Πρόλογος Οι συγγραφείς... 18

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πρόλογος... 15. Οι συγγραφείς... 18"

Transcript

1

2

3 Περιεχόμενα Πρόλογος Οι συγγραφείς Θεμελιώδεις έννοιες ΕΙΣΑΓΩΓΗ ΙΣΤΟΡΙΚΟ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ ΤΑΣΕΙΣ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ ΣΧΕΣΕΙΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΜΕΤΑΤΟΠΙΣΗΣ ΣΧΕΣΕΙΣ ΤΑΣΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ Ειδικές περιπτώσεις ΕΠΙΔΡΑΣΕΙΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΔΥΝΑΜΙΚH ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΟΡΡΟΠΙΑ Η ΜΕΘΟΔΟΣ RAYLEIGH-RITZ Δυναμική Ενέργεια, Η Μέθοδος Rayleigh-Ritz ΜΕΘΟΔΟΣ GALERKIN ΑΡΧΗ SAINT VENANT ΤΑΣΗ VON MISES ΠΡΟΓΡΑΜΜΑΤΑ H/Y ΣΥΜΠΕΡΑΣΜΑΤΑ ΙΣΤΟΡΙΚΕΣ ΑΝΑΦΟΡΕΣ ΑΣΚΗΣΕΙΣ Μητρωική άλγεβρα και απαλοιφή Gauss ΜΗΤΡΩΙΚΗ ΑΛΓΕΒΡΑ Διανύσματα γραμμών και στηλών Πρόσθεση και αφαίρεση Πολλαπλασιασμός με ένα βαθμωτό Πολλαπλασιασμός μητρώων Αναστροφή Διαφόριση και ολοκλήρωση Τετραγωνικό μητρώο Διαγώνιο μητρώο Μοναδιαίο μητρώο Συμμετρικό μητρώο... 47

4 8 Περιεχόμενα Άνω τριγωνικό μητρώο Ορίζουσα μητρώου Αντιστροφή μητρώου Ιδιοτιμές και ιδιοδιανύσματα Θετικά ορισμένο μητρώο Αποσύνθεση Cholesky ΑΠΑΛΟΙΦΗ GAUSS Γενικός αλγόριθμος για την απαλοιφή Gauss Συμμετρικό μητρώο Συμμετρικά ζωνικά μητρώα Λύση με πολλαπλά δεξιά μέρη Απαλοιφή Gauss με αναγωγή στήλης Λύση κορυφογραμμής Μετωπική λύση ΜΕΘΟΔΟΣ ΣΥΖΥΓΟΥΣ ΚΛΙΣΕΩΣ ΓΙΑ ΛΥΣΗ ΕΞΙΣΩΣΕΩΝ Αλγόριθμος συζυγούς κλίσης ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Προβλήματα μίας διάστασης ΕΙΣΑΓΩΓΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Διαίρεση στοιχείων Σχήμα αρίθμησης ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΡΦΗΣ Η ΠΡΟΣΕΓΓΙΣΗ ΔΥΝΑΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Μητρώο ακαμψίας στοιχείου Όροι δυνάμεων Η ΠΡΟΣΕΓΓΙΣΗ GALERKIN Ακαμψία Στοιχείου Όροι δυνάμεων ΣΥΝΘΕΣΗ ΜΗΤΡΩΟΥ ΣΥΝΟΛΙΚΗΣ ΑΚΑΜΨΙΑΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΟΣ ΦΟΡΤΙΟΥ IΔΙΟΤΗΤΕΣ ΤΟΥ Κ ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΩΝ ΠΕΠΕΡΑΣΜEΝΩΝ ΣΤΟΙΧEIΩΝ Τύποι συνοριακών συνθηκών Προσέγγιση απαλοιφής Προσέγγιση ποινής Πολυσημειακοί περιορισμοί ΤΕΤΡΑΓΩΝΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΡΦΗΣ ΕΠΙΔΡΑΣΕΙΣ ΘΕΡΜΟΚΡΑΣΙΑΣ Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ

5 Περιεχόμενα 9 4 Δικτυώματα ΕΙΣΑΓΩΓΗ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Τοπικά και ολικά συστήματα συντεταγμένων Τύπος υπολογισμού των l και m Μητρώο ακαμψίας στοιχείου Υπολογισμοί τάσης Επιδράσεις θερμοκρασίας ΔΙΚΤΥΩΜΑΤΑ ΤΡΙΩΝ ΔΙΑΣΤΑΣΕΩΝ ΣΥΝΘΕΣΗ ΜΗΤΡΩΟΥ ΣΥΝΟΛΙΚΗΣ ΑΚΑΜΨΙΑΣ ΓΙΑ ΖΩΝΙΚΕΣ ΛΥΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΚΟΡΥΦΟΓΡΑΜΜΗΣ Σύνθεση για ζωνική λύση Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Προβλήματα δυο διαστάσεων με τη χρήση τριγώνων σταθερής παραμόρφωσης ΕΙΣΑΓΩΓΗ Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕIΑ ΤΡΙΓΩΝΟ ΣΤΑΘΕΡΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ (CST) Ισοπαραμετρική αναπαράσταση Προσέγγιση δυναμικής ενέργειας Ακαμψία στοιχείου Όροι δύναμης Προσέγγιση Galerkin Υπολογισμοί τάσης Επιδράσεις θερμοκρασίας ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΙ ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ Μερικές γενικές παρατηρήσεις για τη διαίρεση σε στοιχεία ΟΡΘΟΤΡΟΠΙΚΑ ΥΛΙΚΑ Επιδράσεις θερμοκρασίας Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Αξονοσυμμετρικά στερεά υποβαλλόμενα σε αξονοσυμμετρική φόρτιση ΕΙΣΑΓΩΓΗ ΑΞΟΝΟΣΥΜΜΕΤΡΙΚΗ ΜΟΡΦΟΠΟΙΗΣΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ: ΤΡΙΓΩΝΙΚΟ ΣΤΟΙΧΕΙΟ Προσέγγιση δυναμικής ενέργειας Όρος δύναμης σώματος

6 10 Περιεχόμενα Περιστρεφόμενος σφόνδυλος Εφελκυσμός επιφάνειας Προσέγγιση Galerkin Υπολογισμοί τάσης Επίδραση θερμοκρασίας ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΙ ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ Κύλινδρος υποβαλλόμενος σε εσωτερική πίεση Άπειρος κύλινδρος Προσαρμογή με πίεση σε άκαμπτο άξονα Προσαρμογή με πίεση σε ελαστικό άξονα Ελατήριο Belleville Πρόβλημα θερμικής τάσης Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Δισδιάστατα ισοπαραμετρικά στοιχεία και αριθμητική ολοκλήρωση ΕΙΣΑΓΩΓΗ ΤΟ ΤΕΤΡΑΠΛΕΥΡΟ ΤΕΣΣΑΡΩΝ ΚΟΜΒΩΝ Συναρτήσεις μορφής Μητρώο ακαμψίας στοιχείου Διανύσματα δύναμης στοιχείου ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Διπλά ολοκληρώματα Ολοκλήρωση ακαμψίας Υπολογισμοί τάσης ΣΤΟΙΧΕΙΑ ΑΝΩΤΕΡΗΣ ΤΑΞΗΣ Τετράπλευρο εννέα κόμβων Τετράπλευρο οκτώ κόμβων Τρίγωνο έξι κόμβων ΤΕΤΡΑΠΛΕΥΡΟ ΤΕΣΣΑΡΩΝ ΚΟΜΒΩΝ ΓΙΑ ΑΞΟΝΟΣΥΜΜΕΤΡΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΕΦΑΡΜΟΓΗ ΣΥΖΥΓΟΥΣ ΚΛΙΣΗΣ ΤΟΥ ΤΕΤΡΑΠΛΕΥΡΟΥ ΣΤΟΙΧΕΙΟΥ Συμπερασματικά σχόλια Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Δοκοί και πλαίσια ΕΙΣΑΓΩΓΗ Προσέγγιση δυναμικής ενέργειας Προσέγγιση Galerkin ΜΟΡΦΟΠΟΙΗΣΗ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΔΙΑΝΥΣΜΑ ΦΟΡΤΙΟΥ

7 Περιεχόμενα ΣΥΝΟΡΙΑΚΑ ΖΗΤΗΜΑΤΑ ΔΙΑΤΜΗΤΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΡΟΠΗ ΚΑΜΨΗΣ ΔΟΚΟΙ ΣΕ ΕΛΑΣΤΙΚΑ ΣΤΗΡΙΓΜΑΤΑ ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ ΤΡΙΣΔΙΑΣΤΑΤΑ ΠΛΑΙΣΙΑ ΚΑΠΟΙΑ ΣΧΟΛΙΑ Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Προβλήματα ανάλυσης τάσεων σε τρεις διαστάσεις ΕΙΣΑΓΩΓΗ ΜΟΡΦΟΠΟΙΗΣΗ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Ακαμψία στοιχείου Όροι δυνάμεων ΥΠΟΛΟΓΙΣΜΟΙ ΤΑΣΗΣ ΠΡΟΕΤΟΙΜΑΣΙΑ ΠΛΕΓΜΑΤΟΣ ΕΞΑΕΔΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΝΩΤΕΡΗΣ ΤΑΞΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕΤΩΠΙΚΗ ΜΕΘΟΔΟΣ ΓΙΑ ΜΗΤΡΩΑ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Συνδετικότητα και προμετωπική ρουτίνα Σύνθεση στοιχείων και εξέταση συγκεκριμένων βαθμών ελευθερίας Απαλοιφή συμπληρωμένων βαθμών ελευθερίας Προς τα πίσω αντικατάσταση Εξέταση πολυσημειακών περιορισμών Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Προβλήματα βαθμωτού πεδίου ΕΙΣΑΓΩΓΗ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΣΤΑΘΕΡΗ ΚΑΤΑΣΤΑΣΗ Μονοδιάστατη αγωγή θερμότητας Μονοδιάστατη μεταφορά θερμότητας σε λεπτά πτερύγια Δισδιάστατη αγωγή θερμότητας σε σταθερή κατάσταση Δισδιάστατα πτερύγια Προεπεξεργασία για το πρόγραμμα Heat2D ΣΤΡΕΨΗ Τριγωνικό στοιχείο Μέθοδος Galerkin* ΔΥΝΑΜΙΚΗ ΡΟΗ, ΔΙΗΘΗΣΗ, ΗΛΕΚΤΡΙΚΑ ΚΑΙ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΡΟΗ ΡΕΥΣΤΩΝ ΣΕ ΑΓΩΓΟΥΣ Δυναμική ροή Διήθηση

8 12 Περιεχόμενα Προβλήματα ηλεκτρικού και μαγνητικού πεδίου Ροή ρευστών σε αγωγούς Ακουστική Συνοριακές συνθήκες Μονοδιάστατη ακουστική Μονοδιάστατες αξονικές δονήσεις Δισδιάστατη ακουστική ΣΥΜΠΕΡΑΣΜΑ Αρχείο δεδομένων εισαγωγής ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Θέματα δυναμικής ΕΙΣΑΓΩΓΗ ΜΟΡΦΟΠΟΙΗΣΗ Στερεό σώμα με κατανεμημένη μάζα ΜΗΤΡΩΑ ΜΑΖΑΣ ΣΤΟΙΧΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΩΝ Ιδιότητες των ιδιοδιανυσμάτων Υπολογισμός ιδιοτιμής-ιδιοδιανύσματος Γενικευμένη μέθοδος Jacobi Τριδιαγωνοποίηση και προσέγγιση έμμεσης μετατόπισης Μετατροπή του γενικευμένου προβλήματος σε τυπική μορφή Τριδιαγωνοποίηση Έμμεσο συμμετρικό βήμα QR με μετατόπιση Wilkinson για διαγωνοποίηση ΔΙΑΣΥΝΔΕΣΗ ΜΕ ΠΡΟΗΓΟΥΜΕΝΑ ΠΡΟΓΡΑΜΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΜΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΡΙΣΙΜΩΝ ΤΑΧΥΤΗΤΩΝ ΑΞΟΝΩΝ ΑΝΑΓΩΓΗ GUYAN ΙΔΙΟΜΟΡΦΕΣ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ ΣΥΜΠΕΡΑΣΜΑ Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Προεπεξεργασία & μετεπεξεργασία ΕΙΣΑΓΩΓΗ ΔΗΜΙΟΥΡΓΙΑ ΠΛΕΓΜΑΤΟΣ Αναπαράσταση περιοχής και μπλοκ Κόμβοι γωνιών μπλοκ, πλευρές και υποδιαιρέσεις ΜΕΤΕΠΕΞΕΡΓΑΣΙΑ Παραμορφωμένη σύνθεση και μορφή κατάστασης Σχεδίαση ισομετρικών καμπύλων Κομβικές τιμές από γνωστές τιμές σταθερού στοιχείου για τρίγωνο

9 Περιεχόμενα 13 Προσαρμογή ελαχίστων τετραγώνων για τετράπλευρο με τέσσερις κόμβους ΣΥΜΠΕΡΑΣΜΑ Αρχείο δεδομένων εισόδου ΑΣΚΗΣΕΙΣ Προγράμματα Η/Υ Παράρτημα Βιβλιογραφία Απαντήσεις σε επιλεγμένα προβλήματα Ευρετήριο

10

11 ΚΕΦΑΛΑΙΟ 5 Προβλήματα δυο διαστάσεων με τη χρήση τριγώνων σταθερής παραμόρφωσης 5.1 ΕΙΣΑΓΩΓΗ Σε αυτό το κεφάλαιο θα περιγράψουμε τη διαδικασία εξαγωγής τύπων με πεπερασμένα στοιχεία δυο διαστάσεων χρησιμοποιώντας τα βήματα του προβλήματος μίας διάστασης. Οι μετατοπίσεις, οι συνιστώσες εφελκυσμού και οι κατανεμημένες τιμές της δύναμης σώματος είναι συναρτήσεις της θέσης η οποία υποδεικνύεται με τα (x, y). Το διάνυσμα μετατόπισης u δίνεται ως (5.1) όπου u και υ είναι οι συνιστώσες x και y του u αντίστοιχα. Οι τάσεις και οι παραμορφώσεις δίνονται από τους τύπους (5.2) (5.3) Από το Σχ. 5.1, το οποίο αναπαριστά το πρόβλημα των δυο διαστάσεων στη γενική τοποθέτηση, η δύναμη σώματος, το διάνυσμα εφελκυσμού και ο στοιχειώδης όγκος δίνονται από ΣΧΗΜΑ 5.1 Το πρόβλημα δύο διαστάσεων

12 158 ΚΕΦΑΛΑΙΟ 5 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ f = [f x, f y ] T T = [T x, T y ] T και dv = t da (5.4) όπου t είναι το πάχος κατά την κατεύθυνση z. Η δύναμη σώματος f έχει μονάδες δύναμη/μονάδα όγκου, ενώ η δύναμη εφελκυσμού Τ έχει μονάδες δύναμη/μονάδα επιφανείας. Η σχέση παραμόρφωσης-μετατόπισης δίνεται από Η σχέση τάσεων και παραμορφώσεων δίνεται από τον τύπο (βλέπε Εξ και 1.19) σ = Dє (5.6) Για να διακριτοποιήσουμε την περιοχή εκφράζουμε τις μετατοπίσεις ως προς τις τιμές σε διακριτά σημεία. Πρώτα εισάγουμε τριγωνικά στοιχεία. Έπειτα αναπτύσσουμε τις έννοιες της α- καμψίας και της φόρτισης χρησιμοποιώντας τις προσεγγίσεις ενέργειας και Galerkin. (5.5) 5.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕIΑ Διαιρούμε την περιοχή δυο διαστάσεων σε τρίγωνα με ευθύγραμμες πλευρές. Το Σχήμα 5.2 δείχνει έναν τυπικό τριγωνισμό. Τα σημεία όπου συναντώνται οι ακμές των τριγώνων ονομάζονται κόμβοι, ενώ κάθε τρίγωνο το οποίο σχηματίζεται από τρεις κόμβους και τρεις πλευρές ονομάζεται στοιχείο. Τα στοιχεία καλύπτουν ολόκληρη την περιοχή, εκτός μιας μικρής περιοχής στο σύνορο. Αυτή η ακάλυπτη περιοχή βρίσκεται στα καμπύλα σύνορα και μπορεί να μειωθεί με επιλογή μικρότερων στοιχείων ή στοιχείων με καμπύλα σύνορα. Στόχος της Μεθόδου Πεπερασμένων Στοιχείων είναι να λυθεί το πρόβλημα προσεγγιστικά και η ακάλυπτη περιοχή συνεισφέρει ως ΣΧΗΜΑ 5.2 Διακριτοποίηση πεπερασμένου στοιχείου

13 5.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕIΑ 159 ένα βαθμό σε αυτήν την προσέγγιση. Κατά τον τριγωνισμό του Σχ. 5.2, τοποθετούμε τους αριθμούς των κόμβων στις ακμές και τους αριθμούς των στοιχείων σε κύκλους. Στο πρόβλημα δυο διαστάσεων που εξετάζουμε εδώ, κάθε κόμβος επιτρέπεται να μετατοπίζεται κατά τις δυο κατευθύνσεις x και y. Επομένως, κάθε κόμβος έχει δύο βαθμούς ελευθερίας. Όπως φαίνεται από το σχήμα αρίθμησης το οποίο χρησιμοποιήσαμε στα δικτυώματα, οι συνιστώσες μετατόπισης του κόμβου j λαμβάνονται ως Q 2j 1 στην κατεύθυνση x και Q 2j στην κατεύθυνση y. Ορίζουμε το διάνυσμα ολικής μετατόπισης ως (5.7) όπου Ν είναι ο αριθμός των βαθμών ελευθερίας. Αναπαριστούμε υπολογιστικά, τις πληροφορίες τριγωνισμού σε μορφή κομβικών συντεταγμένων και συνδεσμολογίας. Αποθηκεύουμε τις κομβικές συντεταγμένες σε έναν πίνακα δυο διαστάσεων, ο οποίος απαρτίζεται από το συνολικό αριθμό κόμβων και συντεταγμένων (δύο) ανά κόμβο. Για να δούμε τη συνδεσμολογία καθαρά, απομονώνουμε ένα τυπικό στοιχείο, όπως στο Σχ Για τους τρεις κόμβους οι οποίοι ορίζονται τοπικά ως 1, 2 και 3, οι αντίστοιχοι ολικοί αριθμοί κόμβων ορίζονται στο Σχ Συγκεντρώνουμε τις πληροφορίες συνδεσμολογίας των στοιχείων σε έναν πίνακα όπου αναφέρεται το μέγεθος και ο αριθμός των στοιχείων και οι κόμβοι (τρεις) ανά στοιχείο. Στον Πίνακα 5.1 απεικονίζεται μια τυπική συνδεσμολογία. Οι περισσότεροι πρότυποι κώδικες πεπερασμένων στοιχείων χρησιμοποιούν αριστερόστροφη σύμβαση αρίθμησης, για να αποφεύγεται ο υπολογισμός αρνητικών εμβαδών. Όμως, για το πρόγραμμα το οποίο συνοδεύει αυτό το κεφάλαιο, η διάταξη δεν είναι αναγκαία. Ο Πίνακας 5.1 ορίζει την αντιστοιχία των τοπικών και ολικών αριθμών κόμβων και τους α- ντίστοιχους βαθμούς ελευθερίας. Αναπαριστούμε τις συνιστώσες μετατόπισης ενός τοπικού κόμβου j ως q 2j-1 και q 2j κατά τις κατευθύνσεις x και y, αντίστοιχα (Σχ. 5.3). Ορίζουμε το διάνυσμα μετατόπισης του στοιχείου ως (5.8) ΣΧΗΜΑ 5.3 Τριγωνικό στοιχείο

14 160 ΚΕΦΑΛΑΙΟ 5 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Παρατηρήστε ότι από το μητρώο συνδεσμολογίας του Πίνακα 5.1, έχουμε τη δυνατότητα να εξαγάγουμε το διάνυσμα q από το ολικό διάνυσμα Q, μια ενέργεια η οποία εκτελείται συχνά σε ένα πρόγραμμα πεπερασμένων στοιχείων. Επίσης, ΠΙΝΑΚΑΣ 5.1 Συνδεσμολογία στοιχείων Αριθμός Στοιχείου Τρεις κόμβοι e οι κομβικές συντεταγμένες οι οποίες συμβολίζονται με (x 1, y 1 ) (x 2, y 2 ) και (x 3, y 3 ) έχουν την ολική αντιστοίχηση που ορίζεται στον Πίνακα 5.1. Η τοπική απεικόνιση των κομβικών συντεταγμένων και βαθμών ελευθερίας αποτελεί τη βάση για μια απλή και σαφή αναπαράσταση των χαρακτηριστικών του στοιχείου. 5.3 ΤΡΙΓΩΝΟ ΣΤΑΘΕΡΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ (CST) Πρέπει να αναπαραστήσουμε τη μετατόπιση των σημείων εντός ενός στοιχείου συναρτήσει των κομβικών μετατοπίσεων του στοιχείου. Όπως αναφέραμε νωρίτερα, η Μέθοδος Πεπερασμένων Στοιχείων χρησιμοποιεί την έννοια των συναρτήσεων μορφής για τη συστηματική ανάπτυξη αυτών των προσεγγίσεων. Οι τρεις συναρτήσεις μορφής Ν 1, Ν 2 και Ν 3, οι οποίες αντιστοιχούν στους κόμβους 1, 2 και 3 αντίστοιχα φαίνονται στο Σχ Η συνάρτηση μορφής Ν 1 έχει τιμή 1 στον κόμβο 1 και ελαττώνεται γραμμικά στην τιμή 0 στους κόμβους 2 και 3. Έτσι, οι τιμές της συνάρτησης μορφής Ν 1 ορίζουν μια επίπεδη επιφάνεια, η οποία απεικονίζεται σκιασμένη στο Σχ. 5.4α. Οι Ν 2 και Ν 3 αναπαρίστανται με παρόμοιες επιφάνειες, οι οποίες έχουν τιμή 1 στους κόμβους 2 και 3 αντίστοιχα, η οποία μειώνεται στην τιμή 0 στις απέναντι κορυφές. Αλλά και κάθε γραμμικός συνδυασμός αυτών των συναρτήσεων μορφής αναπαριστά μια επίπεδη επιφάνεια. Πιο συγκεκριμένα, η σχέση Ν 1 + Ν 2 + Ν 3 αναπαριστά ένα επίπεδο με ύψος 1 στους κόμβους 1, 2 και 3. Άρα, το επίπεδο είναι παράλληλο προς το τρίγωνο 123. Συνεπώς, για κάθε Ν 1, Ν 2 και Ν 3, Ν 1 + Ν 2 + Ν 3 = 1 (5.9) Γι' αυτό το λόγο, οι Ν 1, Ν 2 και Ν 3 δεν είναι γραμμικά ανεξάρτητες. Μόνο δύο από αυτές είναι ανεξάρτητες. Οι ανεξάρτητες συναρτήσεις μορφής αναπαρίστανται κατάλληλα από το ζεύγος ξ, η ως Ν 1 = ξ Ν 2 = η N 3 = 1 ξ η (5.10) όπου ξ και η είναι φυσικές συντεταγμένες (Σχ. 5.4). Σε αυτό το σημείο, πρέπει να σημειώσουμε την ομοιότητα με το στοιχείο μίας διάστασης (Κεφάλαιο 3). Στο πρόβλημα μίας διάστασης, αντιστοιχίσαμε τις συντεταγμένες x με τις συντεταγμένες ξ και ορίσαμε τις συναρτήσεις μορφής συναρτήσει του ξ. Στην προκειμένη περίπτωση, στο πρόβλημα δύο διαστάσεων, αντιστοιχίζουμε τις συντεταγμένες x, y με τις συντεταγμένες ξ, η και ορίζουμε τις συναρτήσεις μορφής συναρτήσει των ξ και η.

15 5.3 ΤΡΙΓΩΝΟ ΣΤΑΘΕΡΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ (CST) 161 Οι συναρτήσεις μορφής μπορούν να παρασταθούν φυσικά με συντεταγμένες επιφανείας. Ένα σημείο (x, y) ενός τριγώνου, το διαιρεί σε τρεις περιοχές Α 1, Α 2 και Α 3, όπως στο Σχ Οι συναρτήσεις μορφής Ν 1, Ν 2 και Ν 3 αναπαρίστανται με ακρίβεια από ΣΧΗΜΑ 5.4 Συναρτήσεις μορφής ΣΧΗΜΑ 5.5 Συντεταγμένες επιφανείας

16 162 ΚΕΦΑΛΑΙΟ 5 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ (5.11) όπου Α είναι το εμβαδόν του στοιχείου. Προφανώς, έχουμε Ν 1 + Ν 2 + Ν 3 = 1 σε κάθε εσωτερικό σημείο του τριγώνου. Ισοπαραμετρική αναπαράσταση Γράφουμε τις μετατοπίσεις εσωτερικά του στοιχείου χρησιμοποιώντας τις συναρτήσεις μορφής και τις κομβικές τιμές του άγνωστου πεδίου μετατόπισης. Έχουμε ή χρησιμοποιώντας την Εξ. 5.10, u = N 1 q 1 + N 2 q 3 + N 3 q 5 υ = N 1 q 2 + N 2 q 4 + N 3 q 6 (5.12α) u = (q 1 + q 5 )ξ + (q 3 + q 5 )η + q 5 υ = (q 2 q 6 )ξ + (q 4 q 6 )η + q 6 (5.12β) Εκφράζουμε τις σχέσεις 5.12α σε μορφή μητρώου ορίζοντας ένα μητρώο συνάρτησης μορφής και (5.13) u = Nq (5.14) Στην περίπτωση του τριγωνικού στοιχείου, μπορούμε να αναπαραστήσουμε τις συντεταγμένες x, y συναρτήσει κομβικών συντεταγμένων, χρησιμοποιώντας τις ίδιες συναρτήσεις μορφής. Αυτό λέγεται ισοπαραμετρική αναπαράσταση. Η προσέγγιση αυτή απλοποιεί την ανάπτυξη και διατηρεί την ομοιομορφία με άλλα σύνθετα στοιχεία. Έχουμε ή x = N 1 x 1 + N 2 x 2 + N 3 x 3 y = N 1 y 1 + N 2 y 2 + N 3 y 3 (5.15α) x = (x 1 x 3 )ξ + (x 2 x 3 )η + x 3 y = (y 1 y 3 )ξ + (y 2 y 3 )η + y 3 Αντικαθιστώντας x ij = x i x j και y i j = y i y j γράφουμε τις Εξ. 5.15β ως (5.15β) x = x 13 ξ + x 23 η + x 3 y = y 13 ξ + y 23 η + y 3 (5.15γ) Οι εξισώσεις αυτές συσχετίζουν τις συντεταγμένες x και y με τις συντεταγμένες ξ και η. Η Εξίσωση 5.12 εκφράζει τα u και υ ως συναρτήσεις των ξ και η.

17 5.3 ΤΡΙΓΩΝΟ ΣΤΑΘΕΡΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ (CST) 163 Παράδειγμα 5.1 Υπολογίστε τις συναρτήσεις μορφής Ν 1, Ν 2 και Ν 3 στο εσωτερικό σημείο Ρ για το τριγωνικό στοιχείο του Σχ. Π5.1. ΣΧΗΜΑ Π5.1 Παραδείγματα 5.1 και 5.2 Λύση Χρησιμοποιώντας την ισοπαραμετρική αναπαράσταση (Εξ. 5.15), έχουμε 3.85 = 1.5Ν 1 + 7Ν 2 + 4Ν 3 = 2.5ξ + 3η = 2Ν Ν 2 + 7Ν 3 = 5ξ 3.5η + 7 Αναδιατάσσουμε τις δύο εξισώσεις στη μορφή 2.5ξ 3η = ξ + 3.5η = 2.2 Λύνοντας τις εξισώσεις, λαμβάνουμε ξ = 0.3 και η = 0.2 από όπου συνεπάγεται Ν 1 = 0.3 Ν 2 = 0.2 Ν 3 = 0.5 Για να υπολογίσουμε τις παραμορφώσεις, πρέπει να λάβουμε μερικές παραγώγους των u και υ ως προς x και y. Από τις Εξ και 5.15 βλέπουμε ότι τα u, υ και x, y είναι συναρτήσεις των ξ και η. Δηλαδή, u = u(x(ξ, η), y(ξ, η)). Παρόμοια, υ = υ(x(ξ, η), y(ξ, η)). Χρησιμοποιώντας τον κανόνα παραγώγισης για μερικές παραγώγους του u, έχουμε Τις οποίες μπορούμε να γράψουμε σε μορφή μητρώων ως

18 164 ΚΕΦΑΛΑΙΟ 5 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ (5.16) όπου το τετραγωνικό μητρώο (2 2) ορίζεται ως η Ιακωβιανή του μετασχηματισμού, J: (5.17) Στο παράρτημα παραθέτουμε μερικές ακόμα ιδιότητες της Ιακωβιανής. Λαμβάνοντας την παράγωγο των x και y έχουμε Επίσης, από την Εξ. 5.16, (5.18) (5.19) όπου J -1 είναι το αντίστροφο της Ιακωβιανής J και δίνεται από (5.20) (5.21) Από το εμβαδόν του τριγώνου, είναι προφανές ότι το μέγεθος της ορίζουσας, det J είναι το διπλάσιο του εμβαδού του τριγώνου. Εάν τα σημεία 1, 2 και 3 είναι διατεταγμένα αριστερόστροφα, η det J έχει θετικό πρόσημο. Έχουμε (5.22) όπου το αναπαριστά το μέγεθος. Οι περισσότεροι κώδικες υπολογιστών χρησιμοποιούν αριστερόστροφη διάταξη κόμβων, και την ορίζουσα det J για τον υπολογισμό του εμβαδού. Παράδειγμα 5.2 Ορίσετε την Ιακωβιανή του μετασχηματισμού J για το τριγωνικό στοιχείου του Σχ. Π5.1. Λύση Έχουμε

19 5.3 ΤΡΙΓΩΝΟ ΣΤΑΘΕΡΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ (CST) 165 Άρα, det J = μονάδες. Αυτό είναι το διπλάσιο του εμβαδού του τριγώνου. Εάν οι κόμβοι 1, 2 και 3 είναι δεξιόστροφα διατεταγμένοι, τότε η ορίζουσα det J είναι αρνητική. Από τις Εξ και 5.20 προκύπτει ότι (5.23α) Αντικαθιστώντας το u με τη μετατόπιση υ, λαμβάνουμε την παρόμοια έκφραση (5.23β) Χρησιμοποιώντας τις σχέσεις παραμόρφωσης-μετατόπισης (5.5) και τις Εξ. 5.12β και 5.23 (5.24α) Από τον ορισμό των x ij και y ij μπορούμε να γράψουμε y 31 = y 13 και y 12 = y 13 y 23 κ.λπ. Γράφουμε την προηγούμενη εξίσωση στη μορφή (5.24β) Γράφουμε την εξίσωση σε μορφή μητρώου ως є = Bq (5.25) όπου Β είναι ένα μητρώο (3 6) στοιχείου παραμόρφωσης-μετατόπισης, το οποίο συνδέει τις τρεις παραμορφώσεις με τις έξι κομβικές μετατοπίσεις και δίνεται από το (5.26) Σημειώνεται ότι όλα τα στοιχεία του μητρώου Β είναι σταθερές και εκφράζονται συναρτήσει των κομβικών συντεταγμένων. Παράδειγμα 5.3 Βρείτε τα μητρώα B e παραμόρφωσης-κομβικών μετατοπίσεων για τα στοιχεία του Σχ Χρησιμοποιήστε τους τοπικούς αριθμούς που δίνονται στις γωνίες.

20 166 ΚΕΦΑΛΑΙΟ 5 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Λύση Έχουμε ΣΧΗΜΑ Π5.3 όπου η det J λαμβάνεται από x 13 y 23 x 23 y 13 = (3) (2) (3)(0) = 6. Χρησιμοποιώντας τους τοπικούς αριθμούς των γωνιών, μπορούμε να γράψουμε τη Β 2 χρησιμοποιώντας τη σχέση ως Προσέγγιση δυναμικής ενέργειας Η δυναμική ενέργεια Π του συστήματος δίνεται από την (5.27) Στον τελευταίο όρο της Εξ. 5.27, το i υποδεικνύει το σημείο εφαρμογής του φορτίου σημείου Ρ i και P i = [P x, P y ] Τ i. Η άθροιση ως προς i δίνει τη δυναμική ενέργεια, η οποία οφείλεται στα φορτία όλων των σημείων. Αν χρησιμοποιήσουμε τον τριγωνισμό του Σχ. 5.9, μπορούμε να γράψουμε την ολική δυναμική ενέργεια στη μορφή (5.28α) ή (5.28β) όπου U e = ½ T є єtda e D είναι η ενέργεια παραμόρφωσης του στοιχείου.

21 5.3 ΤΡΙΓΩΝΟ ΣΤΑΘΕΡΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ (CST) 167 Ακαμψία στοιχείου Αντικαθιστούμε τώρα την παραμόρφωση, από τη σχέση παραμόρφωσης-μετατόπισης στοιχείου της Εξ. 5.25, στην Εξίσωση 5.28β της ενέργειας παραμόρφωσης στοιχείου U e, για να λάβουμε (5.29a) Θεωρώντας το πάχος του στοιχείου t e ως σταθερό και λαμβάνοντας υπόψη ότι όλοι οι όροι στα μητρώα D και Β είναι σταθεροί, έχουμε (5.29β) Τώρα, e da = A e, όπου Α e είναι το εμβαδόν του στοιχείου. Συνεπώς, (5.29γ) ή (5.29δ) όπου k e είναι το μητρώο ακαμψίας του στοιχείου το οποίο δίνεται από (5.30) Στην περίπτωση επίπεδης τάσης ή επίπεδης παραμόρφωσης, μπορούμε να υπολογίσουμε το μητρώο ακαμψίας του στοιχείου λαμβάνοντας το κατάλληλο μητρώο ιδιοτήτων υλικού D που ορίσαμε στο Κεφάλαιο 1, και εκτελώντας τον προηγούμενο πολλαπλασιασμό με υπολογιστή. Σημειώνουμε ότι, επειδή το D είναι συμμετρικό, και το μητρώο k e είναι συμμετρικό. Στη συνέχεια, χρησιμοποιώντας τη συνδεσμολογία στοιχείων του Πίνακα 5.1, προσθέτουμε τις τιμές α- καμψίας στοιχείου του k e στις αντίστοιχες ολικές θέσεις του μητρώου συνολικής ακαμψίας Κ, έτσι ώστε (5.31) Το μητρώο συνολικής ακαμψίας Κ είναι συμμετρικό και ζωνικό ή αραιό. Η τιμή ακαμψίας K ij είναι μηδέν όταν οι βαθμοί ελευθερίας i και j δεν συνδέονται δια μέσου ενός στοιχείου. Εάν οι βαθμοί ελευθερίας i και j συνδέονται μέσω ενός ή περισσοτέρων στοιχείων, συσσωρεύονται τιμές ακαμψίας από αυτά τα στοιχεία. Για τους ολικούς βαθμούς ελευθερίας που αριθμούνται όπως στο Σχ. 5.2, το εύρος ζώνης συσχετίζεται με τη μέγιστη διαφορά των αριθμών κόμβων του στοιχείου, για όλα τα στοιχεία. Εάν i 1, i 2 και i 3 είναι αριθμοί κόμβων του στοιχείου e, η μέγιστη διαφορά αριθμού κόμβων του στοιχείου δίνεται από τον τύπο (5.32α) Το μισό εύρους της ζώνης δίνεται από (5.32β)

22 168 ΚΕΦΑΛΑΙΟ 5 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ όπου ΝΕ είναι ο αριθμός των στοιχείων και 2 είναι ο αριθμός των βαθμών ελευθερίας ανά κόμβο. Το μητρώο συνολικής ακαμψίας Κ είναι σε μια μορφή όπου όλοι οι βαθμοί ελευθερίας Q είναι ελεύθεροι. Για να λάβουμε υπόψη τις συνοριακές συνθήκες, πρέπει να το τροποποιήσουμε. Όροι δύναμης Ας δούμε πρώτα τον όρο δύναμης σώματος T uf e tda που εμφανίζεται στην ολική δυναμική ενέργεια στην Εξ. 5.28β. Έχουμε Χρησιμοποιώντας τις σχέσεις παρεμβολής της Εξίσωσης 5.12α, βρίσκουμε ότι (5.33) Από τον ορισμό των συναρτήσεων μορφής σε ένα τρίγωνο, τις οποίες βλέπουμε στο Σχ. 5.4, το e N da 1 αναπαριστά τον όγκο ενός τετραέδρου με εμβαδόν βάσης A e και ύψος ακμής 1 (αδιάστατο). Ο όγκος αυτού του τετραέδρου δίνεται από τον τύπο 1/3 Εμβαδόν βάσης Ύψος (Σχ. 5.6) και είναι. Μπορούμε τώρα να γράψουμε την Εξ στη μορφή 1 Παρόμοια, N da = N da = A e e e όπου f e είναι το διάνυσμα της δύναμης σώματος του στοιχείου και δίνεται από (5.34) (5.35) (5.36) Αυτές οι κομβικές δυνάμεις του στοιχείου συνεισφέρουν στο διάνυσμα ολικού φορτίου F. Πρέπει, να χρησιμοποιήσουμε πάλι τη συνδεσμολογία του Πίνακα 5.1 για να προσθέσουμε το f e στο διάνυσμα ολικής δύναμης F. Το διάνυσμα f e είναι

23 5.3 ΤΡΙΓΩΝΟ ΣΤΑΘΕΡΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ (CST) 169 ΣΧΗΜΑ 5.6 Ολοκλήρωμα μιας συνάρτησης μορφής διαστάσεων (6 1), όπου F είναι (N 1). Αυτή η διαδικασία σύνθεσης συζητείται στα Κεφάλαια 3 και 4. Την ορίζουμε συμβολικά, (5.37) Η δύναμη εφελκυσμού είναι ένα κατανεμημένο φορτίο που ασκείται στην επιφάνεια του σώματος. Μια τέτοια δύναμη ενεργεί στις ακμές που συνδέουν συνοριακούς κόμβους. Μια δύναμη εφελκυσμού η οποία ενεργεί στην ακμή ενός στοιχείου συνεισφέρει στο διάνυσμα ολικού φορτίου F. Μπορούμε να προσδιορίσουμε αυτή τη συνεισφορά, αν θεωρήσουμε τον όρο της εφελκυστικής δύναμης ut td l. Έστω η ακμή l T 1 2 στην οποία ενεργεί εφελκυσμός T x, T y σε μονάδες δύναμης ανά μονάδα εμβαδού επιφανείας, όπως φαίνεται στο Σχ. 5.7α. Έχουμε Από τις σχέσεις παρεμβολής οι οποίες χρησιμοποιούν τις συναρτήσεις μορφής παίρνουμε (5.38) (5.39)

24

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Πίνακας Περιεχομένων 7

Πίνακας Περιεχομένων 7 Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας. ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

4. ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ. φ για την εφαρµογή της µεθόδου Galerkin δεν

4. ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ. φ για την εφαρµογή της µεθόδου Galerkin δεν . ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ Η επιλογή των συναρτήσεων βάσης ( ) φ για την εφαρµογή της µεθόδου Galrkn δεν είναι τόσο απλή, και στην γενική περίπτωση είναι µία δύσκολη διαδικασία.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Δ (15732) Δύο ακίνητα σημειακά ηλεκτρικά φορτία 2 μc και 3 μc, βρίσκονται αντίστοιχα στις θέσεις 3 m και 6 m ενός άξονα, όπως φαίνεται στο παρακάτω σχήμα. Δ1) Να υπολογίσετε το δυναμικό του ηλεκτρικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014 Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Σύµβολα. Ελληνικοί χαρακτήρες. γ σταθερά δυναµικής χαλάρωσης

Σύµβολα. Ελληνικοί χαρακτήρες. γ σταθερά δυναµικής χαλάρωσης Σύµβολα Ελληνικοί χαρακτήρες α γωνία (σε µοίρες) του κάθε ελάσµατος µε το οριζόντιο επίπεδο a i, b ι διαστήµατα α 1,α 2..α n γενικευµένες συντεταγµένες (πολυωνύµων µετατοπίσεων) α 1,..., α 5 σταθεροί συντελεστές

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 5 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα: Μοντελοποίηση Μηχανικών- Ηλεκτρικών-Υδραυλικών-Θερμικών Συστημάτων Επανάληψη: Εξισώσεις Lagrange σε συστήματα

Διαβάστε περισσότερα

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ 4_15580 Δύο σημειακά ηλεκτρικά φορτία Q 1 = μc και Q = 8 μc, συγκρατούνται ακλόνητα πάνω σε οριζόντιο μονωτικό δάπεδο, στα σημεία Α και Β αντίστοιχα, σε απόσταση

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Κεφάλαιο 3 Πολλαπλά Ολοκληρώματα

Κεφάλαιο 3 Πολλαπλά Ολοκληρώματα Κεφάλαιο Πολλαπλά Ολοκληρώματα Διπλά Ολοκληρώματα. Έστω ότι η f ( είναι, ) ορισμένη σε ένα ορθογώνιο χωρίο : a b, c d d ΔA (, ) Δ c Δ a b Το οποίο διαμερίζουμε σε ορθογώνια υποχωρία (, ). Σχηματίζουμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Μοντέλο φωτισμού Phong

Μοντέλο φωτισμού Phong ΚΕΦΑΛΑΙΟ 9. Στο προηγούμενο κεφάλαιο παρουσιάσθηκαν οι αλγόριθμοι απαλοιφής των πίσω επιφανειών και ακμών. Απαλοίφοντας λοιπόν τις πίσω επιφάνειες και ακμές ενός τρισδιάστατου αντικειμένου, μπορούμε να

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"

Σημειώσεις για το μάθημα Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM) ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου Παράρτηµα Β Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου 1. Πρόγραµµα υπολογισµού υδροστατικών δυνάµεων Για τον υπολογισµό των κοµβικών δυνάµεων που οφείλονται στις υδροστατικές

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Προτεινόμενα Θέματα Εξαμήνου - Matlab

Προτεινόμενα Θέματα Εξαμήνου - Matlab ΕΘΝΙΚΟ ΜΕΤΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑ ΟΜΟΤΑΤΙΚΗ ΕΡΓΑΤΗΡΙΟ ΤΑΤΙΚΗ ΚΑΙ ΑΝΤΙΕΙΜΙΚΩΝ ΕΡΕΥΝΩΝ Ακαδ. Έτος: 2012-2013 Μάθημα: Εφαρμογές Ηλεκτρονικού Υπολογιστή Τρίτη, 27/11/2012 ιδάσκοντες:

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ Νικόλαος Ι. Ιωακειμίδης Ομότιμος Καθηγητής Πολυτεχνικής Σχολής Πανεπιστημίου Πατρών ΠΑΤΡΑ 2014 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ Σ (Το τυπολόγιο αυτό δεν αντικαθιστά το βιβλίο. Συγκεντρώνει απλώς τις ουσιώδεις σχέσεις του βιβλίου και σχολιάζει κάποια σημεία τους).

Διαβάστε περισσότερα

ΥΒΡΙΔΙΚΑ ΠΛΕΓΜΑΤΑ. Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ

ΥΒΡΙΔΙΚΑ ΠΛΕΓΜΑΤΑ. Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΥΒΡΙΔΙΚΑ ΠΛΕΓΜΑΤΑ Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ kgianna@central.ntua.gr

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ Εργαστηριακή Άσκηση 1 Προσδιορισμός Τεχνικών Παραμέτρων Ταλαντωτή Ενός Βαθμού Ελευθερίας Ονοματεπώνυμο: Παριανού Θεοδώρα Όνομα Πατρός: Απόστολος Αριθμός μητρώου: 1000107 Ημερομηνία

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton. ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΦΟΡΕΩΝ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΗΜΕΙΩΣΕΙΣ

ΑΝΑΛΥΣΗ ΦΟΡΕΩΝ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΗΜΕΙΩΣΕΙΣ ΑΝΑΛΥΣΗ ΦΟΡΕΩΝ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΗΜΕΙΩΣΕΙΣ ΜΕΡΟΣ Α Β. Κουμούσης Καθηγητής ΕΜΠ ΑΘΗΝΑ ΜΑΡΤΙΟΣ 998 ΠΡΟΛΟΓΟΣ... Ενεργειακές Αρχές της Μηχανικής... 5 Αρχή των Δυνατών Έργων... 5 Αρχή της Ελάχιστης Ολικής

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα