On Second-Order Error Terms In Fully Exponential Laplace Approximations.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On Second-Order Error Terms In Fully Exponential Laplace Approximations."

Transcript

1 O Secod-Order Error Terms I Fully Expoetial Laplace Approximatios. Yoichi MIYATA Revised Jue 23, 2009 Revised Sep. 1, 2009 Abstract Posterior meas ca be expressed as the ratio of itegrals, which is called fully expoetial form. To approximate the posterior meas aalytically, Laplace s method might be useful. I this article, we preset explicit error terms of order 1, ad of order 2 i the Laplace approximatios with asymptotic modes. Moreover, we give secod-order error terms i fully expoetial Laplace approximatios to posterior meas with asymptotic modes, which are proposed by Miyata Itroductio Laplace s method for the asymptotic evaluatio of itegrals Laplace, 147 is a simple ad useful techique. This method has bee applied frequetly i statistical theory by may authors Mosteller ad Wallace 1964; Lidley 190; Tierey ad Kadae 196. Θ = Θ 1 Θ d R d is a ope parameter space of θ θ 1,..., θ d T, where T deotes the traspose of a matrix. Suppose that Ω, A is a measurable space, P = {P θ : θ Θ} is a family of probability distributios o Ω, A, ad {X i : i = 1, 2,...} is a stochastic process o Ω, A with X i s takig values i X, B where X is a subset of R, ad B is the class of Borel subsets of X. We will assume that for all, the distributios of X = X 1,..., X are domiated by a σ-fiite measure, ad we will deote a desity of X uder P θ by p x θ. Note that x = x 1, x 2,..., x,... is the observed sequece ad p x θ depeds o the first observatio x = x 1,..., x. Let θ 0 be a true parameter, ad let a.e. P θ0 be abbreviated to a.e. or omitted. Let g + θ be a smooth ad strictly positive fuctio. The purpose of this article is to give first-order ad secod-order error terms i the fully expoetial Laplace approximatio to the posterior mea E[g + Θ Θ] = g+ θp x θπθdθ p, 1.1 Θ x θπθdθ where Θ is a ope subset of R d, p x θ is the likelihood, ad π is a prior. Although Θ also deotes a radom vector with a posterior distributio, we ca see from the cotext which Θ idicates. For coveiece, the itegrals i 1.1 are reexpressed as E[g + Θ] = Θ exp{ h θ}dθ exp{ h Θ θ}dθ, 1.2 where h θ = 1 log[g + θp x θπθ] ad h θ = 1 log[p x θπθ]. Faculty of Ecoomics, Takasaki City Uiversity of Ecoomics, 1300 Kamiamie, Takasaki, Gumma, , Japa. ymiyatagbt@tcue.ac.jp 1

2 Sectio 2 sketches out the cocept of asymptotic modes, ad describes the Laplace approximatios with asymptotic modes. I particular, the first-order ad secod-order errors are give i a explicit form. I Sectio 3, we give the explicit error terms of order 2 i a fully expoetial Laplace approximatio to a posterior mea of g Asymptotic modes ad Laplace s approximatios This sectio itroduces the Laplace method for a itegral of the form Θ e hθ dθ with a asymptotic mode of h θ. For coveiece of expositio, we write s θ i1 θ is h θ h i1 is θ, d d, i 1 i s i 1 =1 i s =1 ad the first ad secod derivatives are represeted by D 1 h θ θ h θ = h θ,, h θ T θ 1 θ d 2 D 2 h θ 2 θ θ θ h 1 θ 1 h θ 2 θ 1 θ d h θ θ =. T θ d θ 1 h θ 2 θ d θ d h θ We say that ˆθ is a asymptotic mode of h if ˆθ coverges to the exact mode of h θ as the sample size teds to ifiity. The exact mode of h θ is deoted by ˆθ EX. Note that sice ˆθ EX satisfies D 1 h ˆθ EX = 0, it is also take as a asymptotic mode for h. Additioally, the followig asymptotic modes are defied. Defiitio 1 ˆθ is a asymptotic mode of order 1 for h if ˆθ ˆθ EX 0 a.e., ad D 1 h ˆθ = O 1 a.e. Remark 1. Let h θ = 1 log[p x θπθ]. The maximum likelihood estimator ˆθ ML for p x θ is a asymptotic mode of order 1 for h because D 1 h ˆθ ML = 1 πˆθ ML = O 1, ad ˆθ ML coverges to the exact mode of h θ, as teds to ifiity uder suitable coditios. For the covergece of ˆθ ML, see Heyde ad Johstoe Defiitio 2 ˆθ is a asymptotic mode of order 2 for h if ˆθ ˆθ EX 0 a.e., ad D 1 h ˆθ = O 2 a.e. Remark 2. Let ˆθ ML be the maximum likelihood estimator for px θ, ad let h θ = 1 log[px θπθ]. The, it follows from the same argumet as i the proof of Theorem 3 of Miyata 2004 that ˆθ ML ˆθ ML [D 2 h ˆθ ML ] 1 D 1 h ˆθ ML satisfies D 1 h ˆθ ML = O 2. Subsequetly, we itroduce the regularity coditios A1, A2, A3, A4 ad A5 for which the asymptotic expasios for Θ e h θ dθ will be valid. Let a a T a 1/2 for ay vector 2

3 a, deote the determiat of a matrix. We use B δ ˆθ to deote the ope ball of radius δ cetered at ˆθ, amely B δ ˆθ = {θ Θ : θ ˆθ < δ}. Let {ˆθ} {ˆθ : = 1, 2,...} be the sequece of asymptotic modes. We list the followig assumptios for {h θ}, {ˆθ}: A1 {h θ : = 1, 2,...} is a sequece of eight times cotiuously differetiable real fuctios o Θ. There exists positive umbers ɛ, M, ζ ad a iteger 0 such that for the asymptotic mode ˆθ, 0 implies A2 the itegral Θ e h θ dθ is fiite; A3 for all θ B ɛ ˆθ ad all 1 j 1,..., j m d with m = 1,...,, h θ < M ad m h θ/ θ j1 θ jm < M; A4 D 2 h ˆθ is positive defiite ad D 2 h ˆθ > ζ; A5 for all δ for which 0 < δ < ɛ, B δ ˆθ Θ ad D 2 h ˆθ 1/2 C ˆθ 1 exp{ [h θ h ˆθ]}dθ = O 3, Θ B δ ˆθ where C ˆθ = exp 2 D1 hˆθ T [D 2 hˆθ] 1 D 1 hˆθ. The pair {h }, {ˆθ} will be said to satisfy the aalytical assumptios for the asymptotic-mode Laplace method if A1, A2, A3, A4 ad A5 are satisfied for the asymptotic mode ˆθ. Our coditios A1 A5 are aalogous to those of Kass, Tierey ad Kadae 1990 except ˆθ is a asymptotic mode. If ˆθ is a asymptotic mode of order 1, Θ B δ ˆθ exp{ [h θ h ˆθ]}dθ = O 3 d/2 holds uder A5. Hece A5 meas that the probability outside a eighborhood of the ˆθ coverges to zero as the sample size teds to ifiity. Let h j1 jm deote the mth partial derivative m h θ/ θ j1 θ jm with respect to θ evaluated at ˆθ, for example, h 112 meas 3 h ˆθ/ ˆθ 2 1 ˆθ 2. Let h ij be the compoets of [D 2 hˆθ] 1 ad b = b i [D 2 h ˆθ] 1 D 1 h ˆθ. We defie the sixth, eighth, teth, ad twelfth cetral momets of a multivariate ormal distributio havig covariace matrix [D 2 hˆθ] 1 as µ, µ tu, µ tuvw, ad µ tuvwxy, respectively. Theorem 3. Suppose that ˆα is a asymptotic mode of order 1 for h ad the pair {h α}, {ˆα} satisfies aalytical assumptios for the asymptotic-mode Laplace method. The it follows that for large, e hθ dθ = 2π d/2 Σ 1/2 e hˆα C ˆα 1 + λ 1 Θ + λ O 3, 2.1 where C ˆα = exp 2 D1 h ˆα T [D 2 h ˆα] 1 D 1 h ˆα, 3

4 λ 1 = 1 h ˆαb i h jk 1 h q ˆαh ij h kq q h ˆαh qrs ˆαµ 3, λ 2 = 3 h b i b j b k 2 hq h ij b k b q + 4 h h qrs b i b j µ kqrs h h qrs b i b q µ jkrs 3 hqr b i µ jkqr 24 3 h µ + 4 h h qrst b i µ jkqrst h h qrst b q µ rst + 4 hq h rstu µ tu h h qrstu µ tu 5 h h qrs h tuv b i µ jkqrstuv h h qrs h tuvw µ tuvw h h qrs h tuv h wxy µ tuvwxy, Σ [D 2 hˆα] 1 = 1 h ij, ad µ are the sixth cetral momets of a multivariate Normal distributio havig covariace matrix Σ. Note that λ 1 ad λ 2 are of order O1. The proof is give i Appedix C. Theorem 4. Suppose that ˆθ is a asymptotic mode of order 2 for h ad the pair {h θ}, {ˆθ} satisfies aalytical assumptios for the asymptotic-mode Laplace method. The it follows that for large, e hθ dθ = 2π d/2 Σ 1/2 e hˆθ C ˆθ 1 + a 1 Θ + a O 3, 2.3 where C ˆθ = exp 2 D1 h ˆθ T [D 2 h ˆθ] 1 D 1 h ˆθ, a 1 = 1 a 2 = q ad Σ [D 2 hˆθ] 1 = 1 h ij. h q h ij h kq + 3 h h qrs µ, h 2 b i h jk 3 h µ 0 hq h rstu µ tu + 4 h h qrstu µ tu 0 h h qrs h tuvw µ tuvw h h qrs h tuv h xyz µ tuvwxy, 4

5 a 1, ad a 2 are of order O1, ad the proof is give i Appedix C. Remark 5. O 3 icludes h i,..., h t, h ij, b i, exp 1! B δ ˆθ 2 θ yt Σ 1 θ y h tu γ 1 z i z j z k z q z r z s z t z u dθ, exp{ [h θ h ˆθ]}dθ Θ B δ ˆθ ad θ ˆθ + b, [D 2 h ˆθ] 1 R 5 k θ, ˆθdθ, B δ ˆθ where γ 1 is a poit betwee θ ad ˆθ, k θ, ˆθ 1 = h z i z j z k ! γ 2 is a poit betwee θ ad ˆθ R 5 k θ, ˆθ = k θ, ˆθ 5 4! 1 3. Mai results 0 t 1 λ 4 exp{λk θ, ˆθ}dλ. h t z i z t + 1! tu h tu γ 2 z i z u This sectio maily gives the explicit error terms of order 2 i the fully expoetial Laplace approximatios to posterior meas. Let b = b i [D 2 h ˆθ] 1 D 1 h ˆθ Theorem 6. Let ˆθ be a asymptotic mode of order 2 for h θ, ad ˆθ N is a sigle Newto step from ˆθ toward the maximum of h θ, i.e., ˆθ N ˆθ [D 2 h ˆθ] 1 D 1 h ˆθ. If pairs {h θ}, {ˆθ} ad {h θ}, {ˆθ N } satisfy aalytical assumptios for the asymptotic-mode Laplace method, The D 2 1/2 h ˆθ C E[gΘ] = ˆθ N exp[ h ˆθ N ] 1 + c D 2 h ˆθ N C ˆθ exp[ hˆθ] + 2 O 3, 3.1 where C ˆθ N = exp{/2d 1 h ˆθ N T [D 2 h ˆθ N ] 1 D 1 h ˆθ N } ad c = 2 h b i h jk + 2 h b i h jk + 1 hq h lαβ h ij h kα h βq h lm G m hq h ij h kα h βq G αβ 1 hql h ij h kq h lm G m + 1 h ij h kq G q hα h qrs h αβ [ 3 µ ]G β 1 hqrs [ 3 µ ]G h h qrs h lαβ h jk h rs h iα h βq h lm G m + 1 h h qrs h jk h rs h iα h βq G αβ αβlm αβlm αβlm h h qrs h lαβ h jr h ks h iα h βq h lm G m h h qrs h lαβ h kq h rs h iα h βj h lm G m αβ αβ αβ h h qrs h jr h ks h iα h βq G αβ h h qrs h kq h rs h iα h βj G αβ. 5

6 Note that c is of order O1. The first term i the right side of c is reexpressed as 2 2 h b i h jk = 1 4 lmrαβ h h lαβ h il h jk h αr h βm G r G m + O If ˆθ is replaced with the exact mode ˆθ EX of h θ i 3.1, the it follows that D 2 1/2 h ˆθ EX E[gΘ] = Cˆθ N exp[ h ˆθ N ] 1 + ċ D 2 h ˆθ N exp[ hˆθ EX ] + 2 O 3, 3.3 where ċ is c with the term 2 /2 h b i h jk beig 0. Furthermore, the approximatio with ˆθ N with the exact mode of h is equivalet to the Tierey Kadae approximatio. As a geeralized form, the followig result holds. Theorem 7. Suppose that ˆθ ad θ are asymptotic modes of order 2 for h θ ad h θ respectively. The D 2 1/2 h ˆθ C E[gΘ] = θ exp[ h θ] 1 + O D 2 h θ C ˆθ exp[ hˆθ] Appedix A: Lemmas cocerig matrices This sectio prepares some lemmas cocerig matrices to prove the mai results. Lemma. Suppose that a is a 1 d matrix, M is a d d symmetric matrix. The, where y = ˆθ 1/2M 1 a. Proof. a T θ ˆθ + θ ˆθ T Mθ ˆθ = θ y T Mθ y 1 4 at M 1 a, θ ˆθ M 1 a T Mθ ˆθ M 1 a 1 4 at M 1 a = θ ˆθ T Mθ ˆθ at M 1 Mθ ˆθ + θ ˆθ T M 1 2 M 1 a at M 1 M 1 2 M 1 a 1 4 at M 1 a = a T θ ˆθ + θ ˆθ T Mθ ˆθ. Lemma 9. Let I d be a d d uit matrix. For ay d d matrix A ad ay scalar x, A + xi d = d r=0 x r {i 1,...,i r } A {i 1,...,i r }, A.1 where deotes the determiat of a matrix, {i 1,..., i r } is a r-dimesioal subset of the first d positive itegers 1,..., d ad the secod summatio is over all d r such subsets, ad A {i 1,...,i r } is the d r d r pricipal submatrix of A obtaied by strikig out the i 1,..., i r th rows ad colums. For r = d, the sum {i 1,...,i r} A{i 1,...,i r } is to be iterpreted as 1. Note that the expressio A.1 is a polyomial i x, the coefficiet of x 0 i.e., the costat term of the polyomial equals A, ad the coefficiet of x d 1 equals tra. 6

7 Proof. See Harville 1997; corollary , p.197. Lemma 10. For d d osigular matrices A ad B, d A t/b = 1 dt A t=0 trba 1. Proof. Usig Lemma ad the relatio betwee a iverse matrix ad the cofactors, we have d A t/b dt A t=0 = d BA 1 AB 1 t d dt I t=0 = d BA 1 AB 1 t AB 1 {i1} + t2 dt ξ + + td t=0 2 d = 1 1 AB 1 {i1} AB 1 {i 1 } = 1 trab 1 1 = 1 trba 1, {i 1 } where ξ = {i 1,i 2 } AB 1 {i 1,i 2 } ad {i 1 } ad {i 1, i 2 } are the same otatios as i Lemma. Hece this lemma is proved. Lemma 11. For d d osigular matrices A ad B ad ay scalar x, it follows that A + xb 1 A 1 = Ox. A.2 Proof. Multiplyig A + xb 1 A + xb = I d by A 1 from the right side yields Hece the lemma is proved. A + xb 1 A 1 = xa + xb 1 BA 1. A.3 Lemma 12. For d d osigular matrices A ad B, Proof: Usig A.3, d dt A t B 1 t=0 = 1 A 1 BA 1. A t/b 1 A 1 Hece, lettig t 0 yields the lemma. t = 1 A t B 1 BA 1. A.4 7

8 Appedix B: Some lemmas This sectio presets some lemmas required i the evaluatio of the asymptotic errors i Sectios 2 ad 3. Lemma 13. Let deote a sample size, ad let z i Θ i ˆθ i. Suppose that Θ = Θ 1,..., Θ d T is accordig to N d ˆθ + b, Σ, where ˆθ = ˆθ 1,..., ˆθ d T, b = b 1,..., b d T = O 1, ad Σ = µ ij is the covariace matrix with µ ij = O 1. The we have the followig results. a E[Θ i ˆθ i Θ j ˆθ j Θ k ˆθ k ] = b i µ jk + b j µ ik + b k µ }{{ ij + b } i b j b }{{} k O 2 O 3 b E[Θ i ˆθ i Θ j ˆθ j Θ k ˆθ k Θ q ˆθ q ] = µ ij µ kq + µ ik µ jq + µ iq µ }{{ kj + b } m1 b m2 µ m3 m }{{} 4 O 2 [m 1,m 2 ] 4 O 3 +b i b j b k b q, where [m 1, m 2 ] 4 idicates ways of a pair chose amog four alphabets i, j, k, ad q. Hece the summatio [m1,m2] 4 is over 4 2. c E[z i z j z k z q z r ] = b m1 µ m2 m 3 m 4 m 5 + b }{{} l1 b l2 b l3 µ l4 l 5 +b }{{} i b j b k b q b r, [m 1 ] 5 [l 1,l 2,l 3 ] 5 O 3 O 4 where [m 1 ] 5 idicates ways of oe chose amog five alphabets i, j, k, q, ad r, ad [l 1, l 2, l 3 ] 5 idicates ways of a triple chose amog i, j, k, q, ad r. The otatios [l 1, l 2, l 3, l 4 ] 6, [m 1, m 2 ] 6, etc below are also defied similarly. d E[z i z j z k z q z r z s ] = µ } + b {{} m1 b m2 µ m3 m 4 m 5 m }{{} 6 O 3 [m 1,m 2 ] 6 O 4 + b l1 b l2 b l3 b l4 µ l5 l 6 +b }{{} i b j b k b q b r b s [l 1,l 2,l 3,l 4 ] 6 O 5 e E[z i z j z k z q z r z s z t ] = b m1 µ m2 m 3 m 4 m 5 m 6 m }{{} 7 [m 1 ] 7 O 4 + b l1 b l2 b l3 µ l4 l 5 l 6 l 7 + [l 1,l 2,l 3 ] 7 f E[z i z j z k z q z r z s z t z }{{ u ] = µ } tu +O 5 }{{} O 4 g E[z i z j z k z q z r z s z t z u z }{{} v ] = b m1 µ m2 m 3 m 4 m 5 m 6 m 7 m m 9 +O 6 }{{} 9 [m 1 ] 9 O 5 h E[z i z j z k z q z r z s z t z u z v z }{{ w ] = µ } tuvw +O 6 }{{} 10 O 5 i E[z i z j z k z q z r z s z t z u z v z w z x z }{{} y ] = µ tuvwxy +O 7 }{{} 12 O 6 [ 1, 2, 3, 4, 5 ] 7 b 1 b 2 b 3 b 4 b 5 µ b i b j b k b q b r b s b t

9 Proof of a. Puttig u i Θ i ˆθ i + b i, E[u i ] = 0, ad E[u i u j ] = µ ij. By usig the biomial theorem ad the result i which odd momets of u i are 0, we have Proof of b. E[Θ i ˆθ i Θ j ˆθ j Θ k ˆθ k ] [ Θi ] = E ˆθ i + b i + b i Θj ˆθ j + b j + b j Θk ˆθ k + b k + b k = E[u i + b i u j + b j u k + b k ] = E[u i u j u k ] + b i E[u j u k ] + b j E[u i u k ] + b k E[u i u j ] + b i b j E[u k ] + b j b k E[u i ] + b i b k E[u j ] + b i b j b k = b i µ jk + b j µ ik + b k µ ij + b i b j b k. E[Θ i ˆθ i Θ j ˆθ j Θ k ˆθ k Θ q ˆθ q ] [ Θi ] = E ˆθ i + b i + b i Θj ˆθ j + b j + b j Θk ˆθ k + b k + b k Θq ˆθ q + b q + b q = E[u i + b i u j + b j u k + b k u q + b q ] = E[u i u j u k u q ] + b m1 E[u m2 u m3 u m4 ] + b }{{} m1 b m2 E[u m3 u m4 ] [m 1 ] 4 0 [m 1,m 2 ] 4 + b m1 b m2 b m3 E[u m4 ] +b }{{} i b j b k b q [m 1,m 2,m 3 ] 4 0 = µ q + b m1 b m2 E[u m3 u m4 ] + b i b j b k b q. [m 1,m 2 ] 4 Proof of c. E[z i z j z k z q z r ] = E[Θ i ˆθ i + b i + b i Θ j ˆθ j + b j + b j Θ r ˆθ r + b r + b r ] = E[u i + b i u j + b j u k + b k u q + b q u r + b r ] = µ } qr + b {{} m1 E[u m2 u m3 u m4 u m5 ] + b m1 b m2 E[u m3 u m4 u m5 ] }{{} 0 [m 1 ] 5 [m 1,m 2 ] b m1 b m2 b m3 E[u m4 u m5 ] + b m1 b m2 b m3 b m4 E[u m5 ] + b i b j b k b q b r [m 1,m 2,m 3 ] 5 [m 1,m 2,m 3,m 4 ] 5 = b m1 µ m2 m 3 m 4 m 5 + b m1 b m2 b m3 µ m4 m 5 + b i b j b k b q b r. [m 1 ] 5 [m 1,m 2,m 3 ] 5 9

10 Proof of d. E[z i z j z k z q z r z s ] = E[u i + b i u j + b j u k + b k u q + b q u r + b r u s + b s ] = µ + b m1 E[u m2 u m3 u m4 u m5 u m6 ] }{{} [m 1 ] b m1 b m2 E[u m3 u m4 u m5 u m6 ] + b m1 b m2 b m3 E[u m4 u m5 u m6 ] [m 1,m 2 ] 6 [m 1,m 2,m 3 ] 6 + b m1 b m2 b m3 b m4 E[u m5 u m6 ] + b m1 b m2 b m3 b m4 b m5 E[u m6 ] [m 1,m 2,m 3,m 4 ] 6 [m 1,m 2,m 3,m 4,m 5 ] 6 Similarly, e h ca be proved. + b i b j b k b q b r b s. Let Gθ log g + θ ad let G j1...j m deote the mth partial derivatives m Gθ/ θ j1...θ jm evaluated at θ = ˆθ. For example, G 213 = 3 Gˆθ/ ˆθ 2 ˆθ 1 ˆθ 3. For simplicity, we let h = h ad h = h. Lemma 14. Let ˆθ be a asymptotic mode of order 2 for hθ, ad let h θ hθ 1/Gθ. Suppose that h θ ad hθ are five times cotiuously differetiable sequeces o Θ, Gθ is four times cotiuously differetiable, ad [D 2 hˆθ] 1 exists. The the followig results hold: a h ˆθ N hˆθ = 1 Gˆθ + 1 D1 hˆθ T [D 2 hˆθ] 1 D 1 Gˆθ +O 2 }{{} O 3 b D 1 h ˆθ N D 1 hˆθ = O 2 c h ijˆθ N h ij ˆθ = 1 D1 h ij ˆθ T [D 2 hˆθ] 1 D 1 Gˆθ 1 G ijˆθ + O 2 = 1 h αij h αβ G β 1 G ij + O 2 α,β d h ˆθ N h ˆθ = 1 D1 h ˆθ T [D 2 hˆθ] 1 D 1 Gˆθ 1 G ˆθ + O 2 = 1 h α h αβ G β 1 G + O 2 αβ e h qˆθ N h q ˆθ = 1 D1 h q ˆθ T [D 2 hˆθ] 1 D 1 Gˆθ 1 G qˆθ + O 2 = 1 h αq h αβ G β 1 G q + O 2 αβ f h ij ˆθ N h ij ˆθ = 1 D1 h ij ˆθ T [D 2 hˆθ] 1 D 1 Gˆθ + O 2 = 1 h iα h lαβ h βj h lm G m + O 2 αβlm 10

11 g h ij ˆθ N h ij ˆθ = 1 h iα h lαβ h βj h lm G m + 1 h iα G αβ h βj + O 2 α,β,l,m Proof of a. From Dh ˆθ = Dhˆθ 1/DGˆθ = 1/DGˆθ + O 2 α,β ˆθ N ˆθ = [D 2 h ˆθ] 1 D 1 h ˆθ B.1 = 1 [D2 hˆθ] 1 D 1 Gˆθ + O 2 B.2 It follows from the result B.2 that h ˆθ N hˆθ = hˆθ N hˆθ 1 Gˆθ N = D 1 hˆθ T ˆθ N ˆθ 1 Gˆθ N + O 2 { } 1 = D 1 hˆθ T [D2 hˆθ] 1 D 1 Gˆθ 1 Gˆθ + O 2 = 1 D1 hˆθ T [D 2 hˆθ] 1 D 1 Gˆθ 1 Gˆθ + O 2. Proof of b. Because ˆθ N is a asymptotic mode of order 2 for h, this is immediate from Miyata 2004, p Proof of c. Because D 2 h ˆθ N = D 2 hˆθ N 1/D 2 Gˆθ N, arguig as i the proof of a of Lemma 13, we have h ijˆθ N h ij ˆθ = h ij ˆθ N h ij ˆθ 1 G ijˆθ N = D 1 h ij ˆθ T ˆθ N ˆθ 1 G ijˆθ N + O 2 { } 1 = D 1 h ij ˆθ T [D2 hˆθ] 1 D 1 Gˆθ 1 G ijˆθ + O 2 = 1 D1 h ij ˆθ T [D 2 hˆθ] 1 D 1 Gˆθ 1 G ijˆθ + O 2 = 1 h αij h αβ G β ˆθ 1 G ijˆθ + O 2. α,β Proof of d. Arguig as i the proof of a of Lemma 13, h ˆθ N h ˆθ = h ˆθ N h ˆθ 1 G ˆθ N = D 1 h ˆθ T ˆθ N ˆθ 1 G ˆθ N + O 2 { } 1 = D 1 h ˆθ T [D2 hˆθ] 1 D 1 Gˆθ 1 G ˆθ + O 2 = 1 D1 h ˆθ T [D 2 hˆθ] 1 D 1 Gˆθ 1 G ˆθ + O 2 = 1 h α h αβ G β ˆθ 1 G ˆθ + O 2. Proof of e. This is the same as that of d essetially. 11 α,β

12 Proof of f. It follows from B.2 that h ij ˆθ N h ij ˆθ = D 1 h ij ˆθ T ˆθ N ˆθ + O 2 = 1 D1 h ij ˆθ T [D 2 hˆθ] 1 D 1 Gˆθ + O 2 B.3 By usig the matrix algebra D.A. Harville p.30, ˆθ [D 2 hˆθ] 1 = [D 2 hˆθ] 1 k ˆθ D 2 hˆθ[d 2 hˆθ] 1. k Hece, Therefore, ˆθ k h ij ˆθ = α,β h iα h kαβ h βj. D 1 h ij ˆθ = α,β h iα h βj D 1 h αβ ˆθ. Thus h ij ˆθ N h ij ˆθ = 1 αβ h iα h βj D 1 h αβ ˆθ T [D 2 hˆθ] 1 D 1 Gˆθ + O 2 = 1 h iα h kαβ h βj h kl G l + O 2. αβkl Proof of g. It follows from A.3 that [D 2 h ˆθ N ] 1 [D 2 hˆθ] 1 = [D 2 hˆθ N 1 D2 Gˆθ N ] 1 [D 2 hˆθ] 1 = [D 2 hˆθ N ] 1 [D 2 hˆθ] [D2 h ˆθ N ] 1 D 2 Gˆθ N [D 2 hˆθ N ] 1 = [D 2 hˆθ N ] 1 [D 2 hˆθ] [D2 hˆθ] 1 D 2 Gˆθ[D 2 hˆθ] 1 + O 2. Usig f of this lemma, we have h ij ˆθ N h ij ˆθ = h ij ˆθ N h ij ˆθ + 1 h h 1j i1 h id D 2 Gˆθ. + O 2 = 1 h dj h iα h lαβ h βj h lm G m + 1 h iα G αβ h βj + O 2. αβlm The followig expasios are used to derive the fully expoetial Laplace approximatios i Sectio 3. αβ 12

13 Lemma 15. Suppose that ˆθ is a asymptotic mode of order 2 for hˆθ. Let µ be sixth cetral momets of a multivariate Normal distributio with mea 0 ad covariace Σ = [D 2 h ˆθ N ] 1. Let k 5k 6 = αβlm h k 5α h lαβ h βk 6 h lm G m αβ h k 5α h βk 6 G αβ. The the followig results hold. a 3 µ µ = 1 <k 1,k 2 k 6 > h k 1k 2 h k 3k 4 k 5k 6 + O 2, where A, A, ad B are three rooms i which two rooms are the same, ad the other is differet from them, ad < k 1, k 2,..., k 6 > deotes ways to arrage elemets i, j, k, q, r ad s ito the three rooms A, A, ad B by two alphabets. Hece the summatio <k 1,k 2 k 6 > is over /2 = 45 terms. b = h h qrs 3 µ µ αβlm αβlm αβlm + O 2. h h qrs h lαβ h jk h rs h iα h βq h lm G m + 9 h h qrs h lαβ h jr h ks h iα h βq h lm G m + 1 h h qrs h lαβ h kq h rs h iα h βj h lm G m + 1 αβ αβ αβ h h qrs h jk h rs h iα h βq G αβ h h qrs h jr h ks h iα h βq G αβ h h qrs h kq h rs h iα h βj G αβ c 3 {h ˆθ N h ˆθ}h qrs µ d h l ˆθ N = Proof of a. = 1 αβ h α h qrs h αβ 3 µ G β h lαβ h αr h βm G r G m + O 3. rmαβ h qrs 3 µ G + O 2. It is well kow that sixth cetral momets of the Normal distributio are decomposed with elemets of the covariace matrix i.e., µ = 1 h ij h kq h rs + h ij h kr h qs + + h is h jr h kq 3 }{{}, B.4 15 terms where h ij are i, j-elemets of [D 2 h ˆθ N ] 1. For example, see Kass et al. 1990, p.477. From g of Lemma 13, h ij ˆθ N = h ij ˆθ ij + O 2. 13

14 The we have h ij ˆθ N h kq ˆθ N h rs ˆθ N = h ij ˆθh kq ˆθh rs ˆθ 1 hij ˆθh kq ˆθ h rα h lαβ h βs h lm G m αβlm αβ 1 hij ˆθh rs ˆθ h kα h lαβ h βq h lm G m αβlm αβ 1 hkq ˆθh rs ˆθ h iα h lαβ h βj h lm G m αβlm αβ h rα h βs G αβ h kα h βq G αβ h iα h βj G αβ + O 2 = h ij ˆθh kq ˆθh rs ˆθ 1 hij ˆθh kq ˆθ rs 1 hij ˆθh rs ˆθ kq where 1 hkq ˆθh rs ˆθ ij + O 2, ij = α,β,l,m h iα h lαβ h βj h lm G m α,β h iα h βj G αβ. B.5 B.6 Substitutio of B.5 ito the decompositio B.4 leads to the equatio a. Proof of b. From Lemma 14 a, we have = 1 = 1 h h qrs 3 µ µ h h qrs h } ij h kq rs + h ij kq h rs + {{ ij h kq h rs + + h is h jr kq } h h qrs <k 1 k 2 k 6 > 45terms h k 1k 2 h k 3k 4 k 5k 6 + O 2. + O 2 B.7 Equatio B.7 are divided ito three kids of terms, h h qrs iq h jk h rs, h h qrs iq h jr h ks, ad h h qrs ij h kq h rs as described below. Note that h h qrs h ij h kq rs ad h h qrs ij h kq h rs are the same if the suffixes i ad j are exchaged for r ad s. The secod summatio i B.7 is 14

15 <k 1 k 2 k 6 > h k 1k 2 h k 3k 4 k 5k 6 = h ij h kq rs + h ij h kr qs + h ij h ks qr + h ik h jq rs + h ik h jr qs + h ik h js qr + h iq h jk rs + h iq h jr ks + h iq h js kr + h ir h jk qs + h ir h jq ks + h ir h js kq + h is h jk qr + h is h jq kr + h is h jr kq + h ij kq h rs + h ij kr h qs + h ij ks h qr }{{} + h ik jq h rs + h ik jr h qs + h ik js h qr }{{} +hiq jk h rs + h iq jr h ks + h iq js h kr + h ir jk h qs + h ir jq h ks + h ir js h kq + h is jk h qr + h is jq h kr + h is jr h kq + ij h kq h rs + ij h kr h qs + ij h ks h qr + ik h jq h rs + ik h jr h qs + ik h js h qr + iq h jk h rs }{{} + iq h jr h ks + iq h js h kr + ir h jk h qs }{{} + ir h jq h ks + ir h js h kq + is h jk h qr }{{} + is h jq h kr + is h jr h kq. The we classify the foregoig equatio ito three type listed below. 1 The uderlie I the suffixes k 5 ad k 6 of k 5k 6, oe is from i, j ad k, ad aother is from q, r ad s. Additioally, i k 3 ad k 4 of h k 3k 4, oe is from i, j ad k, ad aother is from q, r ad s. 1 2 The uderbrace I the suffixes k 5 ad k 6 of k 5k 6, oe is from i, j ad k, ad aother is from q, r ad s. Additioally, the suffixes k 3 ad k 4 have two alphabets i either i, j, k or q, r, s. 9 3 The suffixes k 5 ad k 6 of k 5k 6 have two alphabets i either i, j, k or q, r, s. 1 Cosequetly, h h qrs 3 µ µ = 9 h h qrs iq h jk h rs 1 h h qrs iq h jr h ks 1 h h qrs ij h kq h rs + O 2 = 9 h h qrs h jk h rs h iα h lαβ h βq h lm G m α,β,l,m α,β 1 h h qrs h jr h ks h iα h lαβ h βq h lm G m α,β,l,m α,β 1 h h qrs h kq h rs h iα h lαβ h βj h lm G m α,β,l,m α,β h iα G αβ h βq h iα G αβ h βq h iα G αβ h βj + O 2. 15

16 Thus the foregoig equatio becomes 9 h h qrs h lαβ h jk h rs h iα h βq h lm G m αβlm αβlm αβlm + O 2. h h qrs h lαβ h jr h ks h iα h βq h lm G m + 1 h h qrs h lαβ h kq h rs h iα h βj h lm G m + 1 Proof of c. It follows from Lemma 13 d that 3 h ˆθ N h ˆθh qrs µ αβ αβ αβ h h qrs h jk h rs h iα h βq G αβ h h qrs h jr h ks h iα h βq G αβ h h qrs h kq h rs h iα h βj G αβ = 1 3 h α h αβ G β 1 G + O 2 h qrs µ + O 4 α,β = 1 h α h qrs h αβ 3 µ G β h qrs 3 µ G + O 2 αβ Hece, c is proved. Proof of d Expadig the first derivatives h l ˆθ N aroud ˆθ, ad usig B.1 ad B.2 yields h l ˆθ N = h l ˆθ + D 1 h l ˆθ T ˆθ N ˆθ ˆθ N ˆθ T D 2 h l ˆθˆθ N ˆθ + O 3 = h l ˆθ + D 1 h l ˆθ [D T 2 h ˆθ] 1 D 1 h ˆθ T 1 1 [D2 hˆθ] 1 D 1 Gˆθ D 2 h l ˆθ [D2 hˆθ] 1 D 1 Gˆθ + O 3. It follows from defiitio of a iverse matrix that Thus we have D 1 h l ˆθ T [D 2 h ˆθ] 1 = 0,..., 0, 1 l, 0,..., 0. h l ˆθ N = h l ˆθ h l ˆθ D1 Gˆθ T [D 2 hˆθ] 1 D 2 h l ˆθ[D 2 hˆθ] 1 D 1 Gˆθ + O 3 = D1 Gˆθ T [D 2 hˆθ] 1 D 2 h l ˆθ[D 2 hˆθ] 1 D 1 Gˆθ + O 3 = r = lαβqr Hece, the lemma is proved. h 1r G r h dr G r D 2 h l ˆθ r h lαβ h αr h βq G r G q + O q h1q G q. q hdq G q + O 3

17 Appedix C: Proofs of the mai results This sectio proves the mai results. The otatios are the same as i Sectios 2 ad 3. Proof of Theorem 1. Θ e hθ dθ = B δ θ First, we evaluate the first term i the r.h.s. By expadig hθ about ˆθ, hθ = hˆθ + i q e hθ dθ + Θ B δ θ e hθ dθ. h i ˆθz i + 1 h ij ˆθz i z j + 1 h ˆθz i z j z k 2 6 ij h q ˆθz i z j z k z q h ˆθz i z j z k z q z r z s + R 1, hqr ˆθz i z j z k z q z r where R 1 1/7! h t z i z j z k z q z r z s z t +r 1, ad r 1 is bouded over B ɛ ˆθ by a polyomial i z i z j z k z q z r z s z t z u. By usig Lemma 7, we have h i ˆθz i + 1 h ij ˆθz i z j 2 where y = ˆθ [D 2 hˆθ] 1 D 1 hˆθ. i ij = D 1 hˆθ T θ ˆθ θ ˆθ T D 2 hˆθθ ˆθ = 1 2 θ yt D 2 hˆθθ y 1 4 D1 hˆθ T [ 1 2 D2 hˆθ] 1 D 1 hˆθ, Usig the expasio e x = 1 + x + 1/2x 2 + 1/6x 3 + 1/24x 4 + 1/120e τ 1 x 5, where τ 1 is a poit betwee 0 ad x, it follows that { [ 1 exp h ˆθz i z j z k { 1 = 1 h z i z j z k [ h ˆθz i z j z k z q z r z s + R 1 ]} hq z i z j z k z q + 1 hqr z i z j z k z q z r h z i z j z k z q z r z s + R 1 0 h z i z j z k ] [ h z i z j z k ][ h qrst z q z r z s z t ] qrst 2 [ h qz i z j z k z q ] [ h z i z j z k ][ h qrstu z q z r z s z t z u ] + R 2 qrstu 3 1 [ h z i z j z k ] [ h z i z j z k ] 2 [ h qrst z q z r z s z t ] + R 3 qrst [ } h z i z j z k ] 4 + R 4 + R = J θ, ˆθ + R, C.1 17

18 where R 2, R 3, ad R 4 are the rests of terms squared, cubed, ad to the fourth power i the bracket, R 5 is a term with polyomials of degree greater tha or equal to 15, ad R is the sum of all terms ivolvig R 1, R 2, R 3, R 4, ad R 5. I C.1, J θ, ˆθ is J θ, ˆθ = 1 6 h z i z j z k 24 hq z i z j z k z q + 2 h h qrs z i z j z k z q z r z s hqr z i z j z k z q z r h h qrst z i z j z k z q z r z s z t From C.1, we have e hθ dθ B δ ˆθ = e hˆθ exp exp B δ ˆθ h h qrstu z i z j z k z q z r z s z t z u h h qrs h tuv z i z j z k z q z r z s z t z u z v h z i z j z k z q z r z s 0 h h qrs h tuvw z i z j z k z q z r z s z t z u z v z w 2 hq h rstu z i z j z k z q z r z s z t z u 1152 h h qrs h tuv h wxy z i z j z k z q z r z s z t z u z v z w z x z y. { 4 D1 hˆθ T [ 1 } 2 D2 hˆθ] 1 D 1 hˆθ 1 2 θ yt 1 D2 hˆθ 1 1 θ y { 1 exp h ˆθz i z j z k = e hˆθ C ˆθ + e hˆθ C ˆθ B δ ˆθ B δ ˆθ exp 1 2 θ yt Σ 1 θ y h z i z j z k z q z r z s + R 1 } dθ. J θ, ˆθdθ, exp 1 2 θ yt Σ 1 θ y R dθ C.2 C.3 where Σ = [D 2 hˆθ] 1. Secod, we evaluate C.3. The terms composig R may be represeted explicitly usig the mea value form of the remaiders i terms of higher derivatives of h evaluated at poits betwee ˆθ ad θ, for example, oe such term is /! h tu γ 1 z i z j z k z q z r z s z t z u, where γ 1 is a poit betwee θ ad ˆθ. It is oe piece of the error term appearig as R. Because it follows from coditio A3 that h tu γ 1 < M 1

19 o B δ ˆθ, we have! M! B δ ˆθ exp 1 2 θ yt Σ 1 θ y h tu γ 1 z i z j z k z q z r z s z t z u dθ exp 1 2 θ yt Σ 1 θ y z i z j z k z q z r z s z t z u dθ B δ ˆθ = Σ 1/2 O 3. C.4 The other terms are similar. Thus C.3 becomes 2π d/2 e hˆθ Σ 1/2 C ˆθ O 3. Third, we evaluate C.2. Sice there exists a symmetric matrix A 1/2 such that A 1/2 A 1/2 = D 2 hˆθ, puttig 1/2 A 1/2 θ y = u, we have Θ B δ ˆθ = {θ : θ ˆθ T θ ˆθ > δ 2 } = {θ : u 1/2 A 1/2 b T [D 2 hˆθ] 1 u 1/2 A 1/2 b > δ 2 } 1 {θ : u 1/2 A 1/2 b T u 1/2 A 1/2 b > δ 2 } λ 1 {θ : 2u T u + 2b T A 1/2 A 1/2 b > λ 1 δ 2 } = {θ : u T u > c 2 } = {θ : θ y T Σ 1 θ y > c 2 }, where λ 1 is the smallest eigevalue of D 2 hˆθ, b = b i [D 2 hˆθ] 1 D 1 hˆθ ad c 2 = 1/2{λ 1 δ 2 2D 1 hˆθ T [D 2 hˆθ] 1 D 1 hˆθ}. Note that c 2 > 0 for large because λ 1 is strictly positive from the assumptio A4. Hece, oce agai puttig 1/2 A 1/2 θ y = u = u i, we have Θ B δ ˆθ exp 1 2 θ yt Σ 1 θ y J θ, ˆθdθ θ y T Σ 1 θ y>c 2 exp 1 2 θ yt Σ 1 θ y J θ 2, ˆθdθ = Σ u 1/2 exp 1 1/2 T u>c 2 2 ut u P oudu, where P ou deotes a term with multivariate polyomials i u 1,..., u d of fiite degree. Cosequetly, Θ B δ ˆθ exp 1 2 θ yt Σ 1 θ y J θ, ˆθdθ. becomes the term of expoetially decreasig error by the same argumet as i Kass et al. 1990, pp This allows the replacemet of the domai i C.2 by the whole Euclidea space. Therefore, C.2 is replaced with e hˆθ C ˆθ exp 1 R 2 θ yt Σ 1 θ y J θ, ˆθdθ. d Sice Σ = h ij /, it follows from Lemma 12 a that 1/2 E N [Θ i ˆθ i Θ j ˆθ j Θ k ˆθ k ] = b i h jk + b j h ik + b k h ij + b i b j b k. 19

20 The, usig D 1 hˆθ = O 1, we have [ E N ] h ˆθz i z j z k = 1 h ˆθb i h jk h b i b j b k C.5 Moreover, [ ] E N h q z i z j z k z q = hq E[z i z j z k z q ] q = h ij h q 24 = 1 = 1 q q hkq + hik hjq + hiq hkj + h q h ij h kq h q h ij b k b q 24 q h q h ij h kq 1 h q h ij b k b q + O 3 4 q q b m1 b hm3m4 m2 [m 1,m 2 ] 4 q h q b i b j b k b q + b i b j b k b q C.6 Similarly, applyig iii xi of Appedix E to the other expaded terms i J θ, ˆθ, ad the combiig C.5 ad C.6 yields e hθ dθ = 2π d/2 Σ 1/2 e hˆθ C ˆθ 1 + λ 1 + λ O 3, C.7 B δ ˆθ where C ˆθ = exp{/2d 1 hˆθ T [D 2 hˆθ] 1 D 1 hˆθ}, λ 1 = 1 h ˆθb i h jk 1 2 q h q ˆθh ij h kq + 1 h ˆθh qrs ˆθµ 3, ad µ are the sixth cetral momets of a multivariate Normal distributio havig covariace matrix [D 2 hˆθ] 1. O the other had, it follows from assumptio A.5 of Sectio 2 that e hθ dθ = 2π d/2 Σ 1/2 e hˆθ C ˆθ O 3. Θ B δ ˆθ Therefore, combiig C.7 ad C. yields the result. C. Lemma 16. Suppose that ˆθ is a asymptotic mode of order 2 for h. The it follows that D 1 h ˆθ N = O 2. Proof. Expadig h ˆθ N / θ i aroud ˆθ yields, for i = 1,..., d, h ˆθ N = h ˆθ + D 1 [ h ˆθ T ˆθ N θ i θ i θ ˆθ + ˆθ N ˆθ T i D 2 ] h ξ i ˆθ N θ ˆθ, i C.9 where ξ i is a iterior poit o the lie from ˆθ to ˆθ N. Writig C.9 i a matrix form gives D 1 h ˆθ N = D 1 h ˆθ + D 2 h ˆθ T ˆθ N ˆθ + R ξ, C.10 20

21 where R ξ = ˆθ N ˆθ T [D 2 h ξ 1 / θ 1 ]ˆθ N ˆθ,..., ˆθ N ˆθ[D 2 h ξ d / θ d ]ˆθ N ˆθ T. Substitutig ˆθ N ˆθ = [D 2 h ˆθ] 1 D 1 h ˆθ ito C.10, we have Proof of Theorem 5. e h θ dθ e hθ dθ D 1 h ˆθ N = D 1 h ˆθ D 2 h ˆθ[D 2 h ˆθ] 1 D 1 h ˆθ + O 2 = O 2. D 2 1/2 hˆθ C = ˆθ N exp[ h ˆθ N ] D 2 h ˆθ N C ˆθ exp[ hˆθ] D 2 1/2 hˆθ C = ˆθ N exp[ h ˆθ N ] D 2 h ˆθ N C ˆθ exp[ hˆθ] 1 + a 1 + a O a 1 + a O a 1 a 1 + a 2 a 2 a 1 a 1 a 1 + O 3 2 First, we shall evaluate a 1 a 1. It follows from Lemma 13 d that 3 h ˆθ N h qrsˆθ N µ 3 h ˆθh qrs ˆθµ C.11 = 3 { h ˆθ N h ˆθh qrsˆθ N µ } + h ˆθh qrsˆθ N h qrs ˆθµ + h ˆθh qrs ˆθµ µ = hα h αβ G β 1 G h qrs [ 3 µ ] + 1 h h qrs 3 µ µ + O 2 The left term of the foregoig equatio becomes 1 hα h qrs h αβ [ 3 µ ]G β 1 hqrs [ 3 µ ]G By usig Lemma 14 b, the right term equatio is give by { 1 9 h h qrs h lαβ h jk h rs h iα h βq h lm G m + 9 h h qrs h jk h rs h iα h βq G αβ h h qrs h lαβ h jr h ks h iα h βq h lm G m + 1 h h qrs h jr h ks h iα h βq G αβ 1 1 h h qrs h lαβ h kq h rs h iα h βj h lm G m + 1 } h h qrs h kq h rs h iα h βj G αβ = 1 h h qrs h lαβ h jk h rs h iα h βq h lm G m + 1 h h qrs h jk h rs h iα h βq G αβ 1 h h qrs h lαβ h jr h ks h iα h βq h lm G m + 1 h h qrs h jr h ks h iα h βq G αβ 4 4 h h qrs h kq h rs h iα h βj G αβ. 1 4 h h qrs h lαβ h kq h rs h iα h βj h lm G m C.12 C.13 C.14 C.15 21

22 I cotrast, it follows from Lemma 13 g, ad Lemma 13 e that 1 h qˆθ N h ij ˆθ N h kq ˆθ N h q ˆθh ij ˆθh kq ˆθ = 1 { h qˆθ N h ij ˆθ N [h kq ˆθ N h kq ˆθ] q } + h qˆθ N [h ij ˆθ N h ij ˆθ]h kq ˆθ + h ij ˆθh kq ˆθ[h qˆθ N h q ˆθ] = 1 2 hq h ij h kα h lαβ h βq h lm G m + 2 hq h ij h kα h βq G αβ + 1 hql h ij h kq h lm G m 1 h ij h kq G q + O 2 = 1 hq h ij h kα h lαβ h βq h lm G m 1 hq h ij h kα h βq G αβ hql h ij h kq h lm G m + 1 h ij h kq G q + O 2. C.16 Combiig C.12, C.13, C.14, C.15, ad C.16, we have a 1 a 1 = κ /, where κ is of order 1. Next, we evaluate a 2 a 2. Followig the proof of Tierey ad Kadae 196, we have Therefore, a 2 a 2 = 1 h 2 ˆθ N 2 b i h jk + 1 h ˆθ 2 b i h jk + O 1. 2 D E[g + 2 1/2 h ˆθ C Θ] = ˆθ N exp[ h ˆθ N ] 1 + c D 2 h ˆθ N C ˆθ exp[ hˆθ] + 2 O 3, where C ˆθ N = exp{/2d 1 h ˆθ N T [D 2 h ˆθ N ] 1 D 1 h ˆθ N } ad c = 2 h b i h jk + 2 h b i h jk + 1 hq h lαβ h ij h kα h βq h lm G m hq h ij h kα h βq G αβ 1 hql h ij h kq h lm G m + 1 h ij h kq G q hα h qrs h αβ [ 3 µ ]G β 1 hqrs [ 3 µ ]G h h qrs h lαβ h jk h rs h iα h βq h lm G m + 1 h h qrs h jk h rs h iα h βq G αβ αβlm αβlm αβlm h h qrs h lαβ h jr h ks h iα h βq h lm G m h h qrs h lαβ h kq h rs h iα h βj h lm G m αβ αβ αβ h h qrs h jr h ks h iα h βq G αβ h h qrs h kq h rs h iα h βj G αβ C.17 22

23 As a alterative expressio of 2 /2 h b i h jk i c, from Lemma 14 d, we have b i ˆθ N = l h il h l ˆθ N + O 3 Thus 2 2 = h b i h jk = 1 4 αβlmr lmrαβ h lαβ h il h αr h βm G r G m + O 3. h h lαβ h il h jk h αr h βm G r G m + O 1 C.1 Appedix D: Momets of multivariate ormal distributios A d 1 radom vector u is accordig to N0, Σ, where Σ µ ij, ad 0 is a d 1 ull vector. Let µ q ad µ deote the fourth ad sixth cetral momets of multivariate ormal distributio N0, Σ. The we have the formula cocerig the momets: µ q = µ ij µ ks + µ ik µ js + µ is µ jk, µ = µ ij µ kq µ rs + µ ij µ kr µ qs + µ ij µ ks µ qr + µ ik µ jq µ rs + µ ik µ jr µ qs + µ ik µ js µ qr + µ iq µ jk µ rs + µ iq µ jr µ ks + µ iq µ js µ kr + µ ir µ jk µ qs + µ ir µ jq µ ks + µ ir µ js µ kq + µ is µ jk µ qr + µ is µ jq µ kr + µ is µ jr µ kq Appedix E:Auxiliary calculatio o the Laplace approximatios iii From Lemma 12 d, [ 2 ] E h h qrs z i z j z k z q z r z s = 2 h h qrs E[z i z j z k z q z r z s ] = 2 h h qrs µ + b m1 b m2 µ m3 m 4 m 5 m 6 + b l1 b l2 b l3 b l4 µ l5 l 6 + b i b j b k b q b r b s [m 1,m 2 ] 6 [l 1,l 2,l 3,l 4 ] 6 = 2 h h qrs µ + 2 h h qrs b m1 b m2 µ m3 m 4 m 5 m 6 + O 3 E.1 [m 1,m 2 ] 6 23

24 Because [m 1,m 2 ] 6 b m1 b m2 µ m3 m 4 m 5 m 6 = b i b j µ kqrs + b i b k µ jqrs + b i b q µ jkrs + b i b r µ jkqs + b i b s µ jkqr + b j b k µ iqrs + b j b q µ ikrs + b j b r µ ikqs + b j b s µ ikqr + b k b q µ ijrs + b k b r µ ijqs + b k b s µ ijqr + b q b r µ s + b q b s µ r + b r b s µ q, 2 h h qrs b m1 b m2 µ m3 m 4 m 5 m 6 is devided ito two kids of terms. Hece, the secod [m 1,m 2 ] term i E.1 is 2 h h qrs b m1 b m2 µ m3 m 4 m 5 m 6 [m 1,m 2 ] = 2 6 h h qrs b i b j µ kqrs h h qrs b i b q µ jkrs. Coseqetly, we have [ 2 ] E h h qrs z i z j z k z q z r z s = 2 h h qrs µ + 2 h h qrs b i b j µ kqrs + 2 h h qrs b i b q µ jkrs. 12 iv From Lemma 12 c, [ E ] hqr z i z j z k z q z r = hqr E[z i z j z k z q z r ] = h qr b m1 µ m2 m m 4 m 5 + O 3 qr [m 1 ] 5 = h qr b i µ jkqr + O 3 qr = h qr b i µ jkqr + O v From Lemma 12 d [ E 0 qr h z i z j z k z q z r z s ] = 0 vi From Lemma 12 e, [ 2 ] E h h qrst z i z j z k z q z r z s z t 144 = 2 h h qrst E[z i z j z k z q z r z s z t ] 144 = = 0 h E[z i z j z k z q z r z s ] h µ + O 3. h h qrst b m1 µ m2 m 3 m 4 m 5 m 6 m 7 + O 3 [m 1 ] 7 = h h qrst b i µ jkqrst h h qrst b q µ rst + O 3 = 2 h h qrst b i µ jkqrst + 2 h h qrst b q µ rst + O

25 vii From Lemma 12 f, [ 2 ] E hq h rstu z i z j z k z q z r z s z t z u = 2 hq h rstu E[z i z j z k z q z r z s z t z u ] = 2 hq h rstu µ tu + O viii From Lemma 12 f, [ 2 ] E h h qrstu z i z j z k z q z r z s z t z u = 2 h h qrstu µ tu + O ix From Lemma 12 g, E [ 3 ] h h qrs h tuv z i z j z k z q z r z s z t z u z v 1296 = 3 h h qrs h tuv b m1 µ m2 m m 4 m 5 m 6 m 7 m m 9 + O 3 [m 1 ] 9 = h h qrs h tuv b i µ jkqrstuv + O 3 = 3 h h qrs h tuv b i µ jkqrstuv + O x From Lemma 12 h, E [ 3 ] h h qrs h tuvw z i z j z k z q z r z s z t z u z v z w = 3 h h qrs h tuvw µ tuvw + O xi From Lemma 12 i, [ 4 ] E h h qrs h tuv h wxy z i z j z k z q z r z s z t z u z v z w z x z y = 4 h h qrs h tuv h wxy µ tuvwxy + O The iequality i Theorem a 1 + a 2 + a a 1 + a 2 + a = 1 + a 1 a 1 + a 2 a 2 a 1 a 1 a O 3, where O 3 is give by [ a 3 a 3 3 a1 3 + a 2 + a 3 a 2 a 2 a 1 a 1 a a 1 + a 2 + a a2 2 + a 3 3 ] a 1 a 1 25

26 Proof. 1 + a 1 + a 2 + a a 1 + a 2 + a [ = 1 + a 1 + a 2 + a a 1 + a 2 + a Therefore this iequality is proved. 1 + a 1 a 1 + a 2 a 2 a 1 a 1 a a 1 a 1 + a 2 a 2 a 1 a 1 a a a 2 + a ] Refereces Harville, D. A. 1997, Matrix Algebra From A Statisticias Perspective, Spriger-Verlag, New York. Kass, R. E., Tierey, L., ad Kadae, J. B. 1990, The Validity of Posterior Expasios Based o Laplace s Method, i Essays i Hoor of George Barard, eds. S. Geisser, J. S. Hodges, S. J. Press, ad A. Zeller, Amsterdam: NorthHollad. Laplace, P. S. 196, Memoir o the Probability of Causes of Evets traslatio by S. Stiger of the 1774 origial, Statistical Sciece, 1, Lidley, D. V. 190, Approximate Bayesia Methods, i Bayesia Statistics, eds. J. M. Berardo, M. H. Degroot, D. V. Lidley, ad A. F. M. Smith, Valecia, Spai: Uiversity Press, pp Miyata, Y., 2004, Fully Expoetial Laplace Approximatios Usig Asymptotic Modes, Joural of the America Statistical Associatio, 99, Mosteller, F., ad Wallace, D. L. 1964, Iferece ad Disputed Authorship: The Federalist Papers, Readig, MA: Addiso-Wesley. Tierey, L., ad Kadae, J. B. 196, Accurate Approximatios for Posterior Momets ad Margial Desities, Joural of the America Statistical Associatio, 1,

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Online Appendix for Measuring the Dark Matter in Asset Pricing Models

Online Appendix for Measuring the Dark Matter in Asset Pricing Models Olie Appedix for Measurig the Dark Matter i Asset Pricig Models Hui Che Wisto Wei Dou Leoid Koga April 15, 017 Cotets 1 Iformatio-Theoretic Iterpretatio for Model Fragility 1.1 Bayesia Aalysis with Limited-Iformatio

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

A note on a conjecture of Calderón

A note on a conjecture of Calderón A ote o a cojecture of Calderó Jiecheg CHEN & Xiagrog ZHU Dept of Math Xixi Campus), Zhejiag Uiversitry Abstract For f SR ) ad Ω L 1 S 1 ), S 1 Ωx )dx = 0, defie T Ω f)x) = lim ɛ 0+ x y ɛ Ωy/ y ) y fx

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi

Διαβάστε περισσότερα

Adaptive Covariance Estimation with model selection

Adaptive Covariance Estimation with model selection Adaptive Covariace Estimatio with model selectio Rolado Biscay, Hélèe Lescorel ad Jea-Michel Loubes arxiv:03007v [mathst Mar 0 Abstract We provide i this paper a fully adaptive pealized procedure to select

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators Higer Order Properties of Bootstrap ad Jackkife Bias Corrected Maximum Likeliood Estimators Jiyog Ha Brow Uiversity Guido Kuersteier MIT Marc 5, 2002 Witey Newey MIT Abstract Pfazagl ad Wefelmeyer (978)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα