Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς:"

Transcript

1 Λύνω τις ασκήσεις 1. Γράφω δίπλα με ψηφία τους παρακάτω αριθμούς: Εκατόν ενενήντα εννέα:.. Τριακόσια ένα: Τετρακόσια πενήντα οκτώ:... Πεντακόσια εννέα:.. Οχτακόσια ογδόντα οκτώ:.... Εννιακόσια δύο: Εννιακόσια ενενήντα εννέα: 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς: 209: : : : : : : : : : Γράφω τους αριθμούς που είναι πριν και μετά από τους παρακάτω: Γράφω τους αριθμούς που είναι ανάμεσα στους παρακάτω αριθμούς:

2 5. Αντιστοιχίζω τους παρακάτω αριθμούς με το όνομά τους: 583 εξακόσια δύο 915 πεντακόσια ογδόντα τρία 888 εννιακόσια δεκαπέντε 750 οκτακόσια ογδόντα οκτώ 602 επτακόσια πενήντα 6. Αναλύω σε μονάδες, δεκάδες και εκατοντάδες τους παρακάτω αριθμούς, όπως τον πρώτο: Αριθμός Εκατοντάδες Δεκάδες Μονάδες Γράφω μέσα στα άδεια κουτάκια πόσες δεκάδες και πόσες μονάδες έχουν οι παρακάτω αριθμοί, όπως τον πρώτο: Ε Δ M Ε Δ M Ε Δ M Ε Δ M Ε Δ M Ε Δ M Ε Δ M Ε Δ M

3 8. Παρατηρώ τους παρακάτω άβακες και γράφω από κάτω τον αριθμό που δείχνουν οι πρώτες χάντρες στις εκατοντάδες, οι δεύτερες στις δεκάδες και οι τελευταίες στις μονάδες: E Δ Μ E Δ Μ E Δ Μ Σχηματίζω στους άβακες με χάντρες τους αριθμούς: 346, 465, 637, 572 E Δ Μ E Δ Μ E Δ Μ E Δ Μ 10. Από τις παρακάτω δεκάδες και μονάδες κυκλώνω: με κόκκινο: 4 δεκάδες με πράσινο: 2 δεκάδες και 5 μονάδες και με μπλε: 3 δεκάδες και 3 μονάδες 11. Σκέφτομαι και απαντώ: α) Τι λέγεται απόσταση; Απάντηση: β) Με ποια μονάδα μέτρησης θα μετρήσουμε το πλάτος της αυλής του σχολείου και με ποια την απόσταση από μία πόλη σε άλλη; Απάντηση: 12

4 Μάθημα 2 ο Προσθέσεις διψήφιων και τριψήφιων αριθμών Στο μάθημα αυτό θα ασχοληθούμε με τη λύση ασκήσεων και προβλημάτων πρόσθεσης με διψήφιους και τριψήφιους αριθμούς με το μυαλό αλλά και γραπτά. Και πέρυσι στη δευτέρα τάξη μάθαμε να κάνουμε τέτοιες προσθέσεις, αλλά χρειάζεται να τις θυμηθούμε κι εφέτος. Θα λύσουμε πρώτα μερικές ασκήσεις, για να δείτε πώς μπορούμε να εργαζόμαστε, για να τις λύνουμε πιο εύκολα. Ξεκινάμε με μία πρόσθεση. Παίρνουμε το π αράδειγμα: Αναλύουμε το 22 στο 20 και στο 2 και έχουμε: Αλλάζουμε τη θέση των αριθμών αυτών, δηλαδή, των προσθετέων, όπως λέγονται, και έχουμε: = (38 + 2) + (20 + 9) = = 69. Ας πάρουμε άλλο ένα π αράδειγμα: Αναλύουμε και τους τρεις αριθμούς και έχουμε: 46 = και 34 = και 25 = Αλλάζουμε πάλι τη θέση των προσθετέων και έχουμε: = ( ) = 90 και ( ) = 15. Οπότε έχουμε: Αναλύουμε το 15 σε και έχουμε: ( ) + 5 = = 105. Όπως είδατε, για να προσθέσουμε αριθμούς, αναλύουμε όσους χρειάζεται, για να κάνουμε πιο εύκολα τις πράξεις. Ακόμα, επειδή ξέρουμε ότι αν αλλάξουμε τη θέση των προσθετέων, το άθροισμα δεν αλλάζει, μετακινούμε ορισμένους προσθετέους και τους φέρνουμε κοντά σε άλλους με τους οποίους μπορούμε να τους προσθέσουμε πιο εύκολα. Παράδειγμα: = (98 + 2) + 5 = = 105 Και ένα τελευταίο π αράδειγμα: Προσθέτουμε μόνο τις εκατοντάδες και έχουμε: = 9 εκατοντάδες. Οι 9 εκατοντάδες είναι 9 x 100 = 900 μονάδες. Όπως είδατε, είναι ευκολότερη η πράξη με μικρούς αριθμούς παρά με μεγάλους. Θα πρέπει, λοιπόν, να ξέρετε ότι, όταν έχουμε να προσθέσουμε μεγάλους αριθμούς, οι οποίοι έχουν στο τέλος τους ίδιο αριθμό μηδενικών, τα αφήνουμε προσωρι- 13

5 νά στην άκρη όλα, προσθέτουμε μόνο τις δεκάδες, τις εκατοντάδες ή τις χιλιάδες και μετά βάζουμε στο τέλος τους τα μηδενικά που αφήσαμε στην άκρη. Παραδείγματα: α) Προσθέτουμε μόνο τις δεκάδες και έχουμε: = 12. Προσθέτουμε μετά το μηδενικό και γίνεται: 120. β) Προσθέτουμε τις εκατοντάδες και έχουμε: = 7. Προσθέτουμε μετά τα δύο μηδενικά και γίνεται: 700. Πρέπει να ξέρουμε ότι μαθαίνουμε καλά μαθηματικά, λύνοντας προβλήματα. Έτσι, μαθαίνουμε να σκεφτόμαστε και να ακονίζουμε το μυαλό μας. Ας λύσουμε, λοιπόν, το εξής πρόβλημα: ä Στη μία τσέπη μου έχω 20 ευρώ και στην άλλη 15 ευρώ. Αν τα βάλω όλα μαζί στη μία τσέπη μου, πόσα ευρώ θα γίνουν; Όπως καταλαβαίνετε, βάζοντάς τα όλα μαζί τα ευρώ στη μία τσέπη μου, τα ένωσα. Φυσικά, έγιναν περισσότερα, γιατί, όταν βάζουμε μαζί πολλά πράγματα, γίνονται πιο πολλά από αυτά που ήταν πριν, όταν ήταν χωριστά. Συμπεραίνουμε, λοιπόν, ότι όταν βάζουμε πολλά πράγματα μαζί, η ποσότητά τους μεγαλώνει, πληθαίνει, αυξάνεται. Η πράξη αυτή που κάνουμε τότε λέγεται πρόσθεση. Άρα, με την πρόσθεση προσθέτουμε, αυξάνουμε, μεγαλώνουμε, πληθαίνουμε, αθροίζουμε, ενώνουμε διάφορα πράγματα, ζώα ή ανθρώπους. Έτσι, ενώνοντας τα 20 ευρώ με τα 15 ευρώ, γίνονται όλα μαζί = 35 ευρώ. Το ίδιο, ενώνοντας 40 παιδιά με 20 παιδιά, γίνονται όλα μαζί 60 παιδιά. Για να δούμε τώρα κάτι άλλο: Στη μία τσέπη μου έχω 5 καραμέλες και στην άλλη έχω 10 ευρώ. Τα παίρνω και τα βάζω στην ίδια τσέπη με τις καραμέλες. Μπορούμε αυτά τα διαφορετικά πράγματα να τα προσθέσουμε και να πούμε πόσα έγιναν όλα μαζί; Τι θα πούμε; Ότι έγιναν 15 καραμέλες ή 15 ευρώ; Ούτε το ένα ούτε το άλλο. Δεν μπορούμε, λοιπόν, τα δύο αυτά ποσά να τα προσθέσουμε, γιατί οι καραμέλες και τα ευρώ είναι δύο διαφορετικά πράγματα, δύο ανόμοια πράγματα. Θα ξέρουμε, λοιπόν, ότι: Πρόσθεση κάνουμε, όταν ενώνουμε, βάζουμε μαζί όμοια πράγματα, ευρώ με ευρώ, παιδιά με παιδιά, για να βρούμε πόσα γίνονται όλα. 14

6 Αυτό δεν πρέπει να το ξεχνάμε ποτέ, γιατί είναι πολύ σπουδαίο. Ας δούμε τώρα ένα άλλο πρόβλημα: ä Ο πατέρας του Γιώργου ξόδεψε μια μέρα για ψώνια 30 ευρώ στη λαϊκή αγορά και 45 ευρώ στο σουπερμάρκετ. Πόσα ευρώ ξόδεψε την ημέρα αυτή για όλα τα ψώνια; Σκεφτόμαστε και λέμε: Αφού ξέρουμε πόσα ευρώ ξόδεψε στη λαϊκή και πόσα στο σουπερμάρκετ, πρέπει να τα ενώσουμε, να τα βάλουμε όλα μαζί, για να βρούμε πόσα γίνονται. Επομένως, θα κάνουμε πρόσθεση. Την πρόσθεση αυτή μπορούμε να την κάνουμε με τρεις τρόπους: α τρόπος Την κάνουμε με τ ο ν νου μας. Αναλύουμε το 45 σε 40 και 5. Προσθέτουμε πρώτα το 40 και το 30 και βρίσκουμε 70. Στο 70 προσθέτουμε και το 5 και βρίσκουμε 75 ευρώ. β τρόπος Κάνουμε οριζόντια την ίδια πρόσθεση και έχουμε: Αναλύουμε το 45 σε 40 και 5 και έχουμε: Αλλάζουμε τη θέση των προσθετέων και έχουμε: = ( ) + 5 = = 75. γ τρόπος Κάνουμε κ άθετα την πρόσθεση αυτή και έχουμε: Γράφουμε το 45 και από κάτω το 30, προσέχοντας οι μονάδες του ενός να γραφούν κάτω από τις μονάδες του άλλου και οι δεκάδες του ενός κάτω από τις δεκάδες του άλλου. Αρχίζουμε μετά την πρόσθεση και λέμε: 0 και 5 κάνουν 5. Γράφουμε το 5 κάτω από το 0, στη στήλη των μονάδων. Περνάμε μετά να προσθέσουμε τις δεκάδες και λέμε: 3 και 4 κάνουν 7. Γράφουμε το 7 κάτω από το 3, στη στήλη των δεκάδων. Βρήκαμε πάλι ότι την ημέρα αυτή ο πατέρας του Γιώργου ξόδεψε για ψώνια 75 ευρώ. Βλέπουμε ότι και με τους τρεις τρόπους βρήκαμε το ίδιο αποτέλεσμα. Έτσι, μία πρόσθεση μπορούμε να την κάνουμε με όποιο τρόπο θέλουμε, αρκεί να γίνει σωστά. Δ Μ

7 Ας κάνουμε ακόμα μία πρόσθεση κάθετα, με τριψήφιους αριθμούς. Ας υποθέσουμε ότι έχουμε να προσθέσουμε το 396 με το 168. Κάνουμε κ άθετα την πρόσθεση: 1 1 Γράφουμε τους δύο αριθμούς τον έναν κάτω από τον άλλο, προσέχοντας οι μονάδες, οι δεκάδες και οι εκατοντάδες προσθετέοι του ενός να γραφτούν κάτω από τις μονάδες, τις δεκάδες και τις εκατοντάδες του άλλου. Τραβάμε από κάτω μία άθροισμα γραμμή και βάζουμε αριστερά το σύμβολο της πρόσθεσης το (+). Αρχίζουμε την πρόσθεση από τη στήλη των μονάδων και λέμε: = 14. Γράφουμε τις μονάδες του, δηλαδή το 4, και κρατάμε τη 1 δεκάδα, για να την προσθέσουμε μετά με τις άλλες δεκάδες των αριθμών. Για να μην την ξεχάσουμε, τη γράφουμε μέσα σ ένα μικρό κύκλο πάνω από τη στήλη των δεκάδων. Προσθέτουμε μετά τις δεκάδες και λέμε: 6 και 9 γίνονται 15 και 1 το κρατούμενο γίνονται 16. Οι 16 αυτές είναι δεκάδες. Έχουμε πει ότι 10 δεκάδες κάνουν 1 εκατοντάδα. Άρα, στις 16 δεκάδες υπάρχουν 1 εκατοντάδα και 6 δεκάδες. Γι αυτό γράφουμε μόνο τις 6 δεκάδες και τη 1 εκατοντάδα την κρατάμε, για να την προσθέσουμε μετά με τις άλλες εκατοντάδες. Για να μην την ξεχάσουμε, τη γράφουμε πάλι σ ένα μικρό κύκλο πάνω από τη στήλη των εκατοντάδων. Λέμε μετά: 1 και 3 γίνονται 4 και 1 το κρατούμενο γίνονται 5. Γράφουμε το 5 κάτω από τη στήλη των εκατοντάδων. Εδώ τελειώνει η πρόσθεση και βρίσκουμε άθροισμα 564. Την ίδια πρόσθεση μπορούμε να την κάνουμε και οριζόντια: = Προσθέτουμε πρώτα τις μονάδες των αριθμών και έχουμε = 14. Μετά το ίσον γράφουμε δύο θέσεις πιο δεξιά το 4 και κρατάμε το 1. Προσθέτουμε μετά τις δεκάδες και λέμε: 1 το κρατούμενο και 6 γίνονται 7 και 9 γίνονται 16. Γράφουμε το 6 μπροστά από το 4 και κρατάμε το 1. Λέμε μετά: 1 το κρατούμενο και 1 γίνονται 2 και 3 γίνονται 5. Γράφουμε το 5 μπροστά από το 6. Βλέπουμε ότι και με αυτόν τον τρόπο βρήκαμε το ίδιο αποτέλεσμα. Να θυμάμαι! 3 Πρόσθεση κάνουμε, όταν θέλουμε να ενώσουμε δύο ή περισσότερους αριθμούς, οι οποίοι φανερώνουν όμοια πράγματα. Δηλαδή, ευρώ-ευρώ, παιδιά-παιδιά, μέτρα-μέτρα κτλ. 3 Μια πρόσθεση μπορούμε να την κάνουμε με τρεις τρόπους: Με τον νου μας (νοερά) και γραπτά οριζόντια ή κάθετα. 16

8 Λύνω τα προβλήματα 1. Ένα παιδί επρόκειτο να αγοράσει ένα ποδήλατο. Είχε συγκεντρώσει 75 ευρώ και υπολόγισε ότι του χρειάζονταν ακόμα 45 ευρώ, για να μπορεί να το αγοράσει. Σε ποια τιμή θα αγόραζε το ποδήλατο; 2. Ο Γιώργος έχει στη βιβλιοθήκη του 68 βιβλία και ο φίλος του ο Μιχάλης έχει στη δική του 14 περισσότερα. Πόσα βιβλία έχει στη βιβλιοθήκη του ο Μιχάλης; 3. Ένα εργοστάσιο απασχόλησε το άνδρες και 35 γυναίκες και το 2008 απασχόλησε 62 άνδρες και 40 γυναίκες. Να βρεθεί πόσα άτομα απασχόλησε συνολικά το εργοστάσιο στη διετία αυτή. 4. Ο δρόμος από την Αθήνα έως την Κόρινθο είναι 85 χιλιόμετρα και από την Κόρινθο έως την Πάτρα είναι 133 χιλιόμετρα. Πόσα χιλιόμετρα είναι ο δρόμος από την Αθήνα έως την Πάτρα; 5. Δύο γειτονικά δημοτικά σχολεία έχουν το πρώτο 315 μαθητές και το δεύτερο 273. Πόσους μαθητές έχουν μαζί και τα δύο αυτά σχολεία; 19

9 6. Ένας ιδιωτικός υπάλληλος παίρνει μισθό 725 ευρώ τον μήνα και ένας τεχνίτης 470 ευρώ περισσότερα από αυτόν. Πόσα ευρώ παίρνει μισθό τον μήνα ο τεχνίτης; 7. Ένα κατάστημα εισέπραξε το πρωί 585 ευρώ και το απόγευμα 410 ευρώ. Πόσα ευρώ εισέπραξε συνολικά όλη την ημέρα; α) Εκτιμώ: β) Βρίσκω με ακρίβεια: 8. Ο Γιώργος έχει να κάνει στον υπολογιστή τσέπης την πρόσθεση Το νούμερο όμως 4 έχει χαλάσει και δεν μπορεί να το πατήσει. Με ποιους τρόπους μπορεί να κάνει την πρόσθεση αυτή, ώστε να βρει σωστά το αποτέλεσμα που ζητά; Γράφω 3 διαφορετικούς υπολογισμούς: α).. β).. γ).. 20

10 Τις παράλληλες γραμμές θα τις εξετάσουμε αναλυτικά στα επόμενα μαθήματα. Όταν μία γραμμή π.χ. η ΑΒ είναι κάθετη (καρφωτή) πάνω σε Α μια οριζόντια γραμμή π.χ. στη ΒΓ, σχηματίζεται μία γωνία, η οποία λέγεται ορθή. Έτσι, ορθή είναι η γωνία ΑΒΓ. Αν έχουμε μια ορθή γωνία με ίσες πλευρές και φέρουμε απέναντι από καθεμιά μια ίση και παράλληλη γραμμή, θα σχηματιστεί ένα παραλληλόγραμμο με όλες τις πλευρές του ίσες. Αυτό λέγεται τετράγωνο. Έτσι, τετράγωνο είναι το σχήμα ΑΒΓΔ. Β Α Β Γ Δ Γ Αν τώρα έχουμε μια ορθή γωνία με άνισες πλευρές και φέρουμε απέναντι από καθεμιά άλλη γραμμή ίση και παράλληλη με την καθεμιά πλευρά της γωνίας, θα σχηματιστεί ένα άλλο σχήμα, που έχει τις τέσσερις γωνίες του ορθές και τις πλευρές του ανά δύο απέναντι ίσες και παράλληλες. Το σχήμα αυτό λέγεται ορθογώνιο παραλληλόγραμμο. Τέτοιο είναι το σχήμα ΕΖΗΘ. Ε Ζ Ι Θ Η Μ Αν θέλουμε να σχηματίσουμε ένα τετράγωνο ΙΚΛΜ με πλευρά, π.χ., 3 εκατοστόμετρα, σχηματίζουμε μια ορθή γωνία, που η κάθε πλευρά της να είναι 3 εκατοστόμετρα και φέρνουμε απέναντι προς κάθε πλευρά της μια παράλληλη ευθεία μήκους 3 εκατοστόμετρων. Κοιτάξτε τώρα το διπλανό σχήμα ΝΞΟΠ. Το μισό του μοιάζει με τρίγωνο και αν μετρήσουμε τις πλευρές του, θα δούμε ότι όλες είναι ίσες μεταξύ τους, όπως στο τετράγωνο. Δεν είναι όμως τετράγωνο, γιατί δεν έχει ορθές τις γωνίες του. Το σχήμα αυτό λέγεται ρόμβος. Αν πάρουμε τώρα ένα φύλλο από το τετράδιό μας και το παρατηρήσουμε, θα δούμε ότι έχει ορθές γωνίες και τις πλευρές του παράλληλες, όχι όμως όλες ίσες. Επομένως, έχει σχήμα ορθογώνιου παραλληλόγραμμου. 3 εκ. Κ Ξ 3 εκ. Ν Ο Λ Π Από αυτό μπορούμε να κάνουμε εύκολα ένα τετράγωνο. Διπλώνουμε το φύλλο του χαρτιού σε μια του γωνία, ώστε η μεγάλη πλευρά του να πέσει πάνω στη διπλανή μικρή πλευρά του. Το κομμάτι της μεγάλης πλευράς που περισσεύει το κόβουμε. Ανοίγουμε το χαρτί και βλέπουμε ότι σχηματίστηκε ένα τ ε τ ρ ά γ ω- ν ο. Το άλλο κομμάτι που κόψαμε είναι ένα ο ρ θ ο γ ώ ν ι ο παραλληλόγραμμο. 22

11 Σχήμα τετραγώνου έχουν τα τζάμια σε μικρά παράθυρα, τα πλακάκια στον τοίχο της κουζίνας και του μπάνιου, οι πλάκες του πεζοδρομίου κτλ. Σχήμα ορθογώνιου παραλληλόγραμμου είναι το σχήμα που έχουν οι πλευρές στις περισσότερες σοκολάτες, τα εξώφυλλα των βιβλίων, ο πίνακας, η επιφάνεια της πόρτας, το δάπεδο της αίθουσας, το τραπέζι της κουζίνας, τα διάφορα κάδρα κ.ά. Α Εκτός από το τετράγωνο, το ορθογώνιο παραλληλόγραμμο και τον ρόμβο, υπάρχει κι ένα άλλο σχήμα, όπως το διπλανό ΑΒΓ. Το σχήμα αυτό έχει 3 πλευρές και 3 γωνίες και γι αυτό λέγεται τρίγωνο. Τέλος, αν πάρουμε έναν διαβήτη και τον περιστρέψουμε, θα σχηματιστεί ένα σχήμα, όπως το διπλανό. Αυτό λέγεται κύκλος. Εξετάσαμε έως τώρα τα διάφορα γεωμετρικά σχήματα. Υπάρχουν, όμως, και κάποια σώματα που οι πλευρές τους έχουν κάποιο από τα γεωμετρικά αυτά σχήματα. Τα σώματα αυτά λέγονται γεωμετρικά στερεά. Τέτοια είναι τα παρακάτω: Β Γ σχήμα 1 σχήμα 2 σχήμα 3 σχήμα 4 σχήμα 5 D Το πρώτο (σχήμα 1) λέγεται κύβος. Σε αυτόν οι πλευρές του έχουν σχήμα τετραγώνου. Tέτοιο σχήμα έχει ένα πλαστικό ζάρι, ένα πλαστικό κυβάκι κτλ. D Το δεύτερο (σχήμα 2) λέγεται ορθογώνιο παραλληλεπίπεδο. Σε αυτό οι πλευρές του έχουν σχήμα ορθογώνιου παραλληλόγραμμου. Τέτοιο σχήμα έχει το ψυγείο, η ντουλάπα των ρούχων κτλ. D Το τρίτο (σχήμα 3) λέγεται κύλινδρος. Μοιάζει μ ένα ρολό χαρτιού κουζίνας ή μ ένα κουτί αναψυκτικού. D Το τέταρτο (σχήμα 4) λέγεται πυραμίδα. Μοιάζει με τις πυραμίδες της Αιγύπτου ή με μια σκηνή κατασκήνωσης. D Το τελευταίο (σχήμα 5) λέγεται σφαίρα. Μοιάζει με την υδρόγειο σφαίρα του σχολείου, με την μπάλα, με τους βόλους που παίζουμε, με τα μπαλάκια του πινγκ πονγκ κτλ. Η πλευρά της έχει σχήμα κύκλου. 23

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη

Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη Αγαπητοί γονείς, Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Γ Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια και λειτουργεί παράλληλα αλλά και συμπληρωματικά με

Διαβάστε περισσότερα

Μαθηματικά. Λύνω τις παρακάτω ασκήσεις και ελέγχω τις γνώσεις μου:

Μαθηματικά. Λύνω τις παρακάτω ασκήσεις και ελέγχω τις γνώσεις μου: Όνομα:. Γ ΔΗΜΟΤΙΚΟΥ Ημερομηνία :. Μαθηματικά Λύνω τις παρακάτω ασκήσεις και ελέγχω τις γνώσεις μου: Άσκηση 1: Κάνω τις παρακάτω πράξεις με τον νου μου: 45 + 37= 61-29= 460 + 230= 360 150= 52 + 18= 74-13=

Διαβάστε περισσότερα

Διαχειρίζομαι αριθμούς έως το 10.000

Διαχειρίζομαι αριθμούς έως το 10.000 Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,

Διαβάστε περισσότερα

Όλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού

Όλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:

Διαβάστε περισσότερα

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )

5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 35 40) Πηγή πληροφόρησης: e-selides 5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 35 40) 1.Παρατηρώ και συμπληρώνω κατάλληλα:

Διαβάστε περισσότερα

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό. A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της

Διαβάστε περισσότερα

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις 3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 9 + 1 7 + 1 8 + 1 + 1 3 + 1 4 + 1 5 + 1 6 + 1 1 + 1 0 + 1 0 1 3 4 5 6 7 8 9 10 Κάνω τις ασκήσεις 1. Γράφω με τη σειρά μέσα στα κυκλάκια

Διαβάστε περισσότερα

1. Εισαγωγή. 2. Τεχνικές και «κρατούμενα»

1. Εισαγωγή. 2. Τεχνικές και «κρατούμενα» 1. Εισαγωγή Η προσέγγιση των Μαθηματικών της Β Δημοτικού από το παιδί προϋποθέτει την κατανόηση των μαθηματικών εννοιών που παρουσιάστηκαν στην Α Δημοτικού και την εξοικείωση του παιδιού με τις πράξεις

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση.

Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. 5Η ΕΝΟΤΗΤΑ ΑΣΚΗΣΕΩΝ 5.1 Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. Α. Οι κύκλοι είναι διπλάσιοι σε αριθμό από τα τετράγωνα. Β.

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

Είδη τριγώνων ως προς τις πλευρές

Είδη τριγώνων ως προς τις πλευρές ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 41 Είδη τριγώνων ως προς τις πλευρές Ενότητα 5 β τεύχος Είδη τριγώνων ως προς τις πλευρές 41 1η Άσκηση Να αντιστοιχίσεις: Το σκαληνό τρίγωνο έχει Το ισοσκελές τρίγωνο

Διαβάστε περισσότερα

Γ ΗΜΟΤΙΚΟΥ Τεύχος Α. Παίζω, Σκέφτοµαι, Μαθαίνω. Λύσεις ασκήσεων. για τα. αθηµατικά

Γ ΗΜΟΤΙΚΟΥ Τεύχος Α. Παίζω, Σκέφτοµαι, Μαθαίνω. Λύσεις ασκήσεων. για τα. αθηµατικά Παίζω, Σκέφτοµαι, Μαθαίνω Γ ΗΜΟΤΙΚΟΥ Τεύχος Α M Λύσεις ασκήσεων για τα αθηµατικά Κεφάλαιο σελ.: / άσκηση Ε Μ // Ε Μ // 99Ε Μ // Ε Μ // Ε Μ σελ.: / άσκηση 0 / 9 / 9 / / 00 σελ.: / άσκηση / 90 / / 0 / 9

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΚΕΦΑΛΑΙΟ 2. Υπενθύμιση Β μέρος ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ. Παράλληλες: Τι θα πρέπει να. Ποιες είναι οι παράλληλες ευθείες;

ΕΝΟΤΗΤΑ 1 ΚΕΦΑΛΑΙΟ 2. Υπενθύμιση Β μέρος ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ. Παράλληλες: Τι θα πρέπει να. Ποιες είναι οι παράλληλες ευθείες; ΕΝΟΤΗΤΑ 1 ΚΕΦΑΛΑΙΟ 2 Υπενθύμιση Β μέρος ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Παράλληλες: Τι θα πρέπει να θυμόμαστε από την γεωμετρία; Ποιες είναι οι παράλληλες ευθείες; Ποιες είναι οι κάθετες ευθείες;

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του. 1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Γ Δ η μ ο τ ι κ ο ύ 1 ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Μαθαίνω... Τριψήφιοι λέγονται οι αριθμοί που έχουν τρία ψηφία. Οι τριψήφιοι αριθμοί αποτελούνται από Εκατοντάδες (Ε), Δεκάδες (Δ) και Μονάδες

Διαβάστε περισσότερα

1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ...

1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ... Eλέγχω τις γνώσεις μου Aσκήσεις 1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό:......

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά σχήματα - Η περίμετρος. Ενότητα 8. β τεύχος

ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά σχήματα - Η περίμετρος. Ενότητα 8. β τεύχος ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 46 Γεωμετρικά σχήματα - Η περίμετρος Ενότητα 8 β τεύχος Γεωμετρικά σχήματα-η περίμετρος 46 1η Άσκηση Να κυκλώσεις όλα τα κανονικά πολύγωνα: 60 ο 108 ο 108 ο 120

Διαβάστε περισσότερα

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-361774 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου. Ενότητα 8. β τεύχος

ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου. Ενότητα 8. β τεύχος ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 48 Ενότητα 8 Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου β τεύχος Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου 48 1η Άσκηση Να συμπληρώσεις τον

Διαβάστε περισσότερα

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ 5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο

Διαβάστε περισσότερα

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό. A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Κεφάλαιο 53 : Αριθμοί μέχρι το Κλάσματα και δεκαδικοί

Κεφάλαιο 53 : Αριθμοί μέχρι το Κλάσματα και δεκαδικοί 10-0059MATHIMATIKAGDIMOTIKOU4_10 MAΘHTHΣ MAΘHM Γ 13/2/2013 10:31 πμ Page 1 9 η ενότητα Αριθμοί μέχρι το 10.000 Κλάσματα και δεκαδικοί Πράξεις γεωμετρία 53 54 55 56 57 58 59 Κεφάλαιο 53 : Αριθμοί μέχρι

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ Γυμνασίου ΗΜΕΡΟΜΗΝΙΑ: Δευτέρα, 4 Ιουνίου 018 ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ:. ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών

ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ Γράφω καλά στο τεστ των Μαθηματικών E, ΔΗΜΟΤΙΚΟΥ Ανακεφαλαίωση της θεωρίας με πίνακες και παραδείγματα Διαγωνίσματα Αναλυτικές απαντήσεις με έμφαση στα δύσκολα

Διαβάστε περισσότερα

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Γ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 01, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ. ΗΜΕΡΟΜΗΝΙΑ: Παρασκευή, 10 Ιουνίου 2016

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ. ΗΜΕΡΟΜΗΝΙΑ: Παρασκευή, 10 Ιουνίου 2016 ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 015-016 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ Γυμνασίου ΗΜΕΡΟΜΗΝΙΑ: Παρασκευή, 10 Ιουνίου 016 ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ:. ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΑΙΧΝΙ ΙΑ ΣΤΗΝ ΚΑΤΑΣΚΗΝΩΣΗ. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 1 ο ΠΑΙΧΝΙ ΙΑ ΣΤΗΝ ΚΑΤΑΣΚΗΝΩΣΗ. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 1 ο Υπενθύµιση Τάξης ΠΑΙΧΝΙ ΙΑ ΣΤΗΝ ΚΑΤΑΣΚΗΝΩΣΗ Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να θυµηθείς πώς αντιµετωπίζουµε προβλήµατα της καθηµερινής µας ζωής µε τη βοήθεια

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 8 / 6 / 2015 Αριθμητικά :.... ΒΑΘΜΟΣ:... ΤΑΞΗ: Β Ολογράφως:......

Διαβάστε περισσότερα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα Α ΠΕΡΙΟ ΟΣ - ΕΝΟΤΗΤΑ 1 η Κεφάλαιο 1ο Παιχνίδια στην κατασκήνωση Υπενθύμιση τάξης Τι είναι: μονάδα, δεκάδα και εκατοντάδα Τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 αντιστοιχούν στις μονάδες, λέμε δηλαδή ανήκουν

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα Α ΠΕΡΙΟ ΟΣ - ΕΝΟΤΗΤΑ 1 η Κεφάλαιο 1ο Παιχνίδια στην κατασκήνωση Υπενθύμιση τάξης Τι είναι: μονάδα, δεκάδα και εκατοντάδα Τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 αντιστοιχούν στις μονάδες, λέμε δηλαδή ανήκουν

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :

ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή : ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2018 2019 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ 2019 ΜΑΘΗΜΑ : Μαθηματικά ΤΑΞΗ : Γ ΗΜΕΡΟΜΗΝΙΑ : 5 / 6 / 2019 ΧΡΟΝΟΣ : 2 Ώρες Βαθμός : Ολογράφως

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:...

Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Διδακτική των Μαθηματικών με Τ.Π.Ε Σελίδα 1 από 13 Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Όλες οι εφαρμογές που καλείσθε να χρησιμοποιήσετε είναι

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ

ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 941205 ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 2 Εισαγωγή Ευχαριστούμε που χρησιμοποιείτε την ενότητα για την έρευνα της μέτρησης. Ελπίζουμε πως το πακέτο και τα βιβλία εργασίας θα σας ικανοποιήσουν. Αν έχετε οποιεσδήποτε

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου

Μαθηματικά Α Γυμνασίου Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017 ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 06 07 Βαθμός αριθμητικά:..... / 00 =.... / 0 Ολογράφως:...... / 0 Υπογραφή Καθηγητή/τριας:..... ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 07 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

Ασκήσεις

Ασκήσεις Ασκήσεις Μάθημα 1 ο 1. Να κάνεις τις προσθέσεις : 209 101 595 614 185 212 709 221 127 667 + 127 + 111 + 100 + 202 + 103 548 921 916 943 955 345 538 816 248 347 723 707 340 248 394 307 + 249 + 237 + 185

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 5 6 (E - Στ Δημοτικού) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Γνωρίζοντας ότι + + 6 = + + +, ποιόν αριθμό αντιπροσωπεύει το ; A) 2 B) 3 C) 4 D) 5 E) 6

Διαβάστε περισσότερα

Προγράμματα παρέμβασης στα Μαθηματικά, Μαρία Θ. Παπαδοπούλου, PhD, Σχολική Σύμβουλος 6ης Περιφέρειας Π.Ε. ν. Λάρισας

Προγράμματα παρέμβασης στα Μαθηματικά, Μαρία Θ. Παπαδοπούλου, PhD, Σχολική Σύμβουλος 6ης Περιφέρειας Π.Ε. ν. Λάρισας ΠΡΟΓΡΑΜΜΑ ΠΑΡΕΜΒΑΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ-Α Φ.Α. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΣΧΟΛΕΙΟ: ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΝΗΣΗΣ:... ΤΑΞΗ: ΗΜΕΡΟΜΗΝΙΑ ΑΞΙΟΛΟΓΗΣΗΣ: ΗΜΕΡΟΜΗΝΙΑ ΕΝΑΡΞΗΣ ΠΑΡΕΜΒΑΣΗΣ: ΔΙΑΡΚΕΙΑ: ΑΝΑΛΥΣΗ ΕΡΓΟΥ Κατανοεί βασικές χωρικές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν; ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΑΘΗΜΑΤΙΚΑ (Γ ΤΑΞΗ) ΟΝΟΜΑ:. (ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΣΤΟΥΣ ΔΕΚΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ) ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΛΑΤΕ ΝΑ ΣΚΕΦΤΟΥΜΕ ΜΑΖΙ: Υπάρχουν άραγε αριθμοί ανάμεσα στο 0 και

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Sample 2 ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Σε αυτό το μέρος υπάρχουν 15 ερωτήσεις. Να απαντήσετε ΟΛΕΣ τις ερωτήσεις. Σε κάθε ερώτηση η σωστή απάντηση είναι ΜΟΝΟ ΜΙΑ. Να βάλετε σε ΚΥΚΛΟ τη σωστή απάντηση.

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα.

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. THE GRAMMAR SCHOOL ΑΡΙΘΜΟΣ: ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011 ΘΕΜΑ : ΧΡΟΝΟΣ : ΜΑΘΗΜΑΤΙΚΑ 1 ΩΡΑ ΚΑΙ 30 ΛΕΠΤΑ Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. 2. Απαγορεύεται

Διαβάστε περισσότερα

ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΥΡΩ ΤΕΤΡΑΔΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ. ΠΕΡΙΕΧΕΙ: Πρωτότυπες ασκήσεις και προβλήματα που θα βοηθήσουν τα παιδιά στις συναλλαγές.

ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΥΡΩ ΤΕΤΡΑΔΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ. ΠΕΡΙΕΧΕΙ: Πρωτότυπες ασκήσεις και προβλήματα που θα βοηθήσουν τα παιδιά στις συναλλαγές. ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΥΡΩ ΤΕΤΡΑΔΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΠΕΡΙΕΧΕΙ: Πρωτότυπες ασκήσεις και προβλήματα που θα βοηθήσουν τα παιδιά στις συναλλαγές. Αγοράζω Πληρώνω Παίρνω ρέστα Συνεργάστηκαν οι: Σπίνος Γεράσιμος, Υποδ/ντής

Διαβάστε περισσότερα

Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη

Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη Αγαπητοί γονείς, Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Β Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια και λειτουργεί παράλληλα αλλά και συμπληρωματικά με

Διαβάστε περισσότερα

οι αναλυτικές λύσεις όλων των ασκήσεων και προβλημάτων του σχολικού βιβλίου

οι αναλυτικές λύσεις όλων των ασκήσεων και προβλημάτων του σχολικού βιβλίου Αγαπητοί γονείς Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Β Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια με επαναληπτικά μαθήματα και λειτουργεί παράλληλα αλλά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ 1. Φτιάχνουμε στόχους με άδεια κουτιά. Αν χρειαστήκαμε 6 κουτιά για να στήσουμε 3 σειρές, πόσα κουτιά θα χρειαστούμε για να στήσουμε μία παρόμοια πυραμίδα με 5 σειρές; Α. Β. Γ. Δ. 2. Πόσα κουτιά θα χρειαστούμε

Διαβάστε περισσότερα

σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της.

σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της. ΚΕΦΑΛΑΙΟ 5ο ΑΡΙΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σε μια αριθμητική πρόοδο είναι 6 και 9. Να βρείτε α) τη διαφορά και β) τον 0 ο όρο της προόδου.. Σε μια αριθμητική πρόοδο είναι 3 και 7.

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Πηγή: e-selides 1. Βρίσκω και γράφω τα γινόμενα: 4Χ8= 3Χ8= 4Χ9= 3Χ9= 2Χ8= 8Χ8= 6Χ8= 8Χ9= 6Χ9= 2Χ9=

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Τα παρακάτω σχήματα έχουν χωριστεί σε ίσα τετράγωνα. Σε ποια από αυτά έχουμε γραμμοσκιάσει του σχήματος; Να κυκλώσεις το σωστό.

ΘΕΜΑ 1 ο Τα παρακάτω σχήματα έχουν χωριστεί σε ίσα τετράγωνα. Σε ποια από αυτά έχουμε γραμμοσκιάσει του σχήματος; Να κυκλώσεις το σωστό. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Επιτροπή ιαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 10 ος Πανελλήνιος Μαθητικός ιαγωνισμός «Παιχνίδι και Μαθηματικά» 4-3 - 2016 Για μαθητές της Ε Τάξης ημοτικού Ονοματεπώνυμο:.

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα). ΑΣΚΗΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ 1. Να κατασκευάσετε έναν κύκλο και να πάρετε μια χορδή του ΑΒ. Από το κέντρο Κ του κύκλου να φέρετε κάθετη στη χορδή ΑΒ η οποία τέμνει τη χορδή στο σημείο Μ. Να διαπιστώσετε με μέτρηση

Διαβάστε περισσότερα

Σχέδιο μαθήματος στα μαθηματικά

Σχέδιο μαθήματος στα μαθηματικά Σχέδιο μαθήματος στα μαθηματικά Τάξη Δ 2 Ενότητα 7: Μάθημα 5: Αναπτύγματα γεωμετρικών στερεών Εκπαιδευτικός: Νεοκλής Χαραλάμπους Διάρκεια: 80 Ημερ/νία: 14/03/18 Α Δημοτικό Σχολείο Γεροσκήπου Δείκτες επιτυχίας:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2007 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό Κέντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα Καγκουρό 007 Επίπεδο: (για

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση.

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση. 1. Επιλέξτε τη σωστή απάντηση: Η συνισταμένη δύο δυνάμεων είναι μία δύναμη που a. έχει μέτρο ίσο με το άθροισμα των μέτρων των δύο δυνάμεων. b. έχει μέτρο πάντα μεγαλύτερο από το μέτρο της κάθε επί μέρους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα Τι παρατηρήσατε στο video; 1η δραστηριότητα (Φύλλο Εφαρμογής (1) Στο ορθογώνιο τρίγωνο ΑΒΓ

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 6/6/2014 Αριθμητικά.. ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες Ολογράφως: ΥΠ. ΚΑΘΗΓΗΤΗ:......

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα