Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +"

Transcript

1 Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),, t, h R.. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f () = β) f () = ( -) γ) f () = δ) f () = ε) f () = log ( + - ) + log στ) f () = συν ημ - + εφ , [0, π] ζ) f () = e ln 45

2 3. Δίνεται η συνάρτηση f () = +. α) Να εξετάσετε ποιες από τις συναρτήσεις του παρακάτω πίνακα είναι ίσες με τη συνάρτηση f. f () = f 4 () = ( - - f () = 3 - f 3 () = + ) f 5 () = lne + ln (+) f 6 () = e β) Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο οι παραπάνω συναρτήσεις είναι όλες ίσες. 4. Δίνονται οι συναρτήσεις f () = - f () = f 3 () = - f 4 () = ( -) - f 5 () = f 6 () = α) Να βρείτε τα πεδία ορισμού καθεμιάς συνάρτησης. β) Να εξετάσετε αν υπάρχουν ζεύγη ίσων συναρτήσεων. γ) Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο οι παραπάνω συναρτήσεις είναι όλες ίσες. 5. ** Δίνονται οι συναρτήσεις f () = > 0. α) Να βρείτε τα πεδία ορισμού των f, g β) Για ποια τιμή του α ισχύει f = g; -, g () = α α ( -), α R, 46

3 6. ** Δίνονται οι συναρτήσεις f () =,, Να βρείτε τις συναρτήσεις: και g () = α) f + g β) f g γ) ln, - 3, f g ** Δίνεται η συνάρτηση f () = log. α) Να βρείτε το πεδίο ορισμού της f για κάθε, του πεδί- β) Να αποδείξετε ότι f ( ) + f ( ) = f ου ορισμού της. 8. ** Δίνεται η συνάρτηση f () = ln α) Να βρείτε το πεδίο ορισμού της f. β) Να αποδείξετε ότι f () = e για κάθε του πεδίου ορισμού της. γ) Να κάνετε τη γραφική παράσταση της f.. 9. ** Δίνεται η συνάρτηση f με πεδίο ορισμού το διάστημα [0, ]. Ποιο είναι το πεδίο ορισμού των συναρτήσεων: α) f ( ) β) f ( - 4) γ) f (ln) 0. ** Δίνεται η συνάρτηση f : R R για την οποία ισχύει f ( + y) + f ( - y) = f () + f (y) για κάθε, y R. α) Να αποδείξετε ότι η γραφική παράσταση της f περνά από την αρχή των αξόνων. β) Να αποδείξετε ότι η f είναι άρτια. γ) Να αποδείξετε ότι για κάθε R ισχύει ότι f ( ) = f (). 47

4 . ** Αν για μια συνάρτηση f ισχύει f () - 3f ( f (). ) =, 0, να βρείτε το. ** Δίνεται η συνάρτηση f () = , (- 5, 5). α) Να βρείτε τη διαφορά f () - f (4). β) Να βρείτε τον αριθμό Μ > 0 τέτοιο ώστε για κάθε (- 5, 5). f () - f (4) Μ ** Είναι γνωστό ότι μια συνάρτηση f είναι άρτια, όταν για κάθε D f, ισχύει - D f και f (-) = f (), για κάθε D f, ενώ είναι περιττή όταν f (-) = - f () για κάθε D f. α) Να εξετάσετε ποιες από τις παρακάτω γραφικές παραστάσεις παριστάνουν άρτια ή περιττή συνάρτηση ή δεν παριστάνουν άρτια ούτε περιττή. y y 0 0 (Ι) (ΙΙ) y y 0 0 (ΙΙΙ) (ΙV) 48

5 y 0 (V) β) Αν η συνάρτηση f έχει πεδίο ορισμού το R, να αποδείξετε ότι η συνάρτηση g () = f () + f (-) είναι άρτια. γ) Αν μια συνάρτηση f είναι περιττή και παρουσιάζει μέγιστο για = 0, να αποδείξετε ότι η f παρουσιάζει ελάχιστο για = ** Μια συνάρτηση f με πεδίο ορισμού το R είναι περιττή. Αν η f είναι γνησίως αύξουσα στο διάστημα [α, β] με α, β > 0, να αποδείξετε ότι η f είναι γνησίως αύξουσα και στο διάστημα [- β, - α]. 5. ** α) Για κάθε α > 0, να δείξετε ότι α + α. β) Να βρείτε τα ακρότατα της συνάρτησης f () = + με > ** Έστω f, g δύο συναρτήσεις με κοινό πεδίο ορισμού το διάστημα Δ, οι οποίες παίρνουν θετικές τιμές για κάθε Δ και οι οποίες είναι γνησίως είναι γνησίως φθί- f g αύξουσες στο Δ. Να αποδείξετε ότι η συνάρτηση νουσα στο Δ. 49

6 7. ** Η γραφική παράσταση C f μιας συνάρτησης f φαίνεται στο διπλανό σχήμα. Από αυτό να βρείτε: α) το πεδίο ορισμού της f β) το σύνολο τιμών της f γ) το διάστημα και το είδος μονοτονίας της f δ) τα ακρότατα της f y ε) τον τύπο της f, αν είναι γνωστό ότι: στο διάστημα [-, 0) είναι υπερβολή της μορφής y = στο διάστημα [0, ) είναι παραβολή της μορφής y = α. α και 8. ** Δίνεται η συνάρτηση f () = -, [-, 3]. Να παραστήσετε γραφικά τις συναρτήσεις: α) f () = f () + β) f () = f () γ) f 3 () = - f () δ) f 4 () = f () 9. ** Στο διπλανό σχήμα δίνεται η y γραφική παράσταση μιας συνάρτησης f με πεδίο ορισμού το [, 4]. Να παραστήσετε γραφικά τις συναρτήσεις: α) g () = f () + 0 3/ 3 4 β) h () = - f () γ) φ () = f (). 50

7 0. ** α) Να βρείτε τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων της μορφής f () = ν, ν θετικός ακέραιος. β) Ομοίως των γραφικών παραστάσεων των συναρτήσεων f () = ν+, ν θετικός ακέραιος.. ** Έστω η συνάρτηση f () = f και f f -. Να προσδιορίσετε τις συναρτήσεις f,. Στη συνέχεια να σχεδιάσετε τις γραφικές παραστάσεις των συναρτήσεων αυτών στο ίδιο σύστημα αξόνων.. ** Είναι γνωστό ότι μια συνάρτηση f με πεδίο ορισμού D f είναι περιοδική με περίοδο Τ > 0, όταν για κάθε D f ισχύουν: + T D f, - T D f f ( + T) = f ( - T) = f () Να παραστήσετε γραφικά τη συνάρτηση f με τύπο: f () = ημ με [- 4π, 4π]. Τι παρατηρείτε; 3. ** Δίνονται οι συναρτήσεις: f () = α) Να βρείτε τα πεδία ορισμού τους. - β) Να βρείτε τις συναρτήσεις f + g, f g., g () = - γ) Χρησιμοποιώντας τις f, g να δικαιολογήσετε ότι (gof) () g () f (). δ) Να εξετάσετε αν για τις παραπάνω συναρτήσεις f, g οι συναρτήσεις fog και gof είναι ίσες.. 4. ** Ποια καμπύλη είναι η γραφική παράσταση της συνάρτησης g () = f (f (f ())), αν f () = ; - 5. ** Να γράψετε τη συνάρτηση f () =, > 0 ως σύνθεση δύο άλλων συναρτήσεων. 5

8 6. ** Έστω η συνάρτηση f () = α, η οποία ονομάζεται και γραμμική συνάρτηση. Να δείξετε ότι η σύνθεση δύο γραμμικών συναρτήσεων είναι γραμμική συνάρτηση. Να εξετάσετε αν το άθροισμα δύο γραμμικών συναρτήσεων είναι γραμμική συνάρτηση. Το ίδιο και για το γινόμενο. 7. ** Δίνονται οι συναρτήσεις f, g ορισμένες στο R, οι οποίες είναι γνησίως μονότονες και έχουν το ίδιο είδος μονοτονίας (είναι και οι δύο γνησίως αύξουσες ή και οι δύο γνησίως φθίνουσες). α) Να δείξετε ότι η συνάρτηση fog είναι γνησίως αύξουσα. β) Να εξετάσετε τη μονοτονία των συναρτήσεων fof και gog. γ) Να εξετάσετε τη μονοτονία της συνάρτησης f () = ln [ln ()], >. 8. ** Έστω μια συνάρτηση f με πεδίο ορισμού το R, για την οποία ισχύει (fof) () - f () =, για κάθε R. Να αποδείξετε ότι υπάρχει η αντίστροφη της f. 9. ** Να βρείτε όλες τις συναρτήσεις της μορφής f () = α + β, α 0, σε καθεμιά από τις περιπτώσεις: α) f = f - β) f = - f - γ) f = f - + c (c 0, σταθερά) 30. ** Δίνεται η συνάρτηση f () = α) Να αποδείξετε ότι η f είναι -. β) Να βρείτε την f ** Δίνονται οι συναρτήσεις f () = ορισμού το διάστημα Δ = (0, + ). Α. α) Να βρείτε μια συνάρτηση g ώστε fog = h. β) Να βρείτε μια συνάρτηση φ ώστε φof = h. και h () = B. α) Να βρείτε τις f -, g -, h - (αντίστροφες των f, g, h). β) Να βρείτε τις f - og - και g - of -. με κοινό πεδίο γ) Να εξετάσετε αν g - of - = h - (δικαιολογήστε την απάντησή σας). 5

9 3. ** Δίνεται τρίγωνο ΑΒΓ με βάση ΒΓ = α και ύψος ΑΔ = h. Ένα ορθογώνιο ΚΛΜΝ είναι εγγεγραμμένο στο ΑΒΓ, όπως δείχνει το σχήμα. α) Να εκφράσετε την περίμετρο L του ορθογωνίου ως συνάρτηση του ύψους του. Α h Ν Μ α Β Κ Δ Λ β) Να εκφράσετε το εμβαδόν Ε του ορθογωνίου ως συνάρτηση του. Γ 33. ** Ένας παίκτης Π του ποδοσφαίρου επιτίθεται προς το αντίπαλο τέρμα ΒΓ κινούμενος πάνω στην ευθεία ΠΑ. Αν ΑΒ = 0 και ΒΓ = 6: Π Α ω 0 Β 6 Γ α) να υπολογίσετε τις εφαπτομένες των γωνιών ΑΠΒ και ΑΠΓ ως συνάρτηση της απόστασης ΠΑ = β) να υπολογίσετε την εφω ως συνάρτηση του γ) από ποια απόσταση θα πρέπει να σουτάρει ο παίκτης ώστε να έχει το ευρύτερο δυνατό οπτικό πεδίο προς το τέρμα; Δίνεται ότι εφ (α - β) = εφα - εφβ εφα εφβ. 53

10 34. ** Δύο κινητά διασταυρώνονται σε ένα σημείο Α και το πρώτο κατευθύνεται βόρεια του Α με σταθερή ταχύτητα υ = 60 km/h, ενώ το δεύτερο κατευθύνεται ανατολικά του Α με σταθερή ταχύτητα υ = 80 km/h. α) Να εκφράσετε την απόσταση s των κινητών ως συνάρτηση του χρόνου t. Με πόση ταχύτητα απομακρύνεται το ένα από το άλλο; S (t) Α S (t) β) Αν Μ το μέσον της απόστασης s να εκφράσετε την απόσταση ΑΜ σαν συνάρτηση του t. γ) Πόσο πρέπει να ελαττωθεί η ταχύτητα του δεύτερου κινητού, ώστε μετά από 4 ώρες το Μ να απέχει από το Α 80 km; 35. ** Μια μπάλα πετιέται κατακόρυφα από το έδαφος με ταχύτητα 0 m/s. Το ύψος h από το έδαφος στο οποίο φθάνει η μπάλα είναι συνάρτηση του χρόνου t και δίνεται από τον τύπο h = f (t) = 0t - 5t. α) Να βρείτε το ύψος στο οποίο φθάνει η μπάλα τις χρονικές στιγμές: s, s, s, 3 s, 7 s, 4 s. β) Ποιο είναι το μεγαλύτερο ύψος στο οποίο φθάνει η μπάλα; γ) Ύστερα από πόσο χρόνο η μπάλα θα φθάσει σε ύψος δ) Να βρείτε το λόγο υ (t) = f (t) - f () t -, t. 60 m; 9 54

11 36. ** Το τμήμα παραγωγής μιας αυτοκινητοβιομηχανίας λειτουργεί μέχρι 0 ώρες ημερησίως και ο αριθμός των αυτοκινήτων που παράγει κάθε μέρα μετά από t ώρες λειτουργίας είναι N (t) = 00t - 5t (t ακέραιος). Το ημερήσιο κόστος K () σε χιλιάδες εύρο για την παραγωγή αυτοκινήτων είναι K () = α) Να βρείτε το ημερήσιο κόστος Κ ως συνάρτηση του χρόνου λειτουργίας του τμήματος παραγωγής. β) Μέχρι πόσες ώρες μπορεί να λειτουργεί το τμήμα παραγωγής ώστε το η- μερήσιο κόστος παραγωγής να μην υπερβαίνει τα 3,885 εκατομμύρια εύρο ; 37. ** Το εισιτήριο του τρένου που συνδέει δύο πόλεις κοστίζει 0 δρχ. για παιδιά μικρότερα των 3 ετών,.500 δρχ. για παιδιά από τριών ετών και άνω αλλά μικρότερα των ετών και δρχ. για κάθε άτομο από ετών και άνω. α) Να εκφράσετε την τιμή του εισιτηρίου ως συνάρτηση της ηλικίας. β) Να παραστήσετε γραφικά τη συνάρτηση. 38. ** Στο θερμόμετρο του σχήματος μπορούμε να έχουμε τη θερμοκρασία ενός χώρου σε βαθμούς Κελσίου (C), αλλά και σε βαθμούς Φαρενάιτ (F). Θεωρούμε δεδομένο ότι η σχέση που συνδέει τις τιμές της θερμοκρασίας σε C με τις τιμές σε F είναι γραμμική (η γραφική της παράσταση είναι ευθεία). α) Να βρείτε τον τύπο της συνάρτησης η οποία μετατρέπει τους βαθμούς C σε βαθμούς F. C o F o 00 β) Να βρείτε τον τύπο της συνάρτησης η οποία μετατρέπει τους βαθμούς F σε βαθμούς C. γ) Να εξετάσετε αν υπάρχει θερμοκρασία που να εκφράζεται με τον ίδιο α- ριθμό και στις δύο κλίμακες

12 39. ** Σε πείραμα σχετικό με την εκπαίδευση των ζώων, χρησιμοποιήθηκε ένας ποντικός, τον οποίο ανάγκασαν να διασχίσει πολλές φορές κάποιο λαβύρινθο σ ένα εργαστήριο. Ο χρόνος σε λεπτά, που ο ποντικός χρειάζεται για να διασχίσει το λαβύρινθο, δίνεται από τη συνάρτηση f () = 4 + αριθμός των δοκιμών. α) Πόσο χρόνο χρειάστηκε ο ποντικός κατά την 7η δοκιμή; β) Από ποια δοκιμή και μετά θα χρειαστεί 5 λεπτά ή και λιγότερο; γ) Θα μπορέσει ποτέ να κάνει λιγότερο από 4 λεπτά; 4, όπου ο 40. ** Από μετρήσεις διαπιστώθηκε ότι η καρδιά της γυναίκας μπορεί να φθάσει τους 6 το πολύ σφυγμούς ανά λεπτό σε ηλικία 5 ετών και τους 96 το πολύ σε ηλικία 5 ετών. Αν ο μέγιστος αριθμός των σφυγμών ως συνάρτηση της ηλικίας είναι της μορφής y = α + β, τότε: α) να βρείτε τον τύπο της συνάρτησης β) να υπολογίσετε το μέγιστο αριθμό των σφυγμών ανά λεπτό στα 37 χρόνια μιας γυναίκας. 4. ** Σε έτη από τώρα, ο πληθυσμός μιας κοινότητας θα είναι f () = 0-6 χιλιάδες. Να βρείτε: α) πόσος θα είναι ο πληθυσμός σε 7 χρόνια από τώρα β) πόσο θα αυξηθεί ο πληθυσμός κατά τη διάρκεια του 7ου χρόνου γ) τι θα συμβεί, αν το αυξάνεται απεριόριστα ; 56

13 4. ** Για μικρές μεταβολές της θερμοκρασίας ο τύπος που δίνει το μήκος μιας μεταλλικής ράβδου, ως συνάρτηση της θερμοκρασίας t F, είναι: όπου: - 0 = αt 0 (t - t 0 ) 0 είναι το αρχικό μήκος της ράβδου σε θερμοκρασία t 0 F και α σταθερά που εξαρτάται από τον τύπο του μετάλλου. α) Αν το αρχικό μήκος της ράβδου είναι 00 cm σε θερμοκρασία 60 F και α = 0-5, να γράψετε την εξίσωση που δίνει το μήκος συνάρτηση της θερμοκρασίας t F. της ράβδου ως β) Σε ποια θερμοκρασία το μήκος της ράβδου είναι ίσο με 00, 0 cm; 43. ** Σε τρεις ασθενείς έχει δοθεί αντιπυρετικό φάρμακο και οι θερμοκρασίες τους σε βαθμούς C, ως συναρτήσεις του χρόνου σε ώρες, δίνονται από τους παρακάτω τύπους, οι οποίοι ισχύουν μέχρι την αποκατάσταση της φυσιολογικής θερμοκρασίας: f () = 40-3 f () = 39 - f 3 () = 38 - Σε τέταρτο ασθενή έχει δοθεί διαφορετικό αντιπυρετικό, και η συνάρτηση της θερμοκρασίας του ως προς το χρόνο είναι η: f 4 () = f - () +. α) Να βρείτε τη χρονική στιγμή, κατά την οποία οι θερμοκρασίες των τριών πρώτων ασθενών συμπίπτουν. β) Ποιο αντιπυρετικό είναι πιο αποτελεσματικό έως τη δεδομένη αυτή στιγμή; 44. ** α) Να εκφράσετε ως συνάρτηση της γωνίας rad όπου 0 π Γ το εμβαδόν Ε του διπλανού κυκλικού τμήματος. E β) Να εκφράσετε το εμβαδόν Ε του μεικτογράμμου τριγώνου ΑΒΓ ως συνάρτηση της γωνίας rad, B 0 A π όπου 0 <. 57

14 45. ** α) Το μέσο Μ μιας χορδής ΑΒ της καμπύλης μιας συνάρτησης y f βρίσκεται πάνω από το αντίστοιχο σημείο της καμπύλης. Να εκφράσετε με τη βοήθεια μιας ανισότητας την παραπάνω A M B πρόταση. β) Να εξετάσετε αν για τη συνάρτηση f () = ισχύει η παραπά- + νω ιδιότητα. γ) Ομοίως για τη συνάρτηση g () = e. 58

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ 60 Κεφάλαιο ο Ι. ΣΥΝΑΡΤΗΣΕΙΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ. Σ 0. i) Σ. Σ. Σ 0. ii) Σ 3. Σ 3. Σ. Σ 4. Λ 4. Λ. Λ 5.

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)

x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι) Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = v) f() 4 6 6 5 log 4 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) vi) f() = 4 vii) f() 5 4 viii) f() ημ.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x)

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x) ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (o Γ Λυκείου).Να βρεθούν οι τιμές των α, β R ώστε: Α) τα σημεία (, ),(, ) να ανήκουν στη γραφική παράσταση της συνάρτησης α +β. Β)τα σημεία ( 0, ),( e, ) να ανήκουν στην γραφική παράσταση

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το

Ερωτήσεις πολλαπλής επιλογής. 1. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το Ερωτήσεις πολλαπλής επιλογής. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το διάγραµµα Α. B. Γ.. Ε. 7 . * Από τα παρακάτω διαγράµµατα δεν είναι γραφική παράσταση συνάρτησης το διάγραµµα

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρείτε τα πεδία ορισµού των συναρτήσεων µε τύπο: i) ii) iii) iv) v) 2. Δίνεται η συνάρτηση µε:. Να βρείτε µια περίοδο της. 3. Δίνεται η συνάρτηση µε:. Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης Ερωτήσεις ανάπτυξης. ** Η γραφική παράσταση της συνάρτησης f είναι αυτή που φαίνεται στο διπλανό σχήμα. Να βρεθούν τα παρακάτω όρια: α) γ) ε) ζ) - f () β) f () δ) f () f () στ) - - - f () f () f () - y

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

2. ** ίνεται η συνάρτηση f (x) = logx. α) Να εξετάσετε αν ισχύουν οι προϋποθέσεις του θεωρήµατος µέσης τιµής στο [1, 20] για τη συνάρτηση f.

2. ** ίνεται η συνάρτηση f (x) = logx. α) Να εξετάσετε αν ισχύουν οι προϋποθέσεις του θεωρήµατος µέσης τιµής στο [1, 20] για τη συνάρτηση f. Ερωτήσεις ανάπτυξης. ** Έστω µια συνάρτηση f παραγωγίσιµη στο R, η οποία έχει δύο τουλάχιστον ρίζες. α) Να αποδείξετε ότι µεταξύ δύο ριζών της f περιέχεται τουλάχιστον µια ρίζα της f. β) Αν η f έχει δύο

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Αν η συνάρτηση f είναι παραγωγίσιμη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β). Σ Λ. * Αν η συνάρτηση

Διαβάστε περισσότερα

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y 4, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το 4, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου Σωστό - Λάθος. 1. Στο σχήμα 23 δίνεται η γραφική παράσταση της συνάρτησης

ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου Σωστό - Λάθος. 1. Στο σχήμα 23 δίνεται η γραφική παράσταση της συνάρτησης Κεφάλαιο 4ο: ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ Ερωτήσεις του τύπου Σωστό - Λάθος. Στο σχήμα δίνεται η γραφική παράσταση της συνάρτησης f( ) =. 5 Να χαρακτηρίσετε ως σωστό (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις. Σχ. i)

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (2) -2- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1.

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1. .. Ασκήσεις σχολικού βιβλίου σελίδας 45 48 A Οµάδας.i) Ποιο είναι το πεδίο ορισµού της συνάρτησης () + 3+ Οι ρίζες του τριωνύµου 3 + είναι και. Πρέπει 3 + 0 και Άρα D (, ) (, ) (, + ).ii) Ποιο είναι το

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos.

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos. Κώστας Γλυκός Γενικής κεφάλαιο Κατεύθυνση Κεφάλαιο Κατεύθυνση σχολικές ασκήσεις 87 ασκήσεις και τεχνικές σε 8 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΑΝΑΛΥΣΗ. ( ΚΕΦΑΛΑΙΟ 1ο )

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΑΝΑΛΥΣΗ. ( ΚΕΦΑΛΑΙΟ 1ο ) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ( ΚΕΦΑΛΑΙΟ 1ο ) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

ερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α).

ερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α). Ερωτήσεις ανάπτυξης. ** Για να υπολογίσει κάποιος την (0 ) χρησιµοποιεί για + προσέγγιση τον αριθµό +, ενώ ένας άλλος τον αριθµό. 3 α) Να εκτιµήσετε ποια από τις δύο προσεγγίσεις δίνει το ελάχιστο (απόλυτο)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ-ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Για τις Πανελλαδικές Εξετάσεις 07 ΚΕΦΑΛΑΙΟ ο : ΣΥΝΑΡΤΗΣΕΙΣ

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι -

1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι - Ερωτήσεις πολλαπλής επιλογής. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο την ευθεία = α + β, µε α, όταν Α. ( Β. η f είναι συνεχής στο = α R Γ. η f δεν είναι συνεχής στο. το όριο Ε. το

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

και είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0

και είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0 ΚΕΦΑΛΑΙΟ Ο 7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ (Θεώρημα Frmat) Εστω μια συναρτηση ορισμενη σ ένα διαστημα Δ και ένα εσωτερικο σημειο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2. Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:

Διαβάστε περισσότερα

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.8 Ασκήσεις σχολικού βιβλίου σελίδας 77 79 A Οµάδας 1.i) Να βρείτε τα διαστήµατα στα οποία η συνάρτηση () 5 5 4 + είναι κυρτή ή κοίλη και να προσδιορίσετε (αν υπάρχουν) τα σηµεία καµπής της γραφικής της

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο Συναρτήσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 6 185 ασκήσεις και τεχνικές σε 16 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / / 0 1 7 εκδόσεις Καλό

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΘΕΜΑ ο ΘΕΜΑ 16950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ Γ. Λυκείου Ανάλυση Κεφ. ο Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων :

5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων : ΛΥΚΕΙΟ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Λ Υ Κ Ε Ι Ο Υ Κ E Φ Α Λ Α Ι Ο Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ 1ο Λ Ο Γ Ι Σ Μ Ο Σ ΤΡΙΜΗΣ ΠΑΝΤΕΛΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Γενικής Παιδείας 5o Φύλλο Ασκήσεων ΑΣΚΗΣΗ 1η Να βρείτε τα διαστήματα μονοτονίας

Διαβάστε περισσότερα

ΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΣΚHΣΙΣ ΠΝΛΗΨΗΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΦΥΛΧΤΟΣ Π. ΣΜΪΛΗ. ΜYΡΙΙΝΝΗΣ. 1. Να λύσετε τις εξισώσεις : α) χ (χ 1) 3 = (1+5χ) β) x (3 3 x) 1 3(1 x) γ ) χ 3(χ ) +7 =( 3)( 5) 3χ δ) 5χ 19 3-(4χ-5) =χ (6χ 5) ε) 4 x 5 x

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 34 Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ o ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Λ 4. Λ 43. Λ. Σ 5. Λ 44. Σ 3. Λ 6. Λ 45. α) Σ 4. Σ 7. Λ β) Λ 5. Σ 8. Σ

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 8γ) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η Ο Κ Ε Φ Α Λ Α Ι Ο ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) A. Εύρεση Πεδίου Ορισμού Συναρτήσεων-Άρτια και περιττή Συνάρτηση Η ανάλυση των πεδίων ορισμού για τις διαφορετικές πραγματικές

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1o ΜΕΡΟΣ

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1o ΜΕΡΟΣ Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ 1o ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Η εφαπτοµένη της γραφικής παράστασης µιας σταθερής συνάρτησης σε οποιοδήποτε σηµείο του πεδίου ορισµού της συµπίπτει µε τη γραφική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

2.7. ր ց ց ր. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1. H παράγωγος µιας συνάρτησης f είναι. f (x) > 0 3(x 1 ) 3 (x 2 ) 2 (x 3) > 0

2.7. ր ց ց ր. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1. H παράγωγος µιας συνάρτησης f είναι. f (x) > 0 3(x 1 ) 3 (x 2 ) 2 (x 3) > 0 .7 Ασκήσεις σχολικού βιβλίου σελίδας 67 7 A Οµάδας. H παράγωγος µιας συνάρτησης είναι () = ( ) ( ) ( ) Για ποιες τιµές του η παρουσιάζει τοπικό µέγιστο και για ποιες τοπικό ελάχιστο; D = R, όπου και παραγωγίζεται.

Διαβάστε περισσότερα