ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ didefth.gr

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr"

Transcript

1 . ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ

2 Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας

3 ΠΡΟΛΟΓΟΣ Ο οδηγός αυτός απευθύνεται στους εκπαιδευτικούς που διδάσκουν το μάθημα των Μαθηματικών στις Α και Β τάξεις Ημερήσιου Γενικού Λυκείου. Το θέμα του οδηγού είναι οι γραπτές προαγωγικές εξετάσεις περιόδου Μαΐου Ιουνίου 2015 των τάξεων αυτών, οι ο- ποίες αποτελούν την τελική ετήσια γραπτή αξιολόγηση των μαθητών. Καθώς πλησιάζει η ημερομηνία λήξης των μαθημάτων, αρχίζει το στάδιο της εκπαιδευτικής διαδικασίας που αφορά τις επαναλήψεις, τις οδηγίες προς τους μαθητές ενόψει των γραπτών προαγωγικών εξετάσεων, τον καθορισμό της εξεταστέας ύλης και τη σύνταξη των θεμάτων των εξετάσεων. Η υλοποίηση του σταδίου αυτού, ιδιαίτερα όσο αφορά το μάθημα των Μαθηματικών, δεν είναι µια απλή, συνηθισμένη διαδικασία, αλλά ένα σοβαρό έργο με πολλές παραμέτρους. Για το σημαντικό αυτό έργο, θα θέλαμε να υπενθυμίσουμε τη σχετική νομοθεσία και να επισημάνουμε μερικά πράγματα, τα οποία πιστεύουμε ότι θα βοηθήσουν τους διδάσκοντες το μάθημα. Τέλος, με βάση τη νομοθεσία αλλά και τις επισημάνσεις μας, παραθέτουμε ορισμένα ενδεικτικά παραδείγματα θεμάτων, χρήσιμα για τις επαναλήψεις, αλλά και γενικότερα για την κατανόηση της φιλοσοφίας σύνταξής τους. Λαμία, 11 Μαΐου 2015 Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών

4 2

5 ΠΕΡΙΕΧΟΜΕΝΑ Καθορισμός της εξεταστέας ύλης. 5 Επισημάνσεις για τον καθορισμό της εξεταστέας ύλης. 6 Οδηγίες προς τους μαθητές. 6 Ενδεικτικές προτάσεις για την εξεταστέα ύλη. 7 Ενδεικτικές προτάσεις για την εξεταστέα ύλη στην Άλγεβρα Α τάξης Ημερ. ΓΕΛ. 7 Ενδεικτικές προτάσεις για την εξεταστέα ύλη στη Γεωμετρία Α τάξης Ημερ. ΓΕΛ. 8 Ενδεικτικές προτάσεις για την εξεταστέα ύλη στην Άλγεβρα Β τάξης Ημερ. ΓΕΛ. 9 Ενδεικτικές προτάσεις για την εξεταστέα ύλη στη Γεωμετρία Β τάξης Ημερ. ΓΕΛ. 9 ΣΕΛΙΔΑ Ενδεικτικές προτάσεις για την εξεταστέα ύλη στα Μαθηματικά Ομάδας Προσανατολισμού των Θετικών Σπουδών Β τάξης Ημερ. ΓΕΛ. 10 Σύνταξη των θεμάτων των γραπτών εξετάσεων στα Μαθηματικά ΓΕΛ. 11 Βασικά χαρακτηριστικά των θεμάτων. 12 Επισημάνσεις για τα θέματα θεωρίας. 13 Επισημάνσεις για τα θέματα ασκήσεων. 13 Τα σχήματα των θεμάτων. 13 Θέματα που πρέπει να αποφεύγονται. 13 Εξέταση μαθητών με αναπηρία ή ειδικές εκπαιδευτικές ανάγκες. 14 Ενδεικτικά θέματα εξετάσεων. 14 Ενδεικτικά θέματα εξετάσεων στην Άλγεβρα Α τάξης Ημερ. ΓΕΛ. 15 Ενδεικτικά θέματα εξετάσεων στη Γεωμετρία Α τάξης Ημερ. ΓΕΛ. 19 Ενδεικτικά θέματα εξετάσεων στην Άλγεβρα Β τάξης Ημερ. ΓΕΛ. 21 Ενδεικτικά θέματα εξετάσεων στη Γεωμετρία Β τάξης Ημερ. ΓΕΛ. 23 Ενδεικτικά θέματα εξετάσεων στα Μαθηματικά Ομάδας Προσανατολισμού των Θετικών Σπουδών Β τάξης Ημερ. ΓΕΛ. 25 Δημοσιοποίηση των θεμάτων των εξετάσεων. 27 3

6 4

7 Οδηγίες καθορισμού της εξεταστέας ύλης στα Μαθηματικά των Α και Β τάξεων Ημερήσιου Γενικού Λυκείου ενόψει των γραπτών προαγωγικών εξετάσεων περιόδου Μαΐου Ιουνίου 2015 Καθορισμός της εξεταστέας ύλης Για τον καθορισμό της εξεταστέας ύλης των μαθημάτων των Α και Β τάξεων Ημερήσιου Γενικού Λυκείου σχετική είναι η 40132/Δ2/ εγκύκλιος του Υ.ΠΟ.ΠΑΙ.Θ. Σύμφωνα με την εγκύκλιο αυτή, στα Ημερήσια Γενικά Λύκεια η εξεταστέα ύλη για όλα τα μαθήματα των Α και Β τάξεων δεν μπορεί να είναι λιγότερη από το μισό και περισσότερη από τα 2/3 της διδακτέας ύλης. Για το σχολικό έτος η διδακτέα ύλη για τα μαθηματικά στο Ημερήσιο Γενικό Λύκειο έχει καθοριστεί ως ακολούθως: Για την Α τάξη με την Υ.Α /Γ2/ Για την Β τάξη με την Υ.Α /Γ2/ Στο σημείο αυτό οφείλουμε να τονίσουμε ότι πρέπει να διδάσκεται όλη η διδακτέα ύλη που προβλέπεται. Η ολοκλήρωση της διδακτέας ύλης είναι εφικτή, αν τηρήσουμε τις οδηγίες διαχείρισης της ύλης για κάθε τάξη. Όπως προκύπτει και στην πράξη, αυτό ισχύει στην πλειονότητα των περιπτώσεων. Η εξεταστέα ύλη είναι η ίδια για όλα τα τμήματα της ίδιας τάξης του ίδιου σχολείου. Η επιλογή και ο ακριβής προσδιορισμός της γίνεται με εισήγηση των διδασκόντων και με την 5

8 έγκριση του Διευθυντή του Λυκείου και γνωστοποιείται στους μαθητές πέντε εργάσιμες η- μέρες πριν από τη λήξη των μαθημάτων. Η εξεταστέα ύλη καταγράφεται στα βιβλία διδασκόμενης ύλης των τμημάτων και υπογράφεται από τον διδάσκοντα και από τον Διευθυντή του Λυκείου. H εξεταστέα ύλη των μαθηματικών, όπως και αυτή που δεν είναι εξεταστέα, υπολογίζονται συνήθως σε τρέχουσες σελίδες του βιβλίου, που περιλαμβάνουν θεωρία, εφαρμογές, ασκήσεις και προβλήματα. Επισημάνσεις για τον καθορισμό της εξεταστέας ύλης. Ο θεσμός του ορισμού της εξεταστέας ύλης έως το πολύ τα 2/3 της διδακτέας ύλης, δεν αποσκοπεί µόνο στην ελάφρυνση των μαθητών, αλλά έχει στόχο να δώσει στο διδάσκοντα τη δυνατότητα να επισημάνει στους μαθητές τις περισσότερο σημαντικές ενότητες. Έτσι θα του δώσει τη δυνατότητα να ελέγξει την απόκτηση βασικών γνώσεων και δεξιοτήτων στα μαθηματικά, μέσα από τις ενότητες αυτές. Το αναλυτικό πρόγραμμα κάθε τάξης περιέχει τη διδακτέα ύλη. Η ύλη όμως αυτή, ως γνωστό, συνίσταται από πληθώρα γνώσεων και δεξιοτήτων που πρέπει ο μαθητής να αποκτήσει. Όμως εκ των πραγμάτων δεν μπορούν να ελεγχθούν όλες στις προαγωγικές εξετάσεις, αλλά και δεν έχουν όλες την ίδια βαρύτητα, είτε ως προαπαιτούμενες για τις επόμενες τάξεις είτε ή ως γνώση γενικότερα. Έτσι είναι αναγκαίο να γίνει κάποια επιλογή, ασφαλώς µε κάποια κριτήρια. Δύο είναι τα βασικά κριτήρια με τα οποία επιλέγουμε την εξεταστέα ύλη: Ποιες γνώσεις και δεξιότητες από την διδαχθείσα ύλη θα χρειαστούν περισσότερο οι μαθητές μας στη ζωή τους. Ποιες είναι οι βασικές γνώσεις και δεξιότητες από την διδαχθείσα ύλη που πρέπει να κατέχουν οι μαθητές μας για τις επόμενες τάξεις. Ο καθορισμός της εξεταστέας ύλης δεν αφορά μόνο τη δίωρη γραπτή εξέταση των μαθητών. Αφορά ίσως περισσότερο την οργάνωση της μελέτης τους, ενόψει της προετοιμασίας τους για τις εξετάσεις. Σ αυτό το σημείο θα πρέπει να είμαστε αρκετά προσεκτικοί, στο πώς ακριβώς θα κατευθύνουμε τη μελέτη τους, καθορίζοντας την εξεταστέα ύλη με βάση τα παραπάνω κριτήρια. Δεν είναι καλή πρακτική να αφαιρούνται ολόκληρα κεφάλαια με μόνο κριτήριο τον απαιτούμενο αριθμό σελίδων. Καλή πρακτική είναι να αφαιρούνται επιμέρους παράγραφοι από ορισμένα κεφάλαια με κριτήριο, το τι είναι λιγότερο σημαντικό ή έχει διδαχθεί σε άλλη τάξη και απλά εδώ παρουσιάζεται για λόγους επανάληψης ή συμπλήρωσης ή εισαγωγής στις νέες έννοιες. Οδηγίες προς τους μαθητές. Για την ύλη των μαθηματικών που δεν είναι εξεταστέα, είναι σκόπιμο να επισημανθεί στους μαθητές ότι δεν θα τεθούν θέματα θεωρίας αλλά ούτε και ασκήσεις που θα απαιτούν κατά κύριο λόγο γνώσεις και δεξιότητες από την ύλη αυτή. Είναι, όμως, υποχρεωμένοι να γνωρίζουν βασικές γνώσεις από την ύλη αυτή, που θα τις χρησιμοποιήσουν ενδεχομένως για τη λύση ασκήσεων και προβλημάτων ή για να αποδείξουν προτάσεις που είναι στην ε- ξεταστέα ύλη. Το ίδιο ισχύει και για την ύλη προηγουμένων τάξεων. Αυτό αποτελεί µια βασική αρχή της δομής των μαθηματικών και πρέπει να γίνεται σαφές στους μαθητές. Στις εξετάσεις δεν μπορούμε να θέσουμε ως θέμα µια εφαρμογή του σχολικού βιβλίου ούτε μέρος αυτής. Οι εφαρμογές δεν εξετάζονται με κανένα τύπο ερωτήσεων (ανοικτού τύπου, πολλαπλής επιλογής, σωστό λάθος, κτλ) ούτε ως θεωρία, ούτε ως ασκήσεις. Έχουν όμως τη δυνατότητα οι μαθητές να χρησιμοποιήσουν τα συμπεράσματα των εφαρμογών 6

9 και των παραδειγμάτων ως προτάσεις για τη λύση ασκήσεων ή προβλημάτων, όπως ακριβώς χρησιμοποιούν τα θεωρήματα, τις ιδιότητες και τους κανόνες της θεωρίας. Αυτό πρέπει να τους γίνει γνωστό με σαφήνεια. Σκόπιμο είναι δε να επισημανθούν οι ενδεχόμενες ε- φαρμογές που έχουν αυτό το πλεονέκτημα. Ενδεικτικές προτάσεις για την εξεταστέα ύλη. Στη συνέχεια παραθέτουμε κάποιες ενδεικτικές προτάσεις για την εξεταστέα ύλη. Οι προτάσεις αυτές γίνονται με την προϋπόθεση ότι έχουμε ολοκληρώσει όλη την ύλη που προβλέπεται, δηλαδή η διδαχθείσα ύλη είναι όση και η διδακτέα. Σε αντίθετη περίπτωση μπορούν να γίνουν οι σχετικές προσαρμογές, λιγοστεύοντας ανάλογα την εξεταστέα ύλη. Έχει γίνει προσπάθεια να συμπεριληφθούν οι περισσότερο σημαντικές ενότητες σε κάθε μάθημα της κάθε τάξης. Οι προτάσεις αυτές δεν είναι δεσμευτικές και οι διδάσκοντες έχουν τη δυνατότητα να κάνουν επιμέρους τροποποιήσεις. Σε περίπτωση που οι διδάσκοντες το μάθημα στην τάξη είναι περισσότεροι του ενός η συνεργασία για τον καθορισμό της εξεταστέας ύλης θα πρέπει να γίνεται με σύνεση και σε κλίμα αμοιβαίας κατανόησης. ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΗ ΠΡΟΤΑΣΗ 1.1 Δειγματικός Χώρος Ενδεχόμενα. ΚΕΦ. 1 ο 1.2 Έννοια της Πιθανότητας εκτός της υποπαραγράφου «Αξιωματικός Ορισμός Πιθανότητας». 2.2 Διάταξη Πραγματικών Αριθμών εκτός της απόδειξης της ιδιότητας 4. ΚΕΦ. 2 ο 2.3 Απόλυτη Τιμή Πραγματικού Αριθμού. 2.4 Ρίζες Πραγματικών Αριθμών εκτός των αποδείξεων των ιδιοτήτων 3 και 4. ΚΕΦ. 3 ο 3.1 Εξισώσεις 1 ου βαθμού. 3.3 Εξισώσεις 2 ου βαθμού. ΚΕΦ. 4 ο 4.1 Ανισώσεις 1 ου βαθμού. 4.2 Ανισώσεις 2 ου βαθμού. 6.1 Η Έννοια της Συνάρτησης. ΚΕΦ. 6 ο 6.2 Γραφική Παράσταση Συνάρτησης εκτός της υποπαραγράφου «Απόσταση σημείων». 6.3 Η Συνάρτηση: f(x) αx β εκτός της κλίσης ευθείας ως λόγος μεταβολής. 7

10 ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΗ ΠΡΟΤΑΣΗ ο Κριτήριο ισότητας τριγώνων εκτός της απόδειξης του θεωρήματος ο Κριτήριο ισότητας τριγώνων εκτός της απόδειξης του θεωρήματος ο Κριτήριο ισότητας τριγώνων εκτός της απόδειξης του θεωρήματος. ΚΕΦ. 3 ο 3.6 Κριτήρια ισότητας ορθογώνιων τριγώνων εκτός της απόδειξης των θεωρημάτων Ι και ΙΙ. 3.7 Κύκλος Μεσοκάθετος Διχοτόμος Τριγωνική ανισότητα εκτός της απόδειξης του θεωρήματος Κάθετες και πλάγιες εκτός της απόδειξης του θεωρήματος ΙΙ Σχετικές θέσεις ευθείας και κύκλου εκτός της απόδειξης του θεωρήματος Ι Εφαπτόμενα τμήματα. 4.6 Άθροισμα γωνιών τριγώνου. ΚΕΦ. 4 ο 4.7 Γωνίες με πλευρές κάθετες εκτός της απόδειξης του θεωρήματος και του πορίσματος. 4.8 Άθροισμα γωνιών κυρτού ν-γώνου εκτός της απόδειξης του πορίσματος. 5.2 Παραλληλόγραμμα. 5.3 Ορθογώνιο. 5.4 Ρόμβος. 5.5 Τετράγωνο. ΚΕΦ. 5 ο 5.6 Εφαρμογές στα τρίγωνα εκτός της απόδειξης του θεωρήματος ΙΙΙ. 5.7 Βαρύκεντρο τριγώνου εκτός της απόδειξης του θεωρήματος. 5.8 Το ορθόκεντρο τριγώνου χωρίς το πόρισμα. 5.9 Μια ιδιότητα του ορθογωνίου τριγώνου Τραπέζιο Ισοσκελές τραπέζιο. 6.2 Σχέση εγγεγραμμένης και αντίστοιχης επίκεντρης εκτός της απόδειξης του θεωρήματος. ΚΕΦ. 6 ο 6.3 Γωνία χορδής και εφαπτομένης εκτός της απόδειξης του θεωρήματος. 6.5 Το εγγεγραμμένο τετράπλευρο. 6.6 Το εγγράψιμο τετράπλευρο εκτός της απόδειξης του θεωρήματος. 8

11 ΚΕΦ. 1 ο 1.1 ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΗ ΠΡΟΤΑΣΗ Γραμμικά Συστήματα χωρίς τις αποδείξεις των συμπερασμάτων της υποπαραγράφου «Λύση - διερεύνηση γραμμικού συστήματος 2x Μη Γραμμικά Συστήματα. ΚΕΦ. 2 ο 2.1 Μονοτονία Ακρότατα Συμμετρίες Συνάρτησης ΚΕΦ. 3 ο 3.4 Οι Τριγωνομετρικές Συναρτήσεις. 3.5 Βασικές Τριγωνομετρικές Εξισώσεις. ΚΕΦ. 4 ο 4.2 Διαίρεση Πολυωνύμων. 4.3 Πολυωνυμικές Εξισώσεις και Ανισώσεις χωρίς την υποπαράγραφο «Προσδιορισμός ρίζας με προσέγγιση». 4.4 Εξισώσεις και Ανισώσεις που ανάγονται σε Πολυωνυμικές. ΚΕΦ. 5 ο 5.2 Λογάριθμοι χωρίς την απόδειξη της αλλαγής βάσης. 5.1 Εκθετική Συνάρτηση. 5.3 Λογαριθμική Συνάρτηση με βάση μόνο το 10 και το e. ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΗ ΠΡΟΤΑΣΗ 9.2 Το πυθαγόρειο θεώρημα. ΚΕΦ. 9 ο ΚΕΦ. 10 ο ΚΕΦ. 11 ο 9.4 Γενίκευση του πυθαγορείου θεωρήματος χωρίς την εφαρμογή ΙΙ. 9.5 Θεωρήματα διαμέσων. 9.7 Τέμνουσες κύκλου Εμβαδόν ευθυγράμμου σχήματος Ισοδύναμα ευθύγραμμα σχήματα Εμβαδόν βασικών ευθυγράμμων σχημάτων Άλλοι τύποι για το εμβαδόν τριγώνου χωρίς την απόδειξη των τύπων Ι και ΙΙΙ Λόγος εμβαδών όμοιων τριγώνων πολυγώνων χωρίς την απόδειξη του θεωρήματος ΙΙ Ορισμός κανονικού πολυγώνου Ιδιότητες και στοιχεία κανονικών πολυγώνων χωρίς τις αποδείξεις των θεωρημάτων και του πορίσματος. Εγγραφή βασικών κανονικών πολυγώνων σε κύκλο και στοιχεία τους χωρίς τις εφαρμογές 2, Προσέγγιση του μήκους του κύκλου με κανονικά πολύγωνα Μήκος τόξου Προσέγγιση του εμβαδού του κύκλου με κανονικά πολύγωνα Εμβαδόν κυκλικού τομέα και κυκλικού τμήματος. 9

12 ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΗ ΠΡΟΤΑΣΗ ΚΕΦ. 1 ο Συντεταγμένες στο Επίπεδο χωρίς την απόδειξη που περιλαμβάνεται στην υ- ποπαράγραφο «Συντεταγμένες Διανύσματος», χωρίς την εφαρμογή 2 στη σελίδα 35 και χωρίς την απόδειξη που περιλαμβάνεται στην υποπαράγραφο «Συνθήκη Παραλληλίας Διανυσμάτων». Εσωτερικό Γινόμενο Διανυσμάτων χωρίς την απόδειξη του τύπου της αναλυτικής έκφρασης Εσωτερικού Γινομένου. 2.1 Εξίσωση Ευθείας. ΚΕΦ. 2 ο 2.2 Γενική Μορφή Εξίσωσης Ευθείας χωρίς την εφαρμογή Εμβαδόν Τριγώνου χωρίς τις αποδείξεις των τύπων της απόστασης σημείου από ευθεία, του εμβαδού τριγώνου και της εφαρμογής 1 στη σελίδα Ο Κύκλος χωρίς την υποπαράγραφο «Παραμετρικές Εξισώσεις Κύκλου». ΚΕΦ. 3 ο Η Παραβολή χωρίς την απόδειξη της εξίσωσης της παραβολής, την απόδειξη του τύπου της εφαπτομένης και την εφαρμογή 1 στη σελίδα 96. Η Έλλειψη χωρίς την απόδειξη της εξίσωσης της έλλειψης, την υποπαράγραφο «Παραμετρικές Εξισώσεις Έλλειψης» και χωρίς τις εφαρμογές αυτής της παραγράφου. 10

13 Οδηγίες σύνταξης των θεμάτων των γραπτών προαγωγικών εξετάσεων στα Μαθηματικά των Α και Β τάξεων Ημερήσιου Γενικού Λυκείου περιόδου Μαΐου Ιουνίου Σύνταξη των θεμάτων των γραπτών εξετάσεων στα Μαθηματικά Γενικού Λυκείου. Για τη διατύπωση των θεμάτων των γραπτών προαγωγικών εξετάσεων των Α και Β τάξεων Ημερήσιου Γενικού Λυκείου ισχύει το Π.. 68/2014 και η /Δ2/ εγκύκλιος του Υ.ΠΟ.ΠΑΙ.Θ. Όσον αφορά την εξέταση των μαθητών µε αναπηρία και ειδικές εκπαιδευτικές ανάγκες ισχύει η Υπουργική απόφαση Φ.253/155439/Β6/ Σύμφωνα με τα παραπάνω στους μαθητές δίνονται τέσσερα (4) θέματα από την εξεταστέα ύλη, με τα οποία ελέγχεται η γνώση εννοιών και ορολογίας, η δυνατότητα αναπαραγωγής γνωστικών στοιχείων, η ικανότητα εκτέλεσης γνωστών αλγορίθμων, η ικανότητα του μαθητή να αναλύει, να συνθέτει και να επεξεργάζεται δημιουργικά ένα δεδομένο υλικό, καθώς και η ικανότητα επιλογής και εφαρμογής κατάλληλης μεθόδου. Τα τέσσερα θέματα που δίνονται στους μαθητές διαρθρώνονται ως εξής: α) Το πρώτο θέμα αποτελείται από δύο μέρη. Το πρώτο μέρος περιέχει πέντε (05) ερωτήσεις αντικειμενικού τύπου (πολλαπλής επιλογής, Σωστού - Λάθους, αντιστοίχισης) με τις οποίες ελέγχεται η γνώση και η κατανόηση των βασικών εννοιών και των σπουδαιότερων συμπερασμάτων της θεωρίας σε όσο το δυνατόν ευρύτερη έκταση της εξεταστέας ύλης. Στο δεύτερο μέρος ζητείται η απόδειξη μίας απλής πρότασης (ιδιότητας, λήμματος, θεωρήματος ή πορίσματος), που είναι αποδεδειγμένη στο σχολικό εγχειρίδιο. 11

14 β) Το δεύτερο θέμα αποτελείται από μία άσκηση που είναι εφαρμογή ορισμών, αλγορίθμων ή προτάσεων (ιδιοτήτων, θεωρημάτων, πορισμάτων). γ) Το τρίτο θέμα αποτελείται από μία άσκηση που απαιτεί από τον μαθητή ικανότητα συνδυασμού και σύνθεσης εννοιών και αποδεικτικών ή υπολογιστικών διαδικασιών. δ) Το τέταρτο θέμα αποτελείται από μία άσκηση ή ένα πρόβλημα που η λύση του απαιτεί από τον μαθητή ικανότητες συνδυασμού και σύνθεσης γνώσεων, αλλά και την ανάληψη πρωτοβουλιών για την ανάπτυξη στρατηγικών επίλυσής του. Το δεύτερο, τρίτο και τέταρτο θέμα μπορούν να αναλύονται σε επιμέρους ερωτήματα που διευκολύνουν τον μαθητή στη λύση. Η βαθμολογία κατανέμεται ανά εικοσιπέντε (25) μονάδες στο καθένα από τα τέσσερα (4) θέματα. Ειδικότερα, στο πρώτο θέμα το πρώτο μέρος βαθμολογείται με δέκα (10) μονάδες, ενώ το δεύτερο μέρος βαθμολογείται με δεκαπέντε (15) μονάδες. Στο δεύτερο, τρίτο και τέταρτο θέμα η κατανομή της βαθμολογίας στα επιμέρους ερωτήματα μπορεί να διαφοροποιείται ανάλογα με το βαθμό δυσκολίας τους και καθορίζεται στη διατύπωση των θεμάτων. Σε όλα τα τμήματα της ίδιας τάξης, του ίδιου σχολείου, δίνονται κοινά θέματα από τον καθηγητή ή τους καθηγητές που διδάσκουν το μάθημα, σε συνεργασία µε το Διευθυντή του σχολείου. Κατ εξαίρεση είναι δυνατόν να δοθούν χωριστά θέματα, εάν συντρέχει αποχρών λόγος, ο οποίος αναγράφεται σε σημείωση στο έγγραφο που περιέχει τα θέματα και παράλληλα συντάσσεται και σχετική πράξη στο βιβλίο πράξεων του Διευθυντή. Το έγγραφο με τα θέματα υπογράφεται από τους καθηγητές που τα εισηγούνται, όπως επίσης και από τον Διευθυντή, και κατατίθενται στο αρχείο του σχολείου. Οι μαθητές υποχρεούνται να διαπραγματευτούν όλα τα θέματα. Η διάρκεια της εξέτασης είναι δύο (2) ώρες. Η βαθμολογία γίνεται στην κλίμακα Στο τέλος ο βαθμός ανάγεται στην κλίμακα 1-20 και γράφεται, όπου απαιτείται, ως δεκαδικός με προσέγγιση δεκάτου. Βασικά χαρακτηριστικά των θεμάτων. Τα θέματα των εξετάσεων πρέπει: Να είναι απλά στη δομή τους και επιστημονικά έγκυρα. Να είναι σύμφωνα µε τους στόχους της διδασκαλίας µας και το νοητικό επίπεδο των μαθητών της τάξης µας. Να είναι κλιμακούμενης δυσκολίας. Τα εύκολα ερωτήματα να προηγούνται και τα πιο δύσκολα να έπονται. Να ελέγχουν βασικές γνώσεις και δεξιότητες της εξεταστέας ύλης και να καλύπτουν όσο το δυνατόν περισσότερη εξεταστέα ύλη. Να μπορούν να απαντηθούν πλήρως εντός του χρονικού διαστήματος των δύο ωρών. Να είναι διατυπωμένα σε γλώσσα απλή, κατανοητή στους μαθητές, με σαφήνεια και α- κρίβεια. Δεν είναι σπάνιο το φαινόμενο πολλοί μαθητές να απαντούν σε άλλο θέμα από αυτό που τους ζητείται, επειδή δεν κατανόησαν καλά το ζητούμενο και όχι επειδή δεν γνώριζαν την απάντηση. Η ορολογία και η διατύπωση των θεμάτων να είναι ανάλογη με εκείνη του σχολικού βιβλίου. Να μη χρησιμοποιούνται συμβολισμοί που δεν υπάρχουν στο σχολικό βιβλίο. 12

15 Επισημάνσεις για τα θέματα θεωρίας. Οι απαντήσεις των θεμάτων θεωρίας πρέπει να προκύπτουν άμεσα από τη θεωρία που υπάρχει στα σχολικά βιβλία. Δεν πρέπει να προκύπτουν από τις εφαρμογές, ούτε να προκύπτουν εφαρμόζοντας τη θεωρία σε κάποια δεδομένα, γιατί τότε τα θέματα είναι εφαρμογές της θεωρίας και επομένως ασκήσεις. Επίσης η απάντηση δεν μπορεί να προέρχεται από ένα σύνθετο συλλογισμό με δεδομένη τη θεωρία, διότι τότε είναι ερωτήσεις κρίσεως. Επισημάνσεις για τα θέματα ασκήσεων. Το δεύτερο θέμα πρέπει να είναι απλό στη δομή και η λύση του να προκύπτει άμεσα από την εφαρμογή ορισμών, αλγορίθμων ή προτάσεων της θεωρίας. Το τρίτο θέμα που απαιτεί από το μαθητή ικανότητα συνδυασμού και σύνθεσης εννοιών αποδεικτικών ή υπολογιστικών διαδικασιών, πρέπει να αναλύεται σε επιμέρους ερωτήματα κλιμακούμενης δυσκολίας ώστε να έχουν τη δυνατότητα να απαντήσουν, τουλάχιστον στα πρώτα ερωτήματα, και οι αδύνατοι μαθητές. Το τέταρτο θέμα που λύση του απαιτεί από τον μαθητή ικανότητες συνδυασμού και σύνθεσης γνώσεων, αλλά και την ανάληψη πρωτοβουλιών για την ανάπτυξη στρατηγικών επίλυσής του, πρέπει να είναι περισσότερο σύνθετο και να αναλύεται σε επιμέρους ερωτήματα, ώστε να κλιμακωθεί η δυσκολία και να διακριθούν οι άριστοι μαθητές. Είναι αυτονόητο ότι κάθε θέμα αποτελείται από μία άσκηση (ή πρόβλημα) που αναλύεται σε βήματα και όχι από δύο ή περισσότερες ασκήσεις που δεν σχετίζονται μεταξύ τους. Όταν πρόκειται να δώσουμε για θέμα μία άσκηση ή ένα πρόβλημα που έχει αναλυθεί σε επιμέρους ερωτήματα, τα οποία βοηθούν το μαθητή στη λύση των επομένων ερωτημάτων, πρέπει οι μαθητές να είναι ενήμεροι του τρόπου αντιμετώπισης τέτοιων θεµάτων. Πολλοί μαθητές έχουν την τάση τα επί μέρους ερωτήματα ενός τέτοιου θέματος να τα αντιμετωπίζουν ανεξάρτητα από τα προηγούμενα. Γι αυτό καλό είναι να έχουμε διδάξει παρόμοια στην τάξη και να έχουμε επιμείνει στο σχετικό τρόπο λύσης τους. Οι τελευταίες διδακτικές ώρες του έτους καλό είναι να διατεθούν σε επαναλήψεις στην εξεταστέα ύλη και σε λύσεις ασκήσεων και προβλημάτων οπότε μεταξύ των άλλων θα επισημανθούν και τα παραπάνω σχετικά. Τα σχήματα των θεμάτων. Η κατασκευή ενός σχήματος, με βάση τα δεδομένα, ίσως δυσκολέψει πολλούς μαθητές και είναι καλύτερα να δοθεί. Ενδεχομένως ένα εύκολο στην κατασκευή του σχήμα να μην δίνεται και ο σχεδιασμός του αυτός καθαυτός να αξιολογείται. Αυτό θα το κρίνει ο διδάσκων που θέτει τα θέματα ανάλογα με τους στόχους που έχει θέσει. Αν όμως δοθεί κάποιο σχήμα, τότε αυτό να είναι στη φωτοτυπία των θεμάτων. Δεν είναι καλή πρακτική να δίνονται τα θέματα σε φωτοτυπία χωρίς τα σχήματα και αυτά στη συνέχεια να σχεδιάζονται στον πίνακα. Σε περίπτωση αναβαθμολόγησης για παράδειγμα, ο πίνακας προφανώς δεν θα συνοδεύει τη φωτοτυπία των θεμάτων. Γενικότερα ό,τι δεδομένα έχουμε να δώσουμε και όποιες ερωτήσεις έχουμε να θέσουμε, να είναι όλα στη φωτοτυπία των θεμάτων. Θέματα που πρέπει να αποφεύγονται. Να αποφεύγεται η επιλογή αυτούσιων ασκήσεων ή προβλημάτων από εξωσχολικά βοηθήματα, ενώ αντίθετα μπορεί να είναι παραπλήσια µε αυτά του σχολικού βιβλίου. 13

16 Να αποφεύγονται τα ίδια ακριβώς θέματα ασκήσεων του προηγουμένου έτους ή και παρελθόντων ετών. Για το λόγο αυτό, πριν ξεκινήσουμε τη σύνταξη των θεμάτων, καλό είναι να ρίξουμε μια ματιά στο αρχείο θεμάτων του σχολείου. Να αποφεύγονται οι ασάφειες, όσον αφορά τη δομή των θεμάτων. Να είναι δηλαδή άρτια δομημένα. Για παράδειγμα, μια «εσωτερική» υπόθεση σε ένα ερώτημα όπως και το σχετικό συμπέρασμα που προκύπτει από αυτή, δεν αποτελούν δεδομένα για τα επόμενα ερωτήματα. Μια τέτοια πρακτική θα παραπλανήσει τους μαθητές και μάλιστα τους περισσότερο προσεκτικούς ή θα οδηγήσει σε δικαιολογημένες απορίες. Αυτό θα μας αναγκάσει να παρέμβουμε διορθωτικά εκ των υστέρων, πράγμα το οποίο μειώνει το κύρος μας και την αξιοπιστία μας. Αν έχουμε κάτι τέτοιο στο σχεδιασμό μας, θα πρέπει η «εσωτερική» υπόθεση του παραπάνω ερωτήματος να είναι στο «σενάριο» της άσκησης. Έτσι η υπόθεση αυτή, αλλά και τα συμπεράσματα που προέκυψαν με βάση αυτή, αποτελούν δεδομένα για τη συνέχεια. Στη διάρκεια του σχολικού έτους, ενδεχομένως σε κάποια τάξη να διδάξαμε κάτι περισσότερο από τα προβλεπόμενα για την τάξη αυτή. Αυτό μπορεί να το πράξαμε, διότι κάποιοι ικανοί μαθητές παρατήρησαν κάτι που μπορεί να γενικευτεί ή είχαν απορίες και κρίναμε ότι ήταν σκόπιμο να πούμε κάτι περισσότερο, αφού ήταν σε θέση να το αφομοιώσουν, χωρίς όμως να πλατειάσουμε. Σε καμία περίπτωση, όμως, κάτι τέτοιο δεν τίθεται στα θέματα των εξετάσεων. Ο μέσος μαθητής δεν είναι υποχρεωμένος να γνωρίζει κάτι που προβλέπεται για την επόμενη τάξη και εμείς απλά το αναφέραμε για τις ανάγκες της διδασκαλίας σε κάποια χρονική στιγμή. Εξέταση μαθητών με αναπηρία ή με ειδικές εκπαιδευτικές ανάγκες. Για την εξέταση των μαθητών µε αναπηρία και ειδικές εκπαιδευτικές ανάγκες θα πρέπει να συμβουλευτούμε την η απόφαση Φ.253/155439/Β6/ Στην απόφαση αυτή αλλά και στις παραπομπές της, αναφέρονται οι περιπτώσεις που οι μαθητές εξετάζονται προφορικά (δυσλεξία, αναπηρία άνω άκρων κτλ) και οι περιπτώσεις που εξετάζονται γραπτά (βαρηκοΐα κτλ), όπως και οι προϋποθέσεις για κάτι τέτοιο. Κατά τις προαγωγικές εξετάσεις, οι μαθητές των παραπάνω περιπτώσεων εξετάζονται ταυτόχρονα με τους μαθητές της τάξης στην οποία ανήκουν και στα ίδια θέματα. Όσοι εξετάζονται προφορικά, εξετάζονται ενώπιον επιτροπής, την οποία συγκροτεί για το σκοπό αυτό ο Διευθυντής του Λυκείου. Α- ποτελείται από τον ίδιο ή τον Υποδιευθυντή ως πρόεδρο, και από δύο καθηγητές της ίδιας ή συναφούς με τα εξεταζόμενα μαθήματα ειδικότητας, ως μέλη. Ο μέσος όρος των βαθμών των δύο καθηγητών είναι ο βαθμός του μαθητή στο εξεταζόμενο μάθημα. Ενδεικτικά θέματα εξετάσεων. Στη συνέχεια παρουσιάζουμε ορισμένα ενδεικτικά θέματα εξετάσεων. Ο λόγος της παρουσίασης είναι να πάρουμε ορισμένες ιδέες, περισσότερο όσο αφορά τη φιλοσοφία των θεμάτων, και όχι να τα θέσουμε αυτούσια στις εξετάσεις του σχολείου μας. Σκόπιμο είναι τα θέματα να γραφούν με έναν επεξεργαστή κειμένου σε ηλεκτρονικό υπολογιστή, αλλά αν παρόλα αυτά δοθούν χειρόγραφα, να είναι ευανάγνωστα. Οι μαθητές, και μέσα από αυτούς οι γονείς τους, αλλά και η κοινωνία γενικότερα, μας κρίνουν καθημερινά. Ας έχουμε πάντα στο νου μας ότι κατά τη διάρκεια των εξετάσεων κρινόμαστε, και ότι µέσω της αξιολόγησης των μαθητών μας, αξιολογείται εν μέρει και το δικό µας εκπαιδευτικό έργο. 14

17 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧ ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΧΧΧΧΧΧΧΧΧ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΧΧΧΧΧΧΧ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΤΑΞΗΣ ΗΜΕΡ. ΓΕΛ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΛ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΧΧΧΧΧΧΧ ΧΧ ΜΑΪΟΥ 2015 ΘΕΜΑ Α Α1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Αν γ 0, τότε: α β α γ β γ β) Ισχύει α β α β για οποιουδήποτε πραγματικούς αριθμούς α και β. 2 γ) Αν η εξίσωση αx βx γ 0, α 0 έχει πραγματικές ρίζες x 1, x 2, τότε το άθροισμα S x1 x2 των ριζών της είναι S β α 2 δ) Το τριώνυμο αx βx γ 0, α 0, γίνεται ετερόσημο του α, μόνο όταν είναι Δ 0 και για τις τιμές του x, που βρίσκονται μεταξύ των ριζών. ε) Οι ευθείες της μορφής y αx β, όπου α σταθερό και β μεταβλητό, είναι όλες παράλληλες μεταξύ τους. (M. 10) Α2) Αν α,β 0 να αποδείξετε ότι ν ν ν α β α β (M. 15) ΘΕΜΑ Β Ένα αγόρι και ένα κορίτσι από τους μαθητές της τάξης θα είναι οι παρουσιαστές μιας ομαδικής εργασίας. Δήλωσαν επιθυμία 3 αγόρια: ο Κώστας (Κ), ο Λάμπρος (Λ) και ο Νίκος (Ν) και 2 κορίτσια: η Αμαλία (Α) και η Βασιλική (Β). Από αυτούς επιλέγονται τυχαία ένα αγόρι και ένα κορίτσι για την παρουσίαση. B1) Να βρείτε το δειγματικό χώρο Ω του πειράματος. (Μ. 7) B2) Να γράψετε σε μορφή συνόλων τα ενδεχόμενα: Α: Επιλέχθηκε η Βασιλική Β: Επιλέχθηκαν ο Κώστας και ο Νίκος Γ: Δεν επιλέχθηκαν ούτε ο Λάμπρος ούτε η Αμαλία (M. 9) B3) Να υπολογίσετε τις πιθανότητες Ρ(Α), Ρ(Β) και Ρ(Γ) των παραπάνω ενδεχομένων. (M. 9) 15

18 ΘΕΜΑ Γ Σε έναν άξονα με αρχή Ο τα σημεία Α, Β και Μ αντιστοιχούν στους πραγματικούς αριθμούς 2, 4 και x αντίστοιχα. Γ1) Να διατυπώσετε τη γεωμετρική ερμηνεία των παραστάσεων x 2 και x 4 (Μ. 8) Γ2) Αν ισχύει x 2 x 4, τότε ποια γεωμετρική ιδιότητα του σημείου Μ αναγνωρίζετε; Να αιτιολογήσετε την απάντησή σας. (Μ. 8) Γ3) Αν ισχύει x 2 x 4, τότε με βάση το προηγούμενο ερώτημα να προσδιορίσετε τις θέσεις του σημείου Μ στον άξονα και να βρείτε τις τιμές του x. Στη συνέχεια να επιβεβαιώσετε με αλγεβρικό τρόπο την απάντησή σας. (M. 9) ΘΕΜΑ Δ Δίνονται οι ευθείες (ε) της μορφής ε: y λx 4 2λ με λ. Δ1) Να αποδείξετε ότι οι ευθείες (ε) διέρχονται από το σταθερό σημείο Α(2,4) για κάθε τιμή του λ. (M. 8) Δ2) Να βρείτε τις τιμές του λ για τις οποίες προκύπτουν οι ευθείες ε 1, ε 2, ε 3 της παραπάνω μορφής όπως αυτές φαίνονται στο διπλανό σχήμα. (M. 9) Δ3) Να βρείτε τη μορφή των ευθειών (ζ) οι οποίες διέρχονται από το σταθερό σημείο Β(0,2) του άξονα y y και είναι παράλληλες ή συμπίπτουν με τις ευθείες (ε) για κάθε τιμή του λ. Για ποια τιμή του λ οι παραπάνω ευθείες συμπίπτουν; (Μ. 8) Να απαντήσετε στη κόλλα σας σε όλα τα θέματα. Διάρκεια εξέτασης δύο (2) ώρες. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΧΧΧΧΧΧΧΧ, ΧΧ Μαΐου 2015 Ο Διευθυντής Οι Εισηγητές 16

19 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧ ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΧΧΧΧΧΧΧΧΧ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΧΧΧΧΧΧΧ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΤΑΞΗΣ ΗΜΕΡ. ΓΕΛ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΛ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΧΧΧΧΧΧΧ ΧΧ ΜΑΪΟΥ 2015 ΘΕΜΑ Α Α1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Ισχύει η ισοδυναμία: αριθμούς α και β. 2 2 α β 0 α 0 και β 0 για οποιουδήποτε πραγματικούς β) Δύο ενδεχόμενα Α και Β λέγονται ασυμβίβαστα, όταν Α Β γ) Αν α 0, μ ακέραιος και ν θετικός ακέραιος, τότε ορίζουμε: δ) Αν η εξίσωση 2 αx βx γ 0, α 0, έχει πραγματικές ρίζες x 1, x 2, τότε το γινόμενο Ρ x1 x2 των ριζών της είναι β Ρ α ε) Οι ευθείες της μορφής y αx β, όπου β σταθερό και α μεταβλητό, διέρχονται ό- λες από το σημείο β του άξονα y y. (M. 10) Α2) Να αποδείξετε ότι α β α β για κάθε α,β. (M. 15) ΘΕΜΑ Β Μια συνάρτηση f ορίζεται ως εξής: «Σκέψου έναν φυσικό αριθμό, αφαίρεσε από το 1 τον αριθμό αυτό, πολλαπλασίασε τη διαφορά με το 4 και στο γινόμενο πρόσθεσε το τετράγωνο του αρχικού αριθμού». B1) Να βρείτε τον τύπο f(x) της συνάρτησης f και στη συνέχεια να τον εκφράσετε σε μορφή τέλειου τετραγώνου. (Μ. 9) B2) Να βρείτε τις τιμές f(0) και f(102) (Μ. 8) B3) Να βρείτε τους φυσικούς αριθμούς x για τους οποίους ισχύει f(x) 900 (Μ. 8) α μ ν μ α ν 17

20 ΘΕΜΑ Γ Στο διπλανό σχήμα δίνονται οι γραφικές παραστάσεις δύο συναρτήσεων f και g, που είναι ορισμένες στο. Γ1) Να λύσετε γραφικά την εξίσωση f(x) 3 Μ. 8) Γ2) Να λύσετε γραφικά την ανίσωση f(x) g(x) (M. 8) Γ3) Αν οι τύποι των συναρτήσεων f και g που φαίνονται στο διπλανό 2 x 2x 3 σχήμα είναι f(x) και 4 2 g(x) x 7x 7, να επαληθεύεστε αλγεβρικά τα συμπεράσματα των δύο προηγουμένων ερωτημάτων. (Μ. 9) ΘΕΜΑ Δ Σε ένα λούνα πάρκ υπάρχει ο τροχός της τύχης που έχει έξι ίσους κυκλικούς τομείς. Οι κυκλικοί τομείς είναι αριθμημένοι στη σειρά από το 1 έως το 6 και ο τροχός είναι αμερόληπτος. Η συμμετοχή το παιχνίδι είναι 2 για κάθε γύρο του τροχού. Αν σε μια προσπάθεια έρθει περιττός αριθμός τότε ο παίκτης χάνει, αν έρθει 2 ή 4 τότε εισπράττει 3 ενώ αν έρθει 6 τότε εισπράττει 4. Δ1) Να γράψετε σε μορφή συνόλου με αναγραφή των στοιχείων το δειγματικό χώρο Ω του πειράματος και τα ενδεχόμενα: Α: σε μια προσπάθεια ο παίκτης χάνει Β: σε μια προσπάθεια ο παίκτης εισπράττει 3 Γ: σε μια προσπάθεια ο παίκτης εισπράττει 4 (Μ. 8) Δ2) Να βρείτε τις πιθανότητες Ρ(Α), Ρ(Β) και Ρ(Γ) των παραπάνω ενδεχομένων. (Μ. 9) Δ3) Να βρείτε πόσα χρήματα αναμένεται να εισπράξει ένας παίκτης μετά από τη συμμετοχή του σε 60 προσπάθειες του τροχού της τύχης. Με βάση το παραπάνω συμπέρασμα να εκτιμήσετε αν το παιχνίδι ευνοεί τον παίχτη ή τον ιδιοκτήτη του λούνα πάρκ. (Μ. 8) Να απαντήσετε στη κόλλα σας σε όλα τα θέματα. Διάρκεια εξέτασης δύο (2) ώρες. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΧΧΧΧΧΧΧΧ, ΧΧ Μαΐου 2015 Ο Διευθυντής Οι Εισηγητές 18

21 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧ ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΧΧΧΧΧΧΧΧΧ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΧΧΧΧΧΧΧ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗΣ ΗΜΕΡ. ΓΕΛ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΛ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΧΧΧΧΧΧΧ ΧΧ ΜΑΪΟΥ 2015 ΘΕΜΑ Α Α1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Δυο τρίγωνα που έχουν τις γωνίες τους ίσες μια προς μια είναι ίσα. β) Το άθροισμα των εξωτερικών γωνιών κυρτού ν-γώνου είναι 4 ορθές. γ) Οι διαγώνιοι του ρόμβου είναι κάθετες. δ) Σε ένα κύκλο κάθε εγγεγραμμένη γωνία του ισούται με την επίκεντρη γωνία που βαίνει στο ίδιο τόξο. ε) Κάθε τετράπλευρο που είναι εγγεγραμμένο σε κύκλο έχει τις απέναντι γωνίες του παραπληρωματικές. (Μ. 10) Α2) Να αποδείξετε ότι οι διαγώνιοι του ορθογωνίου είναι ίσες. (Μ. 15) ΘΕΜΑ Β Δίνεται ισοσκελές τρίγωνο ΑΒΓ με AB AΓ και Μ το μέσο της ΒΓ. Στις πλευρές ΑΒ και ΑΓ παίρνουμε δύο σημεία Δ και Ε αντίστοιχα έτσι ώστε ΑΔ ΑΕ. Να αποδείξετε ότι: Β1) ΒΔ ΓΕ (Μ. 8) Β2) Το τρίγωνο ΜΔΕ είναι ισοσκελές. (Μ. 9) Β3) Το τετράπλευρο ΒΔΕΓ είναι ισοσκελές τραπέζιο. (Μ. 8) 19

22 ΘΕΜΑ Γ Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Ημικύκλιο με διάμετρο την πλευρά ΒΓ τέμνει τις πλευρές ΑΒ και ΑΓ του τριγώνου στα σημεία Δ και Ε αντίστοιχα. Αν οι ΒΕ και ΓΔ τέμνονται στο Ζ να αποδείξετε ότι: ο Γ1) ΒΕΓ ˆ ΒΔΓ ˆ 90 (Μ. 9) Γ2) ΒΓ ΕΔ (Μ. 8) 2 Γ3) Το τετράπλευρο ΑΔΖΕ είναι εγγράψιμο. (Μ. 8) ΘΕΜΑ Δ Σε κύκλο (Ο,ρ) φέρνουμε τη διάμετρο ΑΒ και μια ο χορδή ΑΓ έτσι ώστε ΒΑΓ ˆ 30. Η εφαπτομένη του κύκλου στο Γ τέμνει την προέκταση της ΑΒ στο Δ. Να αποδείξετε ότι: Δ1) ΒΓΔ ˆ 30 ο (Μ. 9) Δ2) Το τρίγωνο ΑΓΔ είναι ισοσκελές. (Μ. 8) Δ3) Ο κύκλος με διάμετρο ΓΔ διέρχεται από το μέσο του ΟΒ. (Μ. 8) Να απαντήσετε στη κόλλα σας σε όλα τα θέματα. Διάρκεια εξέτασης δύο (2) ώρες. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΧΧΧΧΧΧΧΧ, ΧΧ Μαΐου 2015 Ο Διευθυντής Οι Εισηγητές 20

23 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧ ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΧΧΧΧΧΧΧΧΧ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΧΧΧΧΧΧΧ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΤΑΞΗΣ ΗΜΕΡ. ΓΕΛ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΛ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΧΧΧΧΧΧΧ ΧΧ ΜΑΪΟΥ 2015 ΘΕΜΑ Α Α1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Η συνάρτηση εφαπτομένη είναι περιοδική με περίοδο π. β) Αν η πολυωνυμική εξίσωση ν ν 1 ν ν α x α x α x α 0 με ακέραιους συντελεστές έχει ρίζα τον ακέραιο ρ 0, τότε ο ρ είναι διαιρέτης του όρου α ν γ) Η συνάρτηση f(x) x α με 0 α 1 είναι γνήσια αύξουσα στο. δ) Αν α 0 με α 1, τότε για οποιαδήποτε θ 1,θ2 0 ισχύει logα θ1 logα θ2 log α(θ1 θ 2) x ε) Για κάθε θ 0 ισχύει η ισοδυναμία lnθ x e θ (Μ. 10) Α2) Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το x ρ είναι ΘΕΜΑ Β ίσο με την τιμή του πολυωνύμου για x Δίνεται το σύστημα x ημθ y συνθ 0 x συνθ y ημθ 1 ρ, δηλαδή υ Ρ(ρ). (Μ. 15) όπου θ. Β1) Να αποδείξετε ότι το σύστημα έχει μοναδική λύση για κάθε θ. (Μ. 9) Β2) Να βρείτε τη μοναδική λύση x 0,y 0 του συστήματος συναρτήσει του θ. (Μ. 9) Β3) Να βρείτε τις τιμές του θ ώστε για την παραπάνω μοναδική λύση x 0,y 0 του συστήματος να ισχύει x0 y0 (Μ. 7) 21

24 ΘΕΜΑ Γ Δίνετε το πολυώνυμο P(x) x x α x 2α 1 με α. Αν το υπόλοιπο της διαίρεσης του πολυωνύμου Ρ(x) με το x 1 είναι 0 τότε: Γ1) Να αποδείξετε ότι α 1 (Μ. 9) Γ2) Να λύσετε την εξίσωση Ρ(x) 0 (Μ. 9) Γ3) Να βρείτε τα διαστήματα του x στα οποία η γραφική παράσταση της πολυωνυμικής συνάρτησης Ρ(x) βρίσκεται κάτω από τον άξονα x'x. (Μ. 7) ΘΕΜΑ Δ lnx 1 Δίνεται η συνάρτηση f(x) lnx 1 Δ1) Να βρείτε το πεδίο ορισμού Α της συνάρτησης f και το σημείο τομής K της γραφικής παράστασης της f με τον άξονα x'x. (Μ. 9) Δ2) Να λύσετε την εξίσωση 1 f(x) f x για κάθε x 0 με x e και 1 x. (Μ. 9) e Δ3) Να υπολογίσετε το γινόμενο Π f(e ) f(e ) f(e ) f(e ) f(e ) (Μ. 7) Να απαντήσετε στη κόλλα σας σε όλα τα θέματα. Διάρκεια εξέτασης δύο (2) ώρες. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΧΧΧΧΧΧΧΧ, ΧΧ Μαΐου 2015 Ο Διευθυντής Οι Εισηγητές 22

25 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧ ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΧΧΧΧΧΧΧΧΧ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΧΧΧΧΧΧΧ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗΣ ΗΜΕΡ. ΓΕΛ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΛ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΧΧΧΧΧΧΧ ΧΧ ΜΑΪΟΥ 2015 ΘΕΜΑ Α Α1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Σε κάθε τρίγωνο ΑΒΓ ισχύει η ισοδυναμία: α β γ, αν και μόνο αν Α 1L β) Αν δυο χορδές ΑΒ, ΓΔ ενός κύκλου Ο,R ή οι προεκτάσεις τους τέμνονται σε ένα σημείο Ρ, τότε ισχύει: PA ΡΒ ΡΓ ΡΔ. γ) Αν δυο τρίγωνα έχουν ίσες βάσεις τότε ο λόγος των εμβαδών τους ισούται με το λόγο των αντίστοιχων υψών τους. δ) Ένα κυρτό πολύγωνο που έχει όλες τις πλευρές του ίσες είναι πάντοτε κανονικό. ε) Σε κύκλο Ο,R ένα τόξο μ έχει μήκος πrμ (Μ. 10) 360 Α2) Να αποδείξετε ότι το εμβαδόν ενός τριγώνου ΑΒΓ είναι Ε τρ όπου τ είναι η ημιπερίμετρος του τριγώνου και ρ είναι η ακτίνα του εγγεγραμμένου κύκλου του. (Μ. 15) ΘΕΜΑ Β Δίνεται ένα ορθογώνιο τρίγωνο ΑΒΓ με A 90 και το ύψος του ΑΔ. Αν είναι AB 60 και AΓ 80 τότε: Β1) Να υπολογίσετε το μήκος της υποτείνουσας ΒΓ. (Μ. 9) Β2) Να υπολογίσετε τα μήκη των τμημάτων ΒΔ και ΔΓ. (Μ. 8) Β3) Να υπολογίσετε το μήκος του ύψους ΑΔ. (Μ. 8) 23

26 ΘΕΜΑ Γ Δίνετε τρίγωνο ΑΒΓ με AB 5, AΓ 8, A 60 και η διάμεσός του ΑΜ. Γ1) Να αποδείξετε ότι BΓ 7 και 129 ΑM (Μ. 9) 2 Γ2) Να αποδείξετε ότι το εμβαδό του τριγώνου ΑΒΓ είναι (ABΓ) 10 3 τ.μ. (Μ. 8) Γ3) Να υπολογίσετε την ακτίνα R του περιγεγραμμένου κύκλου του τριγώνου ΑΒΓ. (Μ. 8) ΘΕΜΑ Δ Σε κύκλο Ο,R με R 4 3 παίρνουμε τα διαδοχικά σημεία Α, Β, Γ έτσι ώστε AB R και BΓ R 3. Με διάμετρο την ΒΓ γράφουμε ημικύκλιο που τέμνει την ΑΓ στο Δ. Δ1) Να αποδείξετε ότι η ΑΓ είναι διάμετρος του κύκλου Ο,R (Μ. 9) Δ2) Να υπολογίσετε το εμβαδόν του ημικυκλίου με διάμετρο τη ΒΓ (Μ. 9) Δ3) Να υπολογίσετε τo εμβαδόν του μικτόγραμμου τριγώνου ΑΒΔ. (Μ. 7) Να απαντήσετε στη κόλλα σας σε όλα τα θέματα. Διάρκεια εξέτασης δύο (2) ώρες. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΧΧΧΧΧΧΧΧ, ΧΧ Μαΐου 2015 Ο Διευθυντής Οι Εισηγητές 24

27 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧ ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΧΧΧΧΧΧΧΧΧ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΧΧΧΧΧΧΧ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘ. ΟΜ. ΠΡΟΣ. Β ΤΑΞΗΣ ΗΜΕΡ. ΓΕΛ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΛ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΟΜ. ΠΡΟΣ. ΘΕΤ. ΣΠΟΥΔΩΝ ΧΧΧΧΧΧΧ ΧΧ ΜΑΪΟΥ 2015 ΘΕΜΑ Α Α1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Αν α β τότε α β 1 για οποιαδήποτε διανύσματα α και β. β) Για μια ευθεία ε y'y που διέρχεται από το σημείο A(x 0,y 0) και έχει εξίσωση x x0 δεν ορίζεται συντελεστής διεύθυνσης. 1 γ) Το εμβαδόν ενός τριγώνου ΑΒΓ είναι (ΑΒΓ) det(αβ,αγ) 2 δ) Η εφαπτομένη του κύκλου xx1 yy1 ρ ε) Η εφαπτομένη της παραβολής yy1 p(x x 1) x y ρ στο σημείο του Α(x 1,y 1) έχει εξίσωση 2 y 2px στο σημείο της Α(x 1,y 1) έχει εξίσωση (Μ. 10) Α2) Αν α (x 1,y 1) και β (x 2,y 2) είναι δύο μη μηδενικά διανύσματα του επιπέδου που x1x2 y1y2 σχηματίζουν γωνία θ, να αποδείξετε ότι συνθ (Μ. 15) x y x y ΘΕΜΑ Β Δίνεται η εξίσωση παραμέτρου λ ώστε η εξίσωση: (λ 4)x (λ 2λ)y λ 3λ 2 0 όπου λ. Να βρεθούν οι τιμές της Β1) Να παριστάνει ευθεία. (Μ. 9) Β2) Να παριστάνει ευθεία παράλληλη στον άξονα y'y. (Μ. 8) Β3) Να παριστάνει ευθεία που διέρχεται από την αρχή Ο των αξόνων. (Μ. 8) 25

28 ΘΕΜΑ Γ Δίνονται τα διανύσματα ΟΑ και ΟΒ με ΟΑ 3, ΟΒ 4 και ˆ π ΑΟΒ. 3 Γ1) Να αποδείξετε ότι ΟΑ ΟΒ 6 (Μ. 9) Γ2) Να βρείτε το ΑΒ (Μ. 9) Γ3) Αν Μ είναι σημείο του επιπέδου τέτοιο ώστε ΑΜ ΑΒ ΒΜ 12 να αποδείξετε ότι ΒΜ 1 (Μ. 7) ΘΕΜΑ Δ Δίνεται η εξίσωση 2 2 x y 8λx 6λy, όπου λ είναι πραγματικός αριθμός με λ 0. Δ1) Να αποδείξετε ότι για κάθε λ 0 η παραπάνω εξίσωση παριστάνει κύκλο ο οποίος διέρχεται από την αρχή των αξόνων Ο(0,0). (Μ. 9) Δ2) Να αποδείξετε ότι για τις διάφορες τιμές του λ, με λ 0 τα κέντρα των παραπάνω κύκλων ανήκουν σε ευθεία της οποίας να βρεθεί η εξίσωση. (Μ. 9) Δ3) Να βρείτε το λ ώστε η ευθεία με εξίσωση x y 2015 να τέμνει τον παραπάνω κύκλο σε δύο σημεία Α, Β για τα οποία OA OΒ 0 όπου Ο η αρχή των αξόνων. (Μ. 7) Να απαντήσετε στη κόλλα σας σε όλα τα θέματα. Διάρκεια εξέτασης δύο (2) ώρες. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΧΧΧΧΧΧΧΧ, ΧΧ Μαΐου 2015 Ο Διευθυντής Οι Εισηγητές 26

29 Δημοσιοποίηση των θεμάτων των ενδοσχολικών εξετάσεων. Σύμφωνα με την 62602/Δ2/ εγκύκλιο του Υ.ΠΟ.ΠΑΙ.Θ. τα θέματα των ενδοσχολικών εξετάσεων των μαθητών Γυμνασίων και Λυκείων δεν εκτίθενται σε δημοσιότητα. Τα θέματα αυτά εξυπηρετούν, αποκλειστικώς και μόνο, την εκπαιδευτική διαδικασία. Υπό την έννοια αυτή, πρόσβαση στα θέματα των εξετάσεων έχουν οι Εκπαιδευτικοί που τα συντάσσουν, ο Διευθυντής της σχολικής μονάδας, ο Διευθυντής Δευτεροβάθμιας Εκπαίδευσης (σε περίπτωση αναβαθμολόγησης) και ο Σχολικός Σύμβουλος της ειδικότητας βάση των αρμοδιοτήτων του όπως αυτές προκύπτουν από το καθηκοντολόγιο. Για τους Σχολικούς Συμβούλους ΦΕΚ 1340/τ.β / Άρθρο 9 - Παρ. 2. θ. 27

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ΘΕΜΑ: «ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2012 ΣΤΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ»

ΘΕΜΑ: «ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2012 ΣΤΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ» ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δημήτρης Σπαθάρας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα -εξεταστέα

Διαβάστε περισσότερα

Θέμα: «Προαγωγικές και απολυτήριες εξετάσεις στα Μαθηματικά»

Θέμα: «Προαγωγικές και απολυτήριες εξετάσεις στα Μαθηματικά» Πολύγυρος, 27/04/2017 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΧΑΛΚΙΔΙΚΗΣ Ταχ. Διεύθυνση

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Θέμα: «Χαιρετισμός Σχολικής Συμβούλου Μαθηματικών» Αγαπητοί συνάδελφοι,

Θέμα: «Χαιρετισμός Σχολικής Συμβούλου Μαθηματικών» Αγαπητοί συνάδελφοι, Πολύγυρος, 11/05/2016 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΧΑΛΚΙΔΙΚΗΣ Ταχ. Διεύθυνση

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Ρόδος, 26/04/2017. Αρ. Πρωτ.: 58 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν.

Ρόδος, 26/04/2017. Αρ. Πρωτ.: 58 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. Ρόδος, 26/04/2017 Αρ. Πρωτ.: 58 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.:

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 13 Μαΐου 2013 Αριθ. Πρωτ.: 339. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 13 Μαΐου 2013 Αριθ. Πρωτ.: 339. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΘΕΜΑ: «ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2012 ΣΤΟ ΓΥΜΝΑΣΙΟ»

ΘΕΜΑ: «ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2012 ΣΤΟ ΓΥΜΝΑΣΙΟ» ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δημήτρης Σπαθάρας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

Α1. Οι γραπτές προαγωγικές, απολυτήριες και πτυχιακές εξετάσεις διενεργούνται με την ευθύνη του Διευθυντή και των διδασκόντων σε κάθε ΕΠΑ.Λ.

Α1. Οι γραπτές προαγωγικές, απολυτήριες και πτυχιακές εξετάσεις διενεργούνται με την ευθύνη του Διευθυντή και των διδασκόντων σε κάθε ΕΠΑ.Λ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100 ΡΟΔΟΣ Τηλ. 2241364848 ΣΧΟΛΙΚΟΣ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις στα Μαθηµατικά Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος, ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Για τον υπολογισµό του βαθµού της

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ

ΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ 1 ΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ Νομοθεσία. Παρατηρήσεις για τα θέματα των προαγωγικών και απολυτήριων εξετάσεων Γυμνασίων και Λυκείων, περιόδου Μαΐου- Ιουνίου 2008. Προτάσεις.

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ 1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ α). Να αποδείξετε ότι : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα ισούται με το γινόμενο των προβολών

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. 1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των προαγωγικών εξετάσεων

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ 1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου ο Θέμα Εκφωνήσεις - Λύσεις των θεμάτων Έκδοση 1 η (14/11/014) Θέματα ης Ομάδας GI_V_GEO 18975 Δίνεται τρίγωνο ABΓμε AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

Μαθηματικά Κατεύθυνσης (Προσανατολισμού) Θέματα ενδοσχολικών εξετάσεων στα Μαθηματικά Προσανατολισμού Β Λυκείου Σχ έτος 03-04, Ν Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μαθηματικά Κατεύθυνσης (Προσανατολισμού) ΣΧΟΛΙΚΟ

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος

Διαβάστε περισσότερα

(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10

(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10 ΓΕ.Λ. ΛΙΒΑΔΕΙΑΣ ΖΗΤΗΜΑ A ΑΊ. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 05 ΛΙΒΑΔΕΙΑ 4 ΜΑΪΟΥ 05 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) κάθε μία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (14) -- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος -- Τράπεζα θεμάτων Μαθηματικών

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα