕΟΡΤΕΣ Ἐπιμέλεια ἔκδοσης Βασίλης Ἀργυριάδης Ἐκδόσεις Κολοκοτρώνη 49, Ἀθήνα 105 60 τηλ.: 210 3226343 - Fax: 210 3221238

Διαβάστε περισσότερα