Άσκηση 1. h 2 B = 1 + A = Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroedinger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού V(x) = 0:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άσκηση 1. h 2 B = 1 + A = Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroedinger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού V(x) = 0:"

Transcript

1 Άσκηση 1 Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroediger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού Vx = 0: Ψ A + κ Ψ A = 0 Ψ B + κ Ψ B = 0 Για το σημείο x = 0 η εξίσωση Schroediger θα είναι: όπου: Ψ + m h E Vx Ψ = 0 Ψ + κ Ψ = λδxψ Οι λύσεις της Ψ θα είναι της μορφής: κ = me h, λ = mg h Ψ A = e iκx + Ae iκx Ψ B = Be iκx Σημείωση: Η συνάρτηση Ψ = Ae iκx είναι ιδιοσυνάρτηση του τελεστή της ορμής ˆp = ih d hk dx, με ιδιοτιμή hκ, και περιγράφει κίνηση προς τα δεξιά όταν k > 0, με ταχύτητα m. Αντίστοιχα, περιγράφει κίνηση προς τα αριστερά όταν k < 0. Ψ A 0 = Ψ B A = B +a a Ψ dx + +a a κ Ψdx = +a a λδxψdx Για lim a 0 +a Ψ +a Ψ a + κ Ψdx = λψ0 a Ψ B0 Ψ A0 = λψ0 iκb iκ iκa = λ1 + A iκ1 + A iκ iκa = λ1 + A λ A = λ + iκ iκ B = 1 + A = λ + ik 1

2 Οι συντελεστές ανάκλασης R-Reflectio και μετάδοσης T-Trasmissio θα είναι: R = A = T = B = λ λ + 4κ 4κ λ + 4κ Παρατηρούμε ότι επιβεβαίωνεται η σχέση R + T = 1. Άσκηση Η κυματοσυνάρτηση ενός συστήματος είναι Ψθ, ϕ = 3 8π si ϕ si θ + i cos θ. Να δειχτεί ότι η Ψ είναι ιδιοσυνάρτηση του ˆL. Ποια είναι η ιδιοτιμή; Ποια είναι τα δυνατά αποτελέσματα μιας μέτρησης του τελεστή L z και με ποια πιθανότητα; Γνωρίζω ότι si ϕ = eiϕ e iϕ i. Επομένως: 3 Ψθ, ϕ = 8π = 1 i [ si θ e iϕ e iϕ i 3 8π si θeiϕ 1 i = i Y 11 + i Y i Y 10 ] + i cos θ 3 3 8π si θe iϕ + i 8π cos θ Pm = 1 = C 1 = 1/4 Pm = 1 = C = 1/4 Pm = 0 = C 3 = 1/ Άσκηση 3 Αν ο τελεστής Ĥ ενός κβαντομηχανικού συστήματος είναι άθροισμα τελεστών H = k 1 H i, όπου ο κάθε ένας αποτελείται από μία μόνο συντεταγμένη, τότε η ανεξάρτητη του χρόνου εξίσωση του Schroediger έχει λύση το γινόμενο των λύσεων των εξισώσεων ψ = k 1 ψ k, η δε ενέργεια του συστήματος θα δίνεται από τη σχέση: E = k 1 E i Αρκεί να αποδείξουμε ότι ο τελεστής H = k 1 H i και η κυματοσυνάρτηση ψ = k 1 ψ k

3 ικανοποιούν την χρονοανεξάρτητη εξίσωση του Schroediger: k k k k k k k k H i ψ i = H i ψ j = H i ψ j = E i ψ j = i=1 } {{ } H Άσκηση 4 i=1 } {{ } ψ i=1 j=1 i=1 j=1 i=1 j=1 k i=1 E i } {{ } E k j=1 ψ j } {{ } ψ Έστω τελεστής που δεν εξαρτάται από το χρόνο Ĝ. Να δειχτεί ότι: Γνωρίζουμε εξ ορισμού ότι ισχύει: d dt Ĝ = 1 [Ĝ, Ĥ] ih G = Ψ GΨdx Οπότε: d dt Ĝ = d Ψ GΨdx dt = Ψ GΨ + Ψ G Ψ + Ψ GΨ dx = Ψ GΨ + Ψ GΨ dx Οπότε με αντικατάσταση: d dt G = 1 1 = = 1 ih HΨ = ih Ψ t Ψ t = 1 ih HΨ ih HΨ GΨ + Ψ G 1 ih HΨ dx ih Ψ GHΨ HΨ GΨ dx Ψ GH HG Ψdx = 1 [G, H] ih 3

4 Σημείωση: Αν ο τελεστής Ĝ δεν είναι ανεξάρτητος του χρόνου, τότε θα ισχύει: d dt G = 1 [G, H] + G ih t G Από τη σχέση αυτή φαίνεται πως αν ο Ĝ είναι ανεξάρτητος του χρόνου, δηλαδή t = 0, και αν ο τελεστής μετατίθεται με τον χαμιλτονιανό τελεστή, δηλαδή [G, H] = 0, τότε η μέση d G τιμή του φυσικού μεγέθους που περιγράφεται από τον Ĝ είναι σταθερή, δηλαδή dt = 0. ηλαδή το μέγεθος που περιγράφεται από τον τελεστή Ĝ θα είναι διατηρήσιμο και συνεπώς θα αποτελεί σταθερά της κίνησης. Άσκηση 5 Για σωματίδιο που κινείται σε δυναμικό Vx, να αποδειχτεί ότι: d dt x = 1 m [ xp x + p x x ] Εφαρμόζουμε την προηγούμενη σχέση, για G = x : d dt x = 1 ih [x, H] = i h [ H, x ] H = p m + Vx = 1 p m x + p y + p z + Vx Εφαρμόζουμε την ταυτότητα [A, BC] = [A, B]C + B[A, C] εδώ είναι A = H, B = C = x: [H, x ] = [H, xx] = [H, x]x + x[h, x] Όμως: [ ] p [H, x] = x m + p y m + p z m + Vx, x = 1 m [p x, x] [p x, x] = [x, p x] = [x, p x p x ] = [x, p x ]p x p x [x, p x ] = ihp x p x ih = ihp x 4

5 [H, x ] = 1 m [ ihp xx + x ihp x ] = ih m p xx + xp x d dt x = i h [H, x ] = i [ h ih ] m p xx + xp x = 1 m p xx + xp x = 1 m [ p xx + xp x ] Άσκηση 6 α. Να βρεθούν οι ιδιοσυναρτήσεις και οι ιδιοτιμές του τελεστή x + d dx. β. Ποιες τιμές πρέπει να έχουν τα α, β, ώστε οι τελεστές Â = αx και ˆB = β d dx να είναι ερμιτιανοί; α. Εξ ορισμού ένας τελεστής Â έχει ιδιοσυνάρτησεις Ψ και ιδιοτιμές λ, όταν ισχύει η σχέση: ÂΨ = λψ Επομένως, αρκεί να λύσουμε την εξίσωση ιδιοτιμών: x + d Ψ = λψ dx xψ + Ψ = λψ Ψ = λ xψ Ψ Ψ = λ x l Ψ = λ x l Ψ = λx x + C x λx Ψ = Ce β. Εξ ορισμού ένας τελεστής Â λέγεται ερμιτιανός όταν ισχύει η σχέση: ψ Aϕdx = Aψ ϕdx Επομένως, αρκεί να λύσουμε την εξίσωση: 5

6 ψ αxϕdx = αxψ ϕdx α = α α R ψ Bϕdx = Bψ ϕdx ψ β dϕ dx dx = β dψ ϕdx dx Άσκηση 7 Έστω yr = Fr exp γr, όπου ισχύει: F γf + r F = 0. Να κατασκευαστούν οι πρώτες τρεις κανονικοποιημένες σφαιρικά συμμετρικές ιδιοσυναρτήσεις του ατόμου του υδρογόνου σε ατομικές μονάδες. 1r γr 1 + r r = 0 1r + γ + r 1 = 0 γ + r 1 = 0 γ = 1 Είναι y0 = 0 F0 = 0. Άρα το πολύωνυμο Fr πρέπει να είναι βαθμού μεγαλύτερο ή ίσου του ένα. yr = rψr, γ = 1, = 1, ψr = Fre γr ψr = Ne r Άσκηση 8 α. Να δειχτεί ότι το γινόμενο δύο ερμιτιανών τελεστών είναι ερμιτιανός, μόνο αν οι τελεστές μετατίθενται. β. Πότε λέγεται πως ένα τελεστής είναι θετικά ορισμένος; γ. Να δειχτεί ότι υπάρχει ερμιτιανός τελεστής της μορφής A A και θετικά ορισμένος. δ. Να δειχτεί ότι αν Α,Β είναι δύο τυχόντες τελεστές, τότε οι παρακάτω συνδυασμοί είναι ερμιτιανοί τελεστές: AB + BA iab BA 6

7 α Έστω δύο ερμιτιανοί τελεστές Â, ˆB, οπότε εξ ορισμού ισχύει: ψ Aϕdx = Aψ ϕdx ψ Bϕdx = Bψ ϕdx Για να είναι το γινόμενό τους ερμιτιανός τελεστής πρέπει και αρκεί: ψ ABϕdx = ABψ ϕdx ψ ABϕdx = Aψ Bϕdx = BAψ ϕdx Απ όπου προκύπτει ότι η παραπάνω ισότητα θα ισχύει μόνο όταν: Δηλαδή, μόνο όταν οι Â, ˆB μετατίθενται. AB = BA [A, B] = 0 β Ένας τελεστής λέγεται θετικά ορισμένος όταν έχει πάντα θετική μέση τιμή. γ Για να είναι ο A A ερμιτιανός τελεστής πρέπει και αρκεί: ψ, A Aϕ = A Aψ, ϕ Είναι εξ ορισμού: ψ, A Aϕ = A A ψ, ϕ = A A ψ, ϕ = A Aψ, ϕ ορ. δ Για να είναι ένας τελεστής ερμιτιανός, αρκεί να είναι ίσος με τον συζυγή του: AB + BA = AB + BA = B A + A B = BA + AB = AB + BA [iab BA] = i AB BA = i[ab BA ] = ib A A B = iba AB = iab BA Όπου μεταξύ άλλων ιδιοτήτων κάναμε χρήση ότι οι κβαντομηχανικοί τελεστές είναι ερμιτιανοί, δηλαδή ότι A = A, B = B. Άσκηση 9 Να δεχτεί η γενικευμένη έκφραση της απροσδιοριστίας για φυσικά μεγέθη Α, Β: A B 1 [A, B] 7

8 A = A A = A B = B B = B Από ανισότητα Schwartz ισχύει: A = ψ, A ψ = Aψ, Aψ = Aψ B = ψ, B ψ = Bψ, Bψ = Bψ A B = Aψ Bψ Aψ, Bψ Προσθέτωντας κατά μέλη παίρνουμε: Aψ, Bψ = ψ, ABψ Aψ, Bψ = BAψ, ψ Aψ, Bψ = ψ, ABψ + BAψ, ψ = ψ, ABψ ψ, BAψ + BAψ, ψ + ψ, BAψ = ψ, [A, B]ψ + ψ, AB + BAψ [A, B] AB + BA Aψ, Bψ = ψ, ψ + ψ, ψ [A, B] AB + BA = ψ, i ψ + ψ, ψ i [ ] [A, B] AB + BA = ψ, i + ψ i [A, B] AB + BA = i + i [A, B] AB + BA = i + i Οι τελεστές [A,B] i και AB+BA είναι ερμιτιανοί, επομένως η μέση τιμή τους είναι πραγματικός αριθμός, άρα το εσωτερικό γινόμενο είναι μιγαδικός αριθμός. Γνωρίζουμε ότι z C : z Rez, z Imz. Επομένως: Aψ, Bψ [A, B] = 1 [A, B] i 8

9 Εφαρμογή για θέση x και ορμή p ενός σωματιδίου: A x, B p : x p 1 [x, p] = 1 ih = h Άσκηση 10 α Έστω ˆΠ ο τελεστής της ομοτιμίας parity. Να βρεθούν οι ιδιοτιμές του. β Έστω ˆT α ο τελεστής μετατόπισης. Να βρεθεί το αποτέλεσμα της δράσης του TΠ 3 TΠ 3 σε μια συνάρτηση. γ Να δειχτεί ότι ˆT α = e i h apˆ x. α Για να βρούμε τις ιδιοτιμές του τελεστή ˆΠ, αρκεί να λύσουμε την εξίσωση ιδιοτιμών: Πfx = λfx Εφαρμόζουμε τον τελεστή ˆΠ και στα δύο μέλη της εξίσωσης: β Είναι ˆ Tα fx = fx + α. Επομένως: γ Είναι: ΠΠfx = Πλfx Πf x = λπfx fx = λ fx λ = ±1 T α Π 3 T α Π 3 = T α Π 3 T α f x = T α Π 3 f x + α = T α fx α = fx e i h αp x fx = e i h α ih d dx fx = e α d dx fx Στη συνέχεια θα αναπτύξουμε τον τελεστή e α d dx σε μία σειρά McLauri: e α d dx fx = 1 + α d 1! dx + α d! dx +... fx = fx + α df 1! dx + α d f! dx +... = fx + α = T α fx 9

10 Το άθροισμα που εμφανίζεται είναι ουσιαστικά το ανάπτυγμα McLauri της συνάρτησης fα + x, γύρω από το σημείο a = 0. Θυμίζουμε ότι: Άσκηση 11 fα = f0 + αf 0 + a! f 0 + a3 3! f Κβαντομηχανική Ι, Τραχανάς, Κεφ. 7, σελ. 319 α Με αφετηρία τη βασική μεταθετική σχέση [x, p] = i, δείξτε ότι οι τελεστές α, α ικανοποιούν τη σχέση: [α, α ] = 1 όπου: α = 1 x + ip, α = 1 x ip [α, α ] = αα α α = 1 x ixp + ipx i p 1 x + ixp ipx i p = 1 ipx ixp = i[x, p] = i = 1 β Δείξτε ότι η χαμιλτονιανή γράφεται συναρτήσει των τελεστών α, α, ως: H = α α + 1 όπου: H = 1 p + x α α = 1 x + ixp ipx i p = 1 [ x + p + ixp px ] = 1 x + p + 1 i[x, p] = H 1 H = α α

11 γ Αποδείξτε ότι οι τελεστές α, α ικανοποιούν -με τη χαμιλτονιανή- τις ακόλουθες μεταθετικές σχέσεις: [H, α] = α, [H, α ] = a Χρησιμοποιούμε για την χαμιλτονιανή τη σχέση που την εκφράζει συναρτήσει των τελεστών α, α, όπως δείξαμε στο β : [H, α] = Hα αh = α α + 1 α α α α + 1 = α α αα α = αα α α α = [α, α ]α = α Ομοίως αποδεικνύεται ότι [H, α ] = α. δ Βάσει των μεταθετικών σχέσεων του γ, αποδείξτε ότι οι τελεστές α, α έχουν την ακόλουθη ιδιότητα: Όταν δρουν πάνω σε μια ιδιοσυνάρτηση, ψ E, της χαμιλτονιανής Ĥ με ιδιοτιμή E, ο μεν ˆα ανεβάζει την ιδιοτιμή κατά μονάδα, ο δε ˆα την κατεβάζει επίσης κατά μονάδα. Αρκεί να δείξουμε ότι οι κυματοσυναρτήσεις α ψ E και αψ E, έχουν ιδιοτιμές E + 1 και E 1 αντίστοιχα. [H, α ] = α Hα α H = α Hα ψ E α Hψ E = α ψ E Εφόσον όμως η ψ E είναι ιδιοσυνάρτηση του τελεστή Ĥ με ιδιοτιμή E, ισχύει εξ ορισμού ότι: Hψ E = Eψ E. Οπότε: Hα ψ E = α ψ E + α Eψ E Hα ψ E = α ψ E + Eα ψ E Hα ψ E = E + 1 α ψ E Οπότε πράγματι δείξαμε ότι η κυματοσυνάρτηση α ψ E είναι ιδιοσυνάρτηση του τελεστή Ĥ με ιδιοτιμή E + 1. Ομοίως αποδεικνύεται ότι Hαψ E = E 1ψ E. 11

12 Σχόλιο: εφόσον για τυχούσα ιδιοτιμή E, οι E ± 1 είναι επίσης ιδιοτιμές, αυτό συνεπάγεται ότι η χαμιλτονιανή έχει ισαπέχουσες ιδιοτιμές με σταθερή απόσταση μεταξύ τους ίση με ένα. Έτσι, E = E 0 +, όπου E 0 η χαμηλότερη ιδιοτιμή που αντιστοιχεί στη θεμελιώδη κατάσταση. ε Δείξτε ότι E 0 = 1, χρησιμοποιώντας την H = α α + 1. Εφόσον η E 0 είναι ιδιοτιμή της χαμιλτονιανής, και έστω ότι η αντίστοιχη ιδιοσυνάρτηση είναι η ψ 0, τότε εξ ορισμού ισχύει: α α + 1 Hψ 0 = E 0 ψ 0 ψ 0 = E 0 ψ 0 α αψ 0 = E 0 1 ψ 0 E 0 = 1 στ Επικαλεστείτε την ιδιότητα της ψ 0 που αναφέραμε πριν, για να γράψετε πρωτοτάξια διαφορική εξίσωση βάσει της οποίας η ψ 0 μπορεί να υπολογιστεί αμέσως. Με γνωστή την ψ 0, τι θα κάνατε για να υπολογίσετε τις ανώτερες ιδιοσυναρτήσεις; Κάντε το τουλάχιστον για τις δύο πρώτες από αυτές. αψ 0 x = 0 1 x + d ψ 0 x = 0 dx Η λύση της οποίας είναι: xψ 0 x + dψ 0 dx = 0 ψ 0 x = Ce x Η σταθερά C υπολογίζεται από τη συνθήκη κανονικοποίησης: ψ 0xψ 0 xdx = 1 C e x dx = 1 C π = 1 C = 4 1 π Επομένως η ιδιοσυνάρτηση της θεμελιώδους κατάστασης του αρμονικού ταλαντωντή είναι η: ψ 0 x = 4 1 e x π 1

13 Οι ανώτερες ιδιοσυναρτήσεις υπολογίζονται εφαρμόζοντας τον τελεστή αναβίβασης a : ψ 1 x = α ψ 0 x ψ 1 x = 1 x d 1 dx ψ 1 x = 1 4 4π x d dx ψ 1 x = 4 1 xe x 4π 4 ψ 1 x = 4 x xe π 4 π e x e x Ομοίως υπολογίζεται και η ψ x. ζ Αν ψ είναι οι κανονικοποιημένες ιδιοσυναρτήσεις του αρμονικού ταλαντωτή, δείξτε ότι η δράση των α, α πάνω σε αυτές δίνει: αψ = ψ 1, α ψ = + 1ψ +1 Έχουμε ήδη δείξει στο ζ ότι: Hαψ = E 1αψ Η ιδιοσυνάρτηση αψ όμως δεν είναι ακόμη κανονικοποιημένη: αψ, αψ = ψ, α αψ = ψ, H 1 ψ = ψ, Hψ ψ, 1 ψ = E ψ, ψ 1 ψ, ψ Εφόσον όμως δίνεται ότι οι συναρτήσεις ψ είναι κανονικοποιημένες, ισχύει ότι ψ, ψ = 1, οπότε: Επομένως: αψ, αψ = E 1 1 = + 1 = αψ = ψ 1 αψ = ψ 1 13

14 Ομοίως αποδεικνύεται ότι α ψ = + 1ψ +1. η Χρησιμοποιείστε τις αναδρομικές σχέσεις από το ζ για να υπολογίσετε με έναν καθαρά αλγεβρικό τρόπο -δηλαδή χωρίς χρήση της εκπεφρασμένης μορφής των ιδιοσυναρτήσεωντις μέσες τιμές: x ψ, x ψ, p ψ, p ψ, x 4 ψ, x 4 ψ Γνωρίζουμε ότι: α = 1 x + ip α = 1 x ip Θα λύσουμε το σύστημα των εξισώσεων ως προς x, p: Επομένως: α + α = x α α = ip x = ψ, x ψ = ψ, α + αα + α α + α ψ = ψ, α ψ + ψ, αα ψ + ψ, α αψ + ψ, α ψ Εφόσον όμως τα ψ είναι ορθοκανονικά ισχύει ψ, ψ m = δ m, όπου δ m ο τελεστής του Kroecker. Οπότε: x = ψ, αα ψ + ψ, α αψ αα ψ = α + 1ψ +1 = + 1αψ +1 = + 1ψ α αψ = α ψ 1 = α ψ 1 = ψ x = x =

15 Ομοίως αποδεικνύεται ότι p = + 1. Εναλλακτικά, μπορούμε πιο σύντομα να γράψουμε: H = 1 x + p H = 1 x + 1 p p = H x p = E x p = = x 4 = ψ, 4x 4 ψ = ψ, α + α 4 ψ α + α 4 = α + αα + α α + α Αν αναπτύξουμε την παραπάνω ταυτότητα θα προκύψει ένα άθροισμα με 16 όρους. Επειδή όπως είπαμε οι ψ είναι ορθοκανονικές, ψ, ψ m = δ m. Επομένως θα κρατήσουμε εκείνους τους όρους για τους οποίους = m. Για να ικανοποιείται αυτή η συνθήκη, πρέπει και αρκεί σε κάθε έναν από αυτούς τους όρους, ο αριθμός των τελεστών αναβίβασης και καταβίβασης να είναι ίσος μεταξύ τους, ανεξάρτητα από τη σειρά με την οποία οι τελεστές αυτοί δρουν στην ψ. Τελικά, γράφουμε: 4 x 4 = ψ, α α + α α + αα + α α + αα α + α α α ψ α α ψ = + 1α α ψ +1 = α ψ + = αψ +1 = ψ α α ψ = α αψ 1 = 1α ψ = 1α ψ 1 = 1ψ αα ψ = αα αα ψ = + 1αα αψ +1 = + 1αα ψ = + 1 ψ 15

16 α α ψ = α αα αψ = α αα ψ 1 = α αψ = ψ αα αψ = αα ψ 1 = αα ψ = + 1ψ α α α ψ = + 1α α ψ +1 = + 1α αψ = + 1ψ Επομένως: 4 x 4 = = x 4 = θ Να αποδειχθεί ότι η μέση κινητική ενέργεια είναι ίση με τη μέση δυναμική θεώρημα του Virial Εργαζόμαστε κατά τα γνωστά στο σύστημα μονάδων h = m = ω = 1: T = p = + 1 V = x = + 1 Σημείωση: Στην κλασική μηχανή το θέωρημα του Virial παίρνει τη μορφή: T = V Άσκηση 1 Να υπολογιστεί η αβεβαιότητα στη θέση x του κβαντικού αρμονικού ταλαντωτή στη θεμελιώδη κατάστασή του. Εξ ορισμού είναι: x = ψ 0xx ψ 0 xdx 16

17 Η αδιάστατη ιδιοσυνάρτηση δηλαδή για h = m = ω = 1 της θεμελιώδους κατάστασης του κβαντικού αρμονικού ταλαντωτή είναι: Επομένως: ψ 0 x = 4 1 e x π x = 1 x e x dx π = 1 π 1 π = 1 Τελικά: x = x x = 1 x = 1 Άσκηση 13 Δίνεται ο μισός κβαντικός αρμονικός ταλαντωτής: { 1 Vx = kx, x > 0 +, x 0 α Να βρεθούν οι επιτρεπτές τιμές ενέργειάς του. β Να υπολογιστεί η μέση τιμή x στη θεμελιώδη κατάστασή του, και να συγκριθεί με την αντίστοιχη του πλήρους κβαντικού αρμονικού ταλαντωτή. Η θεμελιώδης κατάσταση του μισού κβαντικού αρμονικού ταλαντωτή είναι για = 1, δηλαδή αντιστοιχεί στην ιδιοσυνάρτηση ψ 1 x και ιδιοτιμή E 1 = 3. Οπότε: Γνωρίζουμε ότι: x = = 0 0 ψ 1xxψ 1 xdx x ψ 1 x dx 4 ψ 1 x = 4 x xe π Ωστόσο η ψ 1 x δεν είναι κανονικοποιημένη πλέον, διότι στον πλήρη κβαντικό αρμονικό ταλαντωτή το σωματίδιο κινείται στο διάστημα, +, ενώ στο μισό στο διάστημα 0, +. Για το λόγο αυτό πρέπει να πολλαπλασιάσουμε την ψ 1 x επί έναν παράγοντα, ώστε όταν λάβουμε το ολοκλήρωμα 0 ψ 1 x αυτό να είναι ίσο με 1. 17

18 Οπότε: x = 4 x 3 e x dx π 0 = 4 π 1 = π Άσκηση 14 Εάν τα πολυώνυμα Hermite παράγονται από τη γεννήτρια: Gx, s = exp s + xs = H x s! α να υπολογιστεί το H x ως συνάρτηση της Gx, s. β να δειχθεί ότι ικανοποιούν την εξής διαφορική εξίσωση: H x xh x + H x = 0 { } H x = H 0 x, H 1 x, H x, H 3x...!! 3! Gx, s = H 0 x + H 1 xs + H x! G s = H 1x + H x! Γενικά θα είναι: Ξεκινώντας από τη σχέση: s + 3 H 3x 3! H x = Gx, s s s + H 3x s ! s... G s s=0 Gx, s = exp s + xs = H x s! = H 1 x s=0 Παραγωγίζω κατά μέλη ως προς x: sgx, s = s H x s =! H x s +1 =! H x s! H x s! H x s! 18

19 Για να είναι δύο πολυώνυμα ίσα μεταξύ τους πρέπει και αρκεί οι συντελεστές των ισοβάθμιων δυνάμεων να είναι ίσοι μεταξύ τους. H x s +1 =! H +1x! + 1 s+1 Ή ισοδύναμα: + 1H x = H +1x H x = H 1 x, = 1,,... Επιστρέφουμε στην αρχική σχέση: Gx, s = exp s + xs = H x s! Παραγωγίζω κατά μέλη ως προς s: x sgx, s = x s H x s =! xh x s H x s +1 =!! xh x s! H 1 x s =! H x s 1! H x s 1! H x s 1! H +1 x s! Οπότε τελικά: H +1 x xh x + H 1 x = 0, = 1,,... H x xh x + H +1 x = 0 H x H x xh x + H +1x = 0 H x xh x + H +1x H x = 0 H x xh x + + 1H x H x = 0 H x xh x + H x = 0 γ Να αποδείξετε τον τύπο του Rodriguez: H x = 1 e x d dx e x 19

20 Έχουμε ήδη δείξει, στο προηγούμενο ερώτημα, ότι: H +1 x = xh x H x = xh x + H x [ ] = e x e x H x + e x H x = e x d dx e x H x H x = e x d dx e x H 1 x Οπότε, τελικά: H +1 x = e x [e x e x d d dx dx = 1 d x e dx e x H 1 x H +1 x = 1 +1 e x Η κάνοντας την αντικατάσταση + 1 : H x = 1 e x ] e x H 1 x d+1 e x dx+1 d dx e x δ Να δειχτεί ότι το πολυώνυμο Hermite βαθμού είναι άρτια ή περιττή συνάρτηση, αν το είναι άρτιος ή περιττός αριθμός αντίστοιχα. H x = 1 e x d d x e x = 1 d x e d x e x = 1 H x Οπότε: H x = { 1 k 1 k+1 H x = H x H x = H x ε Να δειχτεί ότι στον κβαντικό αρμονικό ταλαντωτή είναι x = 0, p = 0. 0

21 Οι ιδιοσυνάρτησεις του αρμονικού ταλαντωτή έχουν την εξής μορφή: ψ x = NH xe x όπου N R η σταθερά κανονικοποίησης και H x το πολυώνυμο Hermite βαθμού. Εξ ορισμού ισχύει για τη μέση τιμή ενός κβαντικού μεγέθους: x = ψ, xψ = x ψ x dx = N xh x e x dx Η συνάρτηση όμως gx = xh x e x είναι περιττή. Επομένως το ολοκλήρωμα της στο, + θα είναι μηδέν. Οπότε δείξαμε ότι: x = 0 Ομοίως εργαζόμαστε για τη μέση τιμή της ορμής p: p = ψ, pψ = ψ p = ihn ih dψ dx dx dψ [ ] dx = N H xe x xh xe x H xe x H xe x xh xe x dx = ihn H xh xe x dx + ihn xh x e x dx g 1 x = H xh xe x = H x H 1x e x = H xh 1 xe x Όπως έχουμε δείξει παραπάνω τα πολυώνυμα Hermite είναι άρτια ή περιττά, ανάλογα με το αν ο βαθμός τους είναι άρτιος ή περιττός. Οπότε το γινόμενο H xh 1 x, θα είναι πάντα το γινόμενο μιας άρτιας επί μια περιττή συνάρτηση, δηλαδή περιττή συνάρτηση. Τελικά η g 1 x θα είναι μια περιττή συνάρτηση, αφού η e x είναι άρτια. Μπορούμε επίσης να επικαλεστούμε την ορθογωνιότητα των ιδιοσυναρτήσεων και να γράψουμε: NH xe x NH 1 xe x dx = ψ ψ 1 dx = 0 g x = xh x e x Ομοίως η g x είναι περιττή συνάρτηση. Οπότε τελικά: p = 0 1

22 Άσκηση 15 θεωρώ γραμμικό αρμονικό ταλαντωτή και ψ 0, ψ 1 έστω ότι το σύστημα περιγράφεται από την κατάσταση Ψ = Aψ 0 + Bψ 1. α Να δειχτεί ότι x = 0. β Να βρεθεί πότε το x γίνεται ελάχιστο ή μέγιστο. A Ψ, Ψ = 1 ψ 0 + B ψ 1 + ABψ 0 ψ 1 dx = 1 A ψ 0dx + B ψ 1 + AB ψ 0 ψ 1 dx = 1 Γνωρίζουμε ωστόσο ότι οι ιδιοκαταστάσεις ψ 0, ψ 1 είναι ορθοκανονικές οπότε: ψ 0 = 1, ψ 1 = 1, ψ 0, ψ 1 = 0 A + B = 1, A, B 0 x = Ψ, xψ = xψ dx = x A ψ 0 + B ψ 1 + ABψ 0 ψ 1 dx = A xψ 0dx + B xψ 1 + AB xψ 0 ψ 1 dx = AB ψ 0 x ψ 1 Που γενικά είναι διάφορο του μηδενός. AB = A 1 A = ga g A = 1 A + A A 1 A = 0 1 A A = 0 A = 1 A = ± 1 1 g = ± = ± 1

23 Άσκηση 16 Τη χρονική στιγμή t = 0 ένα σωμάτιο είναι σε Vx = 1 mω x και περιγράφεται από κυματοσυνάρτηση: Ψx, 0 = A 1 ψ x α Να υπολογιστεί η σταθερά κανονικοποίησης A. Ψ x, 0Ψx, 0dx = 1 [ + 1 A ψ x ] 1 ψ x = 1 A +m 1 + ψ xψ m xdx = 1,m } {{ } δ m A 1 = 1 A 1 = 1 A = 1 β Να βρεθεί η Ψx για t > 0. Ψx, t = 1 1 ψ xe ie t h = 1 +1 ψ xe iωt+ 1 γ Να δειχθεί ότι η Ψx, t είναι περιοδική συνάρτηση, να βρεθεί η περίοδός της καθώς επίσης και πότε αυτή γίνεται μέγιστη. 3

24 Ψx, t = Ψ x, t Ψx, t = +1 1 ψ xe iωt+ 1 1 =,m +m +1 e iωt m ψ xψ m x +1 1 ψ xe iωt+ 1 Επομένως η Ψx, t είναι περιοδική συνάρτηση διότι έχει τον περιοδικό παράγοντα: Με περίοδο: T = e iωt m π ω m T max = π ω, m = 1 δ Να υπολογιστεί η μέση τιμή E της ενέργειας, τη χρονική στιγμή t = 0. E 0 = Ψx, 0, HΨx, 0 = Ψ x, 0HΨx, 0dx = +m 1 +1 ψ mhψ dx,m Γνωρίζουμε ωστόσο ότι οι ιδιοσυναρτήσεις ψ ικανοποιούν την εξίσωση ιδιοτιμών Hψ = E ψ, όπου E = + 1 hω. Οπότε: E 0 = +m 1 +1 E ψ mψ dx,m } {{ } Άσκηση 17 = hω δ m Να βρεθεί ποια είναι η εξάρτηση από το χρόνο της παρακάτω ποσότητας: I = Ψ x, tψx, tdx 4

25 Θα υπολογίσουμε την παράγωγο di dt : di dt = d Ψ x, tψx, tdx dt Ψ x, t = Ψx, t + Ψ Ψx, t x, t dx t t Γνωρίζουμε ωστόσο ότι η χρονική εξέλιξη ενός κβαντομηχανικού συστήματος περιγράφεται από την χρονοεξαρτώμενη εξίσωση Schroediger: ih Ψ t = HΨ Ψ t = 1 ih HΨ Ψ t = 1 ih HΨ Αντικαθιστώντας τις μερικές παραγώγους: di + dt = 1 ih HΨ Ψ + Ψ 1 ih HΨ dx = 1 Ψ HΨdx HΨ Ψdx ih Επειδή όμως ο τελεστής της χαμιλτονιανής είναι ερμιτιανός, ισχύει εξ ορισμού ότι: Επομένως: Ψ, HΨ = HΨ, Ψ di dt = 0 Δηλαδή η ποσότητα I είναι ανεξάρτητη του χρόνου. Γι αυτό άλλωστε αν κανονικοποιήσουμε την κυματοσυνάρτηση Ψ σε μια χρονική στιγμή t = 0, θα συνεχίσει να είναι κανονικοποιημένη για οποιαδήποτε άλλη χρονική στιγμή. Σημείωση: Η Ψx, t σαφώς και μεταβάλλεται με το χρόνο με τρόπο που διέπεται από την χρονοεξαρτώμενη εξίσωση Schroediger. Αυτό που παραμένει σταθερό με το χρόνο είναι το Ψx, t dx, δηλαδή η ολική πιθανότητα να βρεθεί το σωματίδιο σε κάποιο σημείο του χώρου. Άσκηση 18 Ποια είναι η ουσιώδης διαφορά ανάμεσα στον κλασσικό και τον κβαντικό αρμονικό ταλαντωτή; Στον κβαντικό αρμονικό ταλαντωτή: 5

26 Η ενέργεια είναι κβαντισμένη μπορεί να πάρει μόνο συγκεκριμένες διακριτές τιμές, συγκεκριμένα τις: E = + 1 hω Διείσδυση σε κλασικά απαγορευμένες περιοχές. Στη θεμελιώδη κατάσταση το κβαντικό σωματίδιο είναι πολύ πιθανότερο να βρεθεί στη γειτονιά της αρχής παρά στα όρια της κλασικής ταλάντωσης. Άσκηση 19 Να δικαιολογήσετε τις απαντήσεις σας: α Έστω σωμάτιο στην πρώτη διεγερμένη στάθμη ενός αρμονικού ταλαντωτή Α.Τ.. Ποια η πιθανότητα να βρεθεί στον θετικό ημιάξονα; β Μπορεί η κυματοσυνάρτηση της δεύτερης διεγερμένης στάθμης ενός Α.Τ. να δίνεται από τη σχέση ψ x = Nx + 1e x a ; γ Εάν σας ζητηθεί να βρείτε τη μέση τιμή ενέργειας Α.Τ. με k = m = ω = 1 για δεδομένη κυματοσυνάρτηση, και βρείτε E = 1 4, είναι σωστό; δ Έστω Α.Τ. σε κατάσταση επαλληλίας Ψ = 1 3 ψ ψ 1, μπορεί η αβεβαιότητα ενέργειας στην κατάσταση αυτή να είναι E = 3; α Η πιθανότητα είναι P[x > 0] = 0.5. Λόγω του ότι το δυναμικό του Α.Τ. παρουσιάζει συμμετρία ανάμεσα στα θετικά x και στα αρνητικά V x = 1 k x = Vx, το ίδιο θα συμβαίνει και για την πυκνότητα πιθανότητας. Εξάλλου η ιδιοσυνάρτηση στην 1η διεγερμένη στάθμη είναι περιττή, οπότε το τετράγωνό της, που εκφράζει την πυκνότητα πιθανότητας, θα είναι άρτια. Δηλαδή: P x = Px. β Δε μπορεί. Στη η διεγερμένη στάθμη η κυματοσυνάρτηση έχει κόμβους, ωστόσο το πολυώνυμο x + 1 δεν έχει πραγματικές ρίζες. γ Είναι λάθος. Οι ενεργειακές στάθμες του Α.Τ. δίνονται από τον τύπο E = + 1 στην αδιάστατη περίπτωση, δηλ. όταν k = m = ω = 1. Οπότε η ελάχιστη ενέργεια που μπορεί να έχει ο Α.Τ., αντιστοιχεί στην θεμελιώδη του κατάσταση, = 0, και είναι ίση με: E mi = E 0 = 1. Οπότε θα είναι πάντα E E 0 = 1. δ Δε μπορεί. Οι δυνατές ενεργειακές τιμές που μπορεί να έχει ο Α.Τ. είναι E 0 = 1, E 1 = 3, που απέχουν μεταξύ τους κατά 1. Επομένως η διασπορά E δε μπορεί να είναι μεγαλύτερη από της διαφορά των ακραίων τιμών. 6

27 Άσκηση 0 α Ποια είναι η φυσική σημασία και τα χαρακτηριστικά της κυματοσυνάρτησης κ.σ.; β Ποια είναι τα χαρακτηριστικά της στα μονοδιάστατα προβλήματα; γ Να δοθεί ο ορισμός του ερμιτιανού τελεστή. Να αναφέρετε και να αποδείξετε τις κυριότερες ιδιότητές του. α Ένα κβαντομηχανικό σύστημα περιγράφεται από την κυματοσυνάρτηση κ.σ. Ψ r, t. Η κ.σ. είναι μιγαδική συνάρτηση και αυτή καθεαυτή στερείται φυσικής σημασίας υπό την έννοια ότι δεν αντιστοιχεί σε μετρήσιμη φυσική ποσότητα. Ωστόσο το τετράγωνο της απόλυτης τιμής της εκφράζει την πυκνότητα πιθανότητας. P r, t = Ψ r, t γ Ερμιτιανός ονομάζεται ένας τελεστής Â για τον οποίο ισχύει ισοδύναμοι ορισμοί: ψ Âϕdx = Âψ ϕdx ψ, Âϕ = Âψ, ϕ ψ Âϕ = Âψ ϕ Άσκηση 0 Το θεώρημα Helliger-Toeplitz αναφέρει ότι ένας παντού ορισμένος συμμετρικός τελεστής A σ ένα χώρο Hilbert H είναι φραγμένος. Εξ ορισμού ο Â είναι συμμετρικός όταν για κάθε ψ, ϕ στο πεδίο ορισμού του Â ισχύει: Aψ, ϕ = ψ, Aϕ Δηλαδή συμμετρικός είναι ο τελεστής που είναι ερμιτιανός. Οπότε το θεώρημα μπορεί να επαναδιατυπωθεί ως ένας παντού ορισμένος ερμιτιανός τελεστής A σ ένα χώρο Hilbert είναι φραγμένος. Απόδειξη: Έστω ότι δεν ισχύει η πρόταση αυτή, δηλαδή ότι ο H περιέχει μια ακολουθία y, τέτοια ώστε y = 1 και Ay. Θεωρούμε τότε τη γραμμική συνάρτηση f ορισμένη σε όλο τον H ως: f x = Ax, y = x, Ay, = 1,,... Η f είναι φραγμένη για κάθε αφού λόγω της ανισότητας Cauchy-Schwartz: f x = x, Ay Ay x 7

28 Επιπλέον η ακολουθία f x είναι φραγμένη αφού: f x = Ax, y Ax Λόγω ομοιόμορφης σύγκλισης? έχουμε ότι f, f k,. Οπότε για x = Ay : Ay = f Ay k Ay Επομένως Ay k που έρχεται σε αντίφαση με την αρχική μας υπόθεση ότι Ay. Άσκηση 1 Να διερευνηθεί εάν το θεώρημα Helliger-Toeplitz μπορεί να εφαρμοστεί στην περίπτωση του χαμιλτονιανού τελεστή για τον αδιάστατο κβαντικό αρμονικό ταλαντωτή και να σχολιασθούν οι συνέπειες. Γνωρίζουμε ότι ο χαμιλτονιανός τελεστής είναι ερμιτιανός, όπως άλλωστε όλοι οι κβαντομηχανικοί τελεστές διαφορετικά οι μέσες τιμές των αντίστοιχων φυσικών μεγεθών που εκφράζουν οι τελεστές, δεν θα είχαν πραγματικές τιμές!. Στη συνέχεια θα εξετάσουμε αν ο χώρος στον οποίο ορίζεται ο Ĥ είναι ένας χώρος Hilbert. Ο χώρος των τετραγωνικά ολοκληρώσιμων συναρτήσεων, δηλαδή των συναρτήσεων για τις οποίες ισχύει: fx dx < συνιστά ένα χώρο όπου ορίζεται το εσωτερικό γινόμενο, ως: f, g = fxg xdx Αποδεικνύεται ότι ο χώρος αυτός των τετραγωνικά ολοκληρώσιμων συναρτήσεων συνιστά ένα πλήρη μετρικό χώρο. Επιπλέον, εφόσον ο χώρος αυτός είναι εφοδιασμένος με την πράξη του εσωτερικού γινομένου, είναι ένας χώρος Hilbert και κατά σύμβαση συμβολίζεται ως L. Θεωρούμε την περίπτωση του κβαντικού αρμονικού ταλαντωτή. Ο χαμιλτονιανός τελεστής Ĥ για την αδιάστατη περίπτωση h = m = ω = 1 είναι: d H = 1 dx + 1 x Ο τελεστής αυτός είναι ερμιτιανός άρα συμμετρικός καίτοι μη φραγμένος, αφού οι ιδιοτιμές της ενέργειας είναι: E = + 1, = 0, 1,,... 8

29 Επομένως ο χαμιλτονιανός τελεστής δεν μπορεί να είναι ορισμένος σε όλο τον L. Διότι αν ήταν, τότε βάση του θεωρήματος Helliger-Toeplitz θα ήταν φραγμένος. Ωστόσο μπορεί να οριστεί σε ένα πυκνό υποσύνολο του L. Άσκηση Να διερευνηθεί ποιοτικά γιατί ο τελεστής της χαμιλτονιανής δεν μπορεί να οριστεί σε όλο τον L. Η χρονοεξαρτώμενη εξίσωση Schroediger για την αδιάστατη περίπτωση h = 1 γράφεται ως εξής: ψ = ihψ Που θυμίζει τη διαφορική εξίσωση ut = Aut, η οποία έχει ως λύση την: ut = e ta u0. Κατ αντιστοιχία λοιπόν οι λύσεις της εξίσωσης Schroediger μπορούν να δοθούν ως: ψx, t = e t ih ψx, 0 Οπότε εύλογα προκύπτει ο προβληματισμός για το πώς μπορούμε να υψώσουμε στην e τον τελεστή Ĥ. Για πεπερασμένους πίνακες γνωρίζουμε ότι ισχύει: 1 expa = k! Ak k=0 Η απόδειξη του οποίου στηρίζεται στο γεγονός ότι ο πίνακας A είναι φραγμένος, διότι μόνο τότε το παραπάνω άθροισμα συγκλίνει βλ. επόμενη άσκηση. Ωστόσο στην περίπτωση του τελεστή Ĥ που δεν είναι φραγμένος, μια τέτοια έκφραση δεν μπορεί να χρησιμοποιηθεί. Δηλαδή, δεν μπορούμε να ισχυριστούμε ότι ισχύει πάντα: 1 exp ith = k! ithk k=0 Ισχύει ωστόσο για τις συναρτήσεις C που οι παράγωγοι τους είναι αρκούντως φθίνουσες. Βλέπε επίσης και Helliger-Toeplitz, θεώρημα κλειστού γράφου και θεώρημα ανοικτής αντιστοίχισης. Άσκηση 1 Να δειχθεί ότι η παρακάτω ακολουθία συγκλίνει: expa =0 1! A όπου A ένας τετραγωνικός πίνακας με πραγματικά στοιχεία. 9

30 Έστω M ένας πραγματικός αριθμός, τέτοιος ώστε A ij < M για όλα τα στοιχεία A ij του πίνακα A. Τότε θα είναι A ij < MM } + MM {{ +.. }. = M. Γενικά μπορούμε να πούμε ότι θα ισχύει A k ij < k M k+1. Εφόσον δε το k=0 k k! Mk+1 συγκλίνει, θα συγκλίνει και η σειρά σε κάποιο τετραγωνικό πίνακα με πραγματικά στοιχεία. Σημείωση: Η σειρά k=0 k k! Mk+1 συγκλίνει γιατί: L = lim α k+1 k α k = lim k = lim M k k + 1 = 0 < 1 Άσκηση k+1 M k+ k+1! k M k+1 k! Δίνεται η κυματοσυνάρτηση Ψx, t = Ae λ x e iωt, A, λ, ω R +. α Να κανονικοποιηθεί η συνάρτηση. β Να υπολογιστούν οι ποσότητες x, x. γ Να υπολογιστεί η αβεβαιότητα x. δ Να υπολογιστεί το διάστημα x σ, x + σ. ε Να υπολογιστεί η πιθανότητα να βρεθεί το σωματίδιο εκτός της περιοχής αυτής. στ Να υπολογιστεί η πιθανότητα να βρεθεί το σωματίδιο εντός της περιοχής αυτής. α Για να κανονικοποιήσουμε την κυματοσυνάρτηση, αρκεί να λύσουμε την εξίσωση: Ψx, tψ x, tdx = 1 Ae λ x e iωt Ae λ x e +iωt dx = 1 A λ 0 A e λ x dx = 1 A e λx dx = 1 0 λx e λx dx = 1 A λ A λ [ e λx ] + 0 = 1 [ e λx ] 0 + = 1 A = λ A = λ β Με βάση τον ορισμό για ένα φυσικό μέγεθος που περιγράφεται από τον τελεστή Â, η 30

31 μέση τιμή του είναι ίση με: A = Ψ ÂΨdx Επομένως: x = Ψ xψdx = xψ Ψdx = x Ψ dx = A xe λ x dx = λxe λ x dx Για τη συνάρτηση gx = λxe λx, ισχύει: g x = λ xe λ x = λxe λ x = gx Επομένως είναι περιττή και έπεται ότι το ολοκλήρωμα της στο, + θα είναι μηδέν. Έτσι: x = 0 Ομοίως εργαζόμαστε για την ποσότητα x : x = Ψ x Ψdx = x Ψ Ψdx = x Ψ dx = A x e λ x dx = λx e λ x dx = λ x e λx dx 0 Το τελευταίο ολοκλήρωμα υπολογίζεται από τον τύπο: x e λx =! 0 λ +1 Είναι λοιπόν: x = λ! λ 3 = 1 λ γ Η αβεβαιότητα για τη θέση x του σωματιδίου υπολογίζεται κατά τα γνωστά: x = x x = 1 λ x = 1 λ δ Το διάστημα x σ, x + σ, είναι το διάστημα σ, +σ. ε Η πιθανότητα να βρεθεί εκτός της περιοχής σ, +σ: Px σ = = σ σ = 1 Ψx dx = σ λe λx dx = 1 [ e λx ] + σ = 1 A e λ x dx σ λx e λx dx [ e λx ] σ + = 1 e λσ = 1 e 1 = 1 e 31

32 Τελικά, λόγω συμμετρίας του προβλήματος, θα είναι: P [x σ x σ] = Px σ = e στ Η πιθανότητα να βρεθεί εντός της περιοχής σ, +σ: P σ x σ + P [x σ x σ] = 1 P σ x σ = 1 e Άσκηση 3 Δίνεται ότι για σωματίδιο ισχύει: Ψx = 3ψ 1 x ψ x ψ 3x. Να γραφεί η χρονοεξαρτώμενη κυματοσυνάρτηση Ψx, t. Είναι: Ψx, t = 3ψ 1 xe ie 1t/h + Άσκηση 4 Να δειχθεί ότι ο τελεστής της ορμής pˆ x είναι ερμιτιανός ψ xe iet/h + 8 ψ 3xe ie 3t/h Εξ ορισμού ένας τελεστής Â λέγεται ερμιτιανός όταν ισχύει η σχέση: ψ Aϕdx = Aψ ϕdx Ο τελεστής της ορμής pˆ x ορίζεται ως εξής: ˆ p x = ih d dx Αναλύοντας το πρώτο μέλος της συνθήκης της ερμιτιανότητας θα καταλήξουμε στο δεύτερο: I = ψ p x ϕdx = ψ ih dϕ dx = ih ψ ϕ dx dx Εφαρμόζουμε ολοκλήρωση κατά παράγοντες: I = ih [ψ ϕ] + ψ ϕdx = ih ψ ϕdx = ihψ ϕdx = ih d dx ψ ϕdx = p x ψ ϕdx 3

33 Για τον υπολογισμό της ποσότητας [ψ ϕ] + κάναμε χρήση της ιδιότητας των κβαντομηχανικών κυματοσυναρτήσεων να είναι τετραγωνικά ολοκληρώσιμες, που σημαίνει ότι για τυχούσα κυματοσυνάρτηση ψ ισχύει: ψ± = 0, καθώς επίσης και της πρότασης: ψ = ψ, η οποία αποδεικνύεται εύκολα ως εξής: ψx = ax + ibx ψ x = a x + ib x ψ x = a x ib x ψx = ax + ibx ψ x = ax ibx ψ x = a x ib x Άσκηση 5 Να δειχτεί ότι οι ιδιοσυναρτήσεις ενός ερμιτιανού τελεστή είναι ορθογώνιες μεταξύ τους. Θεωρούμε ερμιτιανό τελεστή Â και έστω ψ 1, ψ δύο τυχούσες ιδιοσυναρτήσεις του. Εξ ορισμού θα ικανοποιούν την εξίσωση ιδιοτιμών: Aψ 1 = a 1 ψ 1 Aψ = a ψ Επιπλέον εφόσον ο Â είναι ερμιτιανός θα ικανοποιεί την εξίσωση ερμιτιανότητας: ψ Aϕdx = Aψ ϕdx Για ψ = ψ 1, ϕ = ψ, η παραπάνω σχέση γίνεται: ψ 1Aψ dx = Aψ 1 ψ dx ψ 1a ψ dx = a 1 ψ 1 ψ dx a ψ 1ψ dx = a 1 ψ 1ψ dx a 1 a ψ 1ψ dx = 0 Εφόσον οι ιδιοτιμές είναι μοναδικές, έπεται ότι θα είναι: ψ 1ψ dx = 0 ψ 1 ψ Άσκηση 6 Να δειχτεί ότι δύο τελεστές αντιμετατίθενται όταν ο μεταθέτης τους είναι μηδέν. Aψ = a ψ BAψ = Ba ψ = a Bψ = a b ψ Bψ m = b m ψ m ABψ m = Ab m ψ m = b m Aψ m = b a ψ 33

34 Άσκηση 6 Να δειχτεί ότι για τους τελεστές Â, ˆB είναι: [A, B ] = B 1 [A, B], όταν ο ˆB μετατίθεται με τον μετάθετη των Â, ˆB, δηλαδή όταν ισχύει η σχέση: [B, [A, B]] = 0. Θα χρησιμοποιήσω επαγωγή πάνω στο. Για = 1, η σχέση γίνεται: [A, B 1 ] = 1 B 1 1 [A, B] που ισχύει. Έστω ότι ισχύει η σχέση για k =, δηλαδή έστω ότι ισχύει: [A, B k ] = kb k 1 [A, B]. Θα δείξω ότι ισχύει και για k + 1, δηλαδή ότι ισχύει: [A, B k ] = kb k 1 [A, B] [A, B k+1 ] = k + 1B k [A, B]. [A, B k ] = kb k 1 [A, B] B[A, B k ] = B kb k 1 [A, B] B[A, B k ] = kbb k 1 [A, B] B[A, B k ] = kb k [A, B] B[A, B k ] + B k [A, B] = kb k [A, B] + B k [A, B] B[A, B k ] + B k [A, B] = k + 1B k [A, B] B[A, B k ] + [A, B]B k = k + 1B k [A, B] [A, B]B k + B[A, B k ] = k + 1B k [A, B] [A, BB k ] = k + 1B k [A, B] [A, B k+1 ] = k + 1B k [A, B] Ο.ε.δ. Σημείωση: B k [A, B] = B k 1 B[A, B] = B k 1 [A, B]B =... = [A, B]B k Άσκηση 7 Δίνεται ο τελεστής Â = d /dx x και η συνάρτηση ψx = e x /. Να βρεθούν οι ιδιοτιμές του. Αρκεί να λύσουμε την εξίσωση ιδιοτιμών του τελεστή: Aψ = aψ: d /dx x e x / = ae x / 34

35 Είναι: ψ x = e x / = e x / x / = xψx ψ x = ψ x = xψx = ψx xψ x = ψx x xψx = ψxx 1 Οπότε η εξίσωση ιδιοτιμών γίνεται: ψxx 1 x ψx = aψx 1 = a Άσκηση 7 Για t = 0 είναι ψr, 0 = 1 10 ψ100 + ψ 10 + ψ ψ 1 1. α Να βρεθεί η μέση τιμή της ενέργειας E συναρτήσει της ενέργειας της βασικής κατάστασης β Να γραφεί η χρονοεξαρτώμενη ψr, t γ Την πιθανότητα το σύστημα να είναι στην κατάσταση l = 1, m = 1 συναρτήσει του χρόνου. δ Υποθέστε ότι γίνεται μια μέτρηση όπου L = 1, L z = 1. Περιγράψτε την κυματοσυνάρτηση αμέσως μετά μια τέτοια μέτρηση με βάση τα ψ l m hit: χρησιμοποιήστε τα L + και L. α Η μέση τιμή της ενέργειας Ε είναι: E = c E = 1 3 E 1 + E + E + E = 4 10 E E Είναι όμως E = E 1 /4, E 1 = 13.6, επομένως: E = 40 E 1 β Η χρονοεξαρτώμενη ψr, t γράφεται ως εξής: ψr, t = γ Για l = 1, m = 1 το σύστημα περιγράφεται από την ψ 11, οπότε η πιθανότητα είναι: ψ 11 = c 11 = 1 5 δ L + 1 =, L z = 1 ψr, 0 = 1 ψ 10 + ψ ψ

36 Άσκηση 7 Να δειχθεί ότι [L, L x ] = 0. Θα χρησιμοποιήσουμε τις εξής απλές ιδιότητες των μεταθετών: [A + B + C, D] = [A, D] + [B, D] + [C, D], [A, B] = [B, A] και [A, BC] = [A, B]C + B[A, C] η άσκηση μπορεί να λυθεί και πιο σύντομα εάν χρησιμοποιήσουμε περισσότερες ιδιότητες. Επί τω έργω. Είναι L = L x + L y + L z. Άρα: Είναι: [L, L x ] = [L x + L y + L z, L x ] = [L x, L x ] + [L y, L x ] + [L z, L x ] [L x, L x ] = [L x, L x] = [L x, Lx L x ] = [L x, L x ]L x L x [L x, L x ] = 0 [L y, L x ] = [L x, L y] = [L x, L y L y ] = [L x, L y ]L y L y [L x, L y ] Γνωρίζουμε ωστόσο ότι [L x, L y ] = ihl z. Οπότε: Ομοίως είναι: [L y, L x ] = ihl z L y L y ihl z = ihl z L y + L y L z [L z, L x ] = [L x, L z] = [L x, L z L z ] = [L x, L z ]L z L z [L x, L z ] Από τη γνωστή σχέση [L x, L y ] = ihl z μπορούμε με κυκλική μετάθεση να πάρουμε τις αντίστοιχες εκφράσεις για τους υπόλοιπους μεταθέτες. Π.χ. x y, y z, z x. Άρα: Επομένως: [L z, L x ] = ihl y [L x, L z ] = ihl y [L z, L x ] = ihl y L z L z ihl y = 36

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2 Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A

Διαβάστε περισσότερα

Θεµελίωση της κβαντοµηχανικής

Θεµελίωση της κβαντοµηχανικής 1 Θεµελίωση της κβαντοµηχανικής 1.1 Γραµµικοί διανυσµατικοί χώροι Οπως έχουµε µάθει στο εισαγωγικό µάθηµα Κβαντοµηχανικής στο προηγούµενο εξάµηνο, κάθε ϕυσικό σύστη- µα στο µικρόκοσµο περιγράφεται από

Διαβάστε περισσότερα

F = dv dx = kx. V (x) = V (0) + V (0)x + 1 2 V (0)x 2 +.

F = dv dx = kx. V (x) = V (0) + V (0)x + 1 2 V (0)x 2 +. κ ε φ ά λ α ι ο 5 Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Εισαγωγή Θα δείξουµε τώρα ότι ο µαθηµατικός φορµαλισµός που αναπτύξαµε στο προηγού- µενο κεφάλαιο και ο οποίος δίνει έµφαση στην αφηρηµένη αλγεβρική δοµή της κβαντικής

Διαβάστε περισσότερα

Κβαντομηχανική σε μία διάσταση

Κβαντομηχανική σε μία διάσταση vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 2004-2005 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 2004-2005 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 4-5 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ Ανδρέας Φ. Τερζής Πάτρα Γενάρης 5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΕΛΕΣΤΩΝ ΜΕ ΜΗΤΡΕΣ [ΠΙΝΑΚΕΣ]

Διαβάστε περισσότερα

Κβαντοµηχανική ΙΙ. Πρόχειρες σηµειώσεις του µαθήµατος

Κβαντοµηχανική ΙΙ. Πρόχειρες σηµειώσεις του µαθήµατος Κβαντοµηχανική ΙΙ Πρόχειρες σηµειώσεις του µαθήµατος Κωνσταντίνος Φαράκος, Αν. Καθηγητής Τοµέας Φυσικής Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο 6 Ιανουαρίου 011

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

Κβαντικη Θεωρια και Υπολογιστες

Κβαντικη Θεωρια και Υπολογιστες Κβαντικη Θεωρια και Υπολογιστες 2 Μαθηματικη Βαση της Κβαντικής Θεωρίας Κλασσικα και Κβαντικα Μαθηματικα Μοντελα Χειμερινο Εξαμηνο Iωαννης E. Aντωνιου Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο 54124,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Κεφάλαιο 11. Η Εξίσωση Schrödinger σε μια διάσταση

Κεφάλαιο 11. Η Εξίσωση Schrödinger σε μια διάσταση Κεφάλαιο 11. Η Εξίσωση Schrödinger σε μια διάσταση Εισαγωγικές Παρατηρήσεις Στο προηγούμενο κεφάλαιο είχαμε μια πρώτη επαφή με την εξίσωση του Schrödinger, σε μια διάσταση, και την «επίλυση» της για ένα

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες

ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Τύποι - Βασικές έννοιες Όρια - Συνέχεια 37. ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Με τη βοήθεια του παρακάτω θεωρήματος διευκολύνεται ο υπολογισμός ορίων (άλγεβρα ορίων): Αν τα όρια lim f () και lim g()

Διαβάστε περισσότερα

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης Στη Φυσική ενδιαφερόμαστε για την δυναμική εξέλιξη των διαφόρων συστημάτων. Καίριο

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014

ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014 ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ Ιωάννινα 0 Περιεχόμενα ΕΙΣΑΓΩΓΗ 5. Νόρμες.................................... 6. Υπαρξη και μονοσήμαντο.......................... 8 ΟΜΟΙΟΜΟΡΦΗ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4.. Η ταυτότητα της διαίρεσης A. Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης. Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ(x) και δ(x), με δ(x) 0

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 9 Φεβουαρίου 007 Ημερομηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων

ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας

Διαβάστε περισσότερα

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Eisagwg Οι δυναμοσειρές είναι μια πολύ ενδιαφέρουσα κατηγορία σειρών. Βρίσκουν πολύ σημαντικές εφαρμογές στον ορισμό συναρτήσεων καθώς και σε διάφορες

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου Κωνσταντίνος Παπασταματίου Μιγαδικοί Αριθμοί Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος Τηλ. 40598 Κεφ. ο ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ. Η έννοια

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι Γιάννης Σαραντόπουλος Αθήνα 7 Οκτωβρίου 5 Περιεχόµενα Συµβολισµός

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke:

Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke: Άσκηση Μ Σπειροειδές ελατήριο Νόμος του Hooe και εξίσωση δυνάμεων Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooe: Οι ελαστικές τάσεις και οι παραμορφώσεις

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα