EUCLID S ELEMENTS OF GEOMETRY

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "EUCLID S ELEMENTS OF GEOMETRY"

Transcript

1 EUCLID S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg ( ) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, edited, and provided with a modern English translation, by Richard Fitzpatrick NB: This excerpt from Euclid s Element contains the first two propositions (or theorems). Before proving these propositions, however, Euclid formulates definitions, postulates and common notions (or axioms, self-evident facts). In reading the proofs of the two propositions, make sure you identify the definitions, postulates and common notions that are needed in the proof of the first two propositions (or theorems).

2 Οροι. Definitions α. Σηµε όν στιν, ο µέρος ο θέν. 1. A point is that of which there is no part. β. Γραµµ δ µ κος πλατές. 2. And a line is a length without breadth. γ. Γραµµ ς δ πέρατα σηµε α. 3. And the extremities of a line are points. δ. Ε θε α γραµµή στιν, τις ξ σου το ς φ αυτ ς 4. A straight-line is whatever lies evenly with points σηµείοις κε ται. upon itself. ε. Επιφάνεια δέ στιν, µ κος κα πλάτος µόνον 5. And a surface is that which has length and breadth χει. alone.. Επιφανείας δ πέρατα γραµµαί. 6. And the extremities of a surface are lines. ζ. Επίπεδος πιφάνειά στιν, τις ξ σου τα ς φ 7. A plane surface is whatever lies evenly with αυτ ς ε θείαις κε ται. straight-lines upon itself. η. Επίπεδος δ γωνία στ ν ν πιπέδ δύο 8. And a plane angle is the inclination of the lines, γραµµ ν πτοµένων λλήλων κα µ π ε θείας when two lines in a plane meet one another, and are not κειµένων πρ ς λλήλας τ ν γραµµ ν κλίσις. laid down straight-on with respect to one another. θ. Οταν δ α περιέχουσαι τ ν γωνίαν γραµµα 9. And when the lines containing the angle are ε θε αι σιν, ε θύγραµµος καλε ται γωνία. straight then the angle is called rectilinear. ι. Οταν δ ε θε α π ε θε αν σταθε σα τ ς φεξ ς 10. And when a straight-line stood upon (another) γωνίας σας λλήλαις ποι, ρθ κατέρα τ ν σων straight-line makes adjacent angles (which are) equal to γωνι ν στι, κα φεστηκυ α ε θε α κάθετος καλε ται, one another, each of the equal angles is a right-angle, and φ ν φέστηκεν. the former straight-line is called perpendicular to that ια. Αµβλε α γωνία στ ν µείζων ρθ ς. upon which it stands. ιβ. Οξε α δ λάσσων ρθ ς. 11. An obtuse angle is greater than a right-angle. ιγ. Ορος στίν, τινός στι πέρας. 12. And an acute angle is less than a right-angle. ιδ. Σχ µά στι τ πό τινος τινων ρων πε- 13. A boundary is that which is the extremity of someριεχόµενον. thing. ιε. Κύκλος στ σχ µα πίπεδον π µι ς γραµµ ς 14. A figure is that which is contained by some boundπεριεχόµενον [ καλε ται περιφέρεια], πρ ς ν φ ary or boundaries. ν ς σηµείου τ ν ντ ς το σχήµατος κειµένων π σαι 15. A circle is a plane figure contained by a single α προσπίπτουσαι ε θε αι [πρ ς τ ν το κύκλου πε- line [which is called a circumference], (such that) all of ριφέρειαν] σαι λλήλαις ε σίν. the straight-lines radiating towards [the circumference] ι. Κέντρον δ το κύκλου τ σηµε ον καλε ται. from a single point lying inside the figure are equal to ιζ. ιάµετρος δ το κύκλου στ ν ε θε ά τις δι το one another. κέντρου γµένη κα περατουµένη φ κάτερα τ µέρη 16. And the point is called the center of the circle. π τ ς το κύκλου περιφερείας, τις κα δίχα τέµνει 17. And a diameter of the circle is any straight-line, τ ν κύκλον. being drawn through the center, which is brought to an ιη. Ηµικύκλιον δέ στι τ περιεχόµενον σχ µα πό end in each direction by the circumference of the circle. τε τ ς διαµέτρου κα τ ς πολαµβανοµένης π α τ ς And any such (straight-line) cuts the circle in half. περιφερείας. κέντρον δ το µικυκλίου τ α τό, κα 18. And a semi-circle is the figure contained by the το κύκλου στίν. diameter and the circumference it cuts off. And the center ιθ. Σχήµατα ε θύγραµµά στι τ π ε θει ν πε- of the semi-circle is the same (point) as (the center of) the ριεχόµενα, τρίπλευρα µ ν τ π τρι ν, τετράπλευρα circle. δ τ π τεσσάρων, πολύπλευρα δ τ π πλειόνων 19. Rectilinear figures are those figures contained by τεσσάρων ε θει ν περιεχόµενα. straight-lines: trilateral figures being contained by three κ. Τ ν δ τριπλεύρων σχηµάτων σόπλευρον µ ν straight-lines, quadrilateral by four, and multilateral by τρίγωνόν στι τ τ ς τρε ς σας χον πλευράς, σοσκελ ς more than four. δ τ τ ς δύο µόνας σας χον πλευράς, σκαλην ν δ τ 20. And of the trilateral figures: an equilateral trianτ ς τρε ς νίσους χον πλευράς. gle is that having three equal sides, an isosceles (triangle) κα Ετι δ τ ν τριπλεύρων σχηµάτων ρθογώνιον that having only two equal sides, and a scalene (triangle) µ ν τρίγωνόν στι τ χον ρθ ν γωνίαν, µβλυγώνιον that having three unequal sides. 6

3 δ τ χον µβλε αν γωνίαν, ξυγώνιον δ τ τ ς τρε ς ξείας χον γωνίας. κβ. Τ ν δ τετραπλεύρων σχηµάτων τετράγωνον µέν στιν, σόπλευρόν τέ στι κα ρθογώνιον, τερόµηκες δέ, ρθογώνιον µέν, ο κ σόπλευρον δέ, όµβος δέ, σόπλευρον µέν, ο κ ρθογώνιον δέ, οµβοειδ ς δ τ τ ς πεναντίον πλευράς τε κα γωνίας σας λλήλαις χον, ο τε σόπλευρόν στιν ο τε ρθογώνιον τ δ παρ τα τα τετράπλευρα τραπέζια καλείσθω. κγ. Παράλληλοί ε σιν ε θε αι, α τινες ν τ α τ πιπέδ ο σαι κα κβαλλόµεναι ε ς πειρον φ κάτερα τ µέρη π µηδέτερα συµπίπτουσιν λλήλαις. 21. And further of the trilateral figures: a right-angled triangle is that having a right-angle, an obtuse-angled (triangle) that having an obtuse angle, and an acuteangled (triangle) that having three acute angles. 22. And of the quadrilateral figures: a square is that which is right-angled and equilateral, a rectangle that which is right-angled but not equilateral, a rhombus that which is equilateral but not right-angled, and a rhomboid that having opposite sides and angles equal to one an- other which is neither right-angled nor equilateral. And let quadrilateral figures besides these be called trapezia. 23. Parallel lines are straight-lines which, being in the same plane, and being produced to infinity in each direction, meet with one another in neither (of these directions). This should really be counted as a postulate, rather than as part of a definition. Α τήµατα. Postulates α. Ηιτήσθω π παντ ς σηµείου π π ν σηµε ον 1. Let it have been postulated to draw a straight-line ε θε αν γραµµ ν γαγε ν. from any point to any point. β. Κα πεπερασµένην ε θε αν κατ τ συνεχ ς π 2. And to produce a finite straight-line continuously ε θείας κβαλε ν. in a straight-line. γ. Κα παντ κέντρ κα διαστήµατι κύκλον γράφεσ- 3. And to draw a circle with any center and radius. θαι. 4. And that all right-angles are equal to one another. δ. Κα πάσας τ ς ρθ ς γωνίας σας λλήλαις ε ναι. 5. And that if a straight-line falling across two (other) ε. Κα ν ε ς δύο ε θείας ε θε α µπίπτουσα straight-lines makes internal angles on the same side (of τ ς ντ ς κα π τ α τ µέρη γωνίας δύο ρθ ν itself whose sum is) less than two right-angles, then, be- λάσσονας ποι, κβαλλοµένας τ ς δύο ε θείας π πει- ing produced to infinity, the two (other) straight-lines ρον συµπίπτειν, φ µέρη ε σ ν α τ ν δύο ρθ ν meet on that side (of the original straight-line) that the λάσσονες. (sum of the internal angles) is less than two right-angles (and do not meet on the other side). This postulate effectively specifies that we are dealing with thegeometryofflat, ratherthancurved,space. Κοινα ννοιαι. Common Notions α. Τ τ α τ σα κα λλήλοις στ ν σα. 1. Things equal to the same thing are also equal to β. Κα ν σοις σα προστεθ, τ λα στ ν σα. one another. γ. Κα ν π σων σα φαιρεθ, τ καταλειπόµενά 2. And if equal things are added to equal things then στιν σα. the wholes are equal. δ. Κα τ φαρµόζοντα π λλήλα σα λλήλοις 3. And if equal things are subtracted from equal things στίν. then the remainders are equal. ε. Κα τ λον το µέρους µε ζόν [ στιν]. 4. And things coinciding with one another are equal to one another. 5. And the whole [is] greater than the part. As an obvious extension of C.N.s 2 & 3 if equal things are addedorsubtractedfromthetwosidesofaninequalitythentheinequality remains an inequality of the same type. 7

4 α. Proposition 1 Επ τ ς δοθείσης ε θείας πεπερασµένης τρίγωνον σόπλευρον συστήσασθαι. Γ To construct an equilateral triangle on a given finite straight-line. C Α Β Ε D A B E Εστω δοθε σα ε θε α πεπερασµένη ΑΒ. Let AB be the given finite straight-line. ε δ π τ ς ΑΒ ε θείας τρίγωνον σόπλευρον So it is required to construct an equilateral triangle on συστήσασθαι. the straight-line AB. Κέντρ µ ν τ Α διαστήµατι δ τ ΑΒ κύκλος Let the circle BCD with center A and radius AB have γεγράφθω ΒΓ, κα πάλιν κέντρ µ ν τ Β διαστήµατι been drawn [Post. 3], and again let the circle ACE with δ τ ΒΑ κύκλος γεγράφθω ΑΓΕ, κα π το Γ center B and radius BA have been drawn [Post. 3]. And σηµείου, καθ τέµνουσιν λλήλους ο κύκλοι, πί τ Α, let the straight-lines CA and CB have been joined from Βσηµε α πεζεύχθωσαν ε θε αι α ΓΑ, ΓΒ. the point C, wherethecirclescutoneanother, to the Κα πε τ Α σηµε ον κέντρον στ το Γ Β κύκλου, points A and B (respectively) [Post. 1]. ση στ ν ΑΓ τ ΑΒ πάλιν, πε τ Β σηµε ον κέντρον And since the point A is the center of the circle CDB, στ το ΓΑΕ κύκλου, ση στ ν ΒΓ τ ΒΑ. δείχθη AC is equal to AB [Def. 1.15]. Again, since the point δ κα ΓΑ τ ΑΒ ση κατέρα ρα τ ν ΓΑ, ΓΒ τ B is the center of the circle CAE, BC is equal to BA ΑΒ στιν ση. τ δ τ α τ σα κα λλήλοις στ ν σα [Def. 1.15]. But CA was also shown (to be) equal to AB. κα ΓΑ ρα τ ΓΒ στιν ση α τρε ς ρα α ΓΑ, ΑΒ, Thus, CA and CB are each equal to AB. Butthingsequal ΒΓ σαι λλήλαις ε σίν. to the same thing are also equal to one another [C.N. 1]. Ισόπλευρον ρα στ τ ΑΒΓ τρίγωνον. κα Thus, CA is also equal to CB. Thus,thethree(straightσυνέσταται π τ ς δοθείσης ε θείας πεπερασµένης τ ς lines) CA, AB, andbc are equal to one another. ΑΒ περ δει ποι σαι. Thus, the triangle ABC is equilateral, and has been constructed on the given finite straight-line AB. (Which is) the very thing it was required to do. The assumption that the circles do indeed cut one another should be counted as an additional postulate. There is also an implicit assumption that two straight-lines cannot share a common segment. β. Proposition 2 Πρ ς τ δοθέντι σηµεί τ δοθείσ ε θεί σην To place a straight-line equal to a given straight-line ε θε αν θέσθαι. at a given point. Εστω τ µ ν δοθ ν σηµε ον τ Α, δ δοθε σα Let A be the given point, and BC the given straightε θε α ΒΓ δε δ πρ ς τ Α σηµεί τ δοθείσ line. So it is required to place a straight-line at point A ε θεί τ ΒΓ σην ε θε αν θέσθαι. equal to the given straight-line BC. Επεζεύχθω γ ρ π το Α σηµείου πί τ Β For let the straight-line AB have been joined from σηµε ον ε θε α ΑΒ, κα συνεστάτω π α τ ς τρίγωνον point A to point B [Post. 1], and let the equilateral trian- σόπλευρον τ ΑΒ, κα κβεβλήσθωσαν π ε θείας gle DAB have been been constructed upon it [Prop. 1.1]. τα ς Α, Β ε θε αι α ΑΕ, ΒΖ, κα κέντρ µ ν τ And let the straight-lines AE and BF have been pro- Β διαστήµατι δ τ ΒΓ κύκλος γεγράφθω ΓΗΘ, duced in a straight-line with DA and DB (respectively) κα πάλιν κέντρ τ κα διαστήµατι τ Η κύκλος [Post. 2]. And let the circle CGH with center B and ra- 8

5 γεγράφθω ΗΚΛ. dius BC have been drawn [Post. 3], and again let the circle GKL with center D and radius DG have been drawn [Post. 3]. Γ C Κ Θ Β K H D B Α Η A G Ζ F Λ L Ε E Επε ο ν τ Β σηµε ον κέντρον στ το ΓΗΘ, ση Therefore, since the point B is the center of (the cir- στ ν ΒΓ τ ΒΗ. πάλιν, πε τ σηµε ον κέντρον cle) CGH, BC is equal to BG [Def. 1.15]. Again, since στ το ΗΚΛ κύκλου, ση στ ν Λ τ Η, ν the point D is the center of the circle GKL, DL is equal Α τ Β ση στίν. λοιπ ρα ΑΛ λοιπ τ ΒΗ to DG [Def. 1.15]. And within these, DA is equal to DB. στιν ση. δείχθη δ κα ΒΓ τ ΒΗ ση κατέρα ρα Thus, the remainder AL is equal to the remainder BG τ ν ΑΛ, ΒΓ τ ΒΗ στιν ση. τ δ τ α τ σα κα [C.N. 3]. But BC was also shown (to be) equal to BG. λλήλοις στ ν σα κα ΑΛ ρα τ ΒΓ στιν ση. Thus, AL and BC are each equal to BG. Butthingsequal Πρ ς ρα τ δοθέντι σηµεί τ Α τ δοθείσ to the same thing are also equal to one another [C.N. 1]. ε θεί τ ΒΓ ση ε θε α κε ται ΑΛ περ δει ποι σαι. Thus, AL is also equal to BC. Thus, the straight-line AL,equaltothegivenstraightline BC, hasbeenplacedatthegivenpointa. (Which is) the very thing it was required to do. This proposition admits of a number of different cases, depending on the relative positions of the point A and the line BC. Insuchsituations, Euclid invariably only considers one particular case usually, the most difficult and leaves the remaining cases as exercises for the reader. γ. Proposition 3 ύο δοθεισ ν ε θει ν νίσων π τ ς µείζονος τ For two given unequal straight-lines, to cut off from λάσσονι σην ε θε αν φελε ν. the greater a straight-line equal to the lesser. Εστωσαν α δοθε σαι δύο ε θε αι νισοι α ΑΒ, Γ, Let AB and C be the two given unequal straight-lines, ν µείζων στω ΑΒ δε δ π τ ς µείζονος τ ς ΑΒ of which let the greater be AB. Soitisrequiredtocutoff τ λάσσονι τ Γ σην ε θε αν φελε ν. astraight-lineequaltothelesserc from the greater AB. Κείσθω πρ ς τ Α σηµεί τ Γ ε θεί ση Α Let the line AD, equaltothestraight-linec, have κα κέντρ µ ν τ Α διαστήµατι δ τ Α κύκλος been placed at point A [Prop. 1.2]. And let the circle γεγράφθω ΕΖ. DEF have been drawn with center A and radius AD Κα πε τ Α σηµε ον κέντρον στ το ΕΖ [Post. 3]. κύκλου, ση στ ν ΑΕ τ Α λλ κα Γ τ Α And since point A is the center of circle DEF, AE στιν ση. κατέρα ρα τ ν ΑΕ, Γ τ Α στιν ση is equal to AD [Def. 1.15]. But, C is also equal to AD. στε κα ΑΕ τ Γ στιν ση. Thus, AE and C are each equal to AD. So AE is also 9

Οροι. ζ Επίπεδος πιφάνειά στιν, τις ξ σου τα ς φ αυτ ς ε θείαις κε ται.

Οροι. ζ Επίπεδος πιφάνειά στιν, τις ξ σου τα ς φ αυτ ς ε θείαις κε ται. ΣΤΟΙΧΕΙΩΝ α Οροι α Σηµε όν στιν, ο µέρος ο θέν. β Γραµµ δ µ κος πλατές. γ Γραµµ ς δ πέρατα σηµε α. δ Ε θε α γραµµή στιν, τις ξ σου το ς φ αυτ ς σηµείοις κε ται. ε Επιφάνεια δέ στιν, µ κος κα πλάτος µόνον

Διαβάστε περισσότερα

EUCLID S ELEMENTS IN GREEK

EUCLID S ELEMENTS IN GREEK EUCLID S ELEMENTS IN GREEK The Greek text of J.L. Heiberg (1883 1884) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, Lipsiae, in aedibus B.G. Teubneri, 1883 1884 with an accompanying

Διαβάστε περισσότερα

EUCLID S ELEMENTS OF GEOMETRY

EUCLID S ELEMENTS OF GEOMETRY ULI S LMNTS OF GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern

Διαβάστε περισσότερα

EUCLID S ELEMENTS OF GEOMETRY

EUCLID S ELEMENTS OF GEOMETRY ULI S LMNTS OF GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern

Διαβάστε περισσότερα

ΠPOΛEΓOMENA. Thank you. ;) Nov. 15. 2004. Myungsunn Ryu.

ΠPOΛEΓOMENA. Thank you. ;) Nov. 15. 2004. Myungsunn Ryu. ΣTOIXEIA EΥKΛEIOΥ ΠPOΛEOMENA This document is compiled from Greek texts borrowed from Perseus Digital Library 1 and drawings that I created with a geometrical drawing language named, fittingly to the

Διαβάστε περισσότερα

If you want to learn Greek solely for reading Euclid s Elements, I recommend you to visit the Dr. Elizabeth R. Tuttle s web site, Reading Euclid 4.

If you want to learn Greek solely for reading Euclid s Elements, I recommend you to visit the Dr. Elizabeth R. Tuttle s web site, Reading Euclid 4. ΣTOIXEIA EΥKΛEIOΥ Note This book is compiled to provide a printer-friendly e-book for you who want to read Euclid s Elements in the original Greek language. The Greek text is borrowed from Perseus Digital

Διαβάστε περισσότερα

Definitions. . Proposition 1

Definitions. . Proposition 1 ÎÇÖÓ. efinitions αʹ. Ισοι κύκλοι εἰσίν, ὧν αἱ διάμετροι ἴσαι εἰσίν, ἢ ὧν αἱ 1. qual circles are (circles) whose diameters are ἐκ τῶν κέντρων ἴσαι εἰσίν. equal, or whose (distances) from the centers (to

Διαβάστε περισσότερα

EUCLID S ELEMENTS OF GEOMETRY

EUCLID S ELEMENTS OF GEOMETRY ULI S LMNTS O GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern

Διαβάστε περισσότερα

ELEMENTS BOOK 3. Fundamentals of Plane Geometry Involving Circles

ELEMENTS BOOK 3. Fundamentals of Plane Geometry Involving Circles LMNTS OOK 3 undamentals of Plane eometry Involving ircles 69 ÎÇÖÓ. efinitions αʹ. Ισοι κύκλοι εἰσίν, ὧν αἱ διάμετροι ἴσαι εἰσίν, ἢ ὧν αἱ 1. qual circles are (circles) whose diameters are ἐκ τῶν κέντρων

Διαβάστε περισσότερα

EUCLID S ELEMENTS OF GEOMETRY

EUCLID S ELEMENTS OF GEOMETRY ULI S LMNTS O GOMTRY The Greek text of J.L. Heiberg (1883 1885) from uclidis lementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus.g. Teubneri, 1883 1885 edited, and provided with a modern

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ELEMENTS BOOK 4. Construction of Rectilinear Figures In and Around Circles

ELEMENTS BOOK 4. Construction of Rectilinear Figures In and Around Circles LMNTS OOK 4 onstruction of Rectilinear igures In and round ircles 109 ÎÇÖÓ. efinitions αʹ. Σχῆμα εὐθύγραμμον εἰς σχῆμα εὐθύγραμμον ἐγγράφ- 1. rectilinear figure is said to be inscribed in εσθαι λέγεται,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ELEMENTS BOOK 2. Fundamentals of Geometric Algebra

ELEMENTS BOOK 2. Fundamentals of Geometric Algebra ELEMENTS BOOK 2 Fundamentals of Geometric Algebra 49 ÎÇÖÓ. Definitions αʹ. Πᾶν παραλληλόγραμμον ὀρθογώνιον περιέχεσθαι 1. Any rectangular parallelogram is said to be conλέγεται ὑπὸ δύο τῶν τὴν ὀρθὴν γωνίαν

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

ELEMENTS BOOK 11. Elementary Stereometry

ELEMENTS BOOK 11. Elementary Stereometry LMNTS OOK 11 lementary Stereometry 423 ËÌÇÁÉÁÏÆ º LMNTS OOK 11 ÎÇÖÓ. efinitions αʹ.στερεόνἐστιτὸμῆκοςκαὶπλάτοςκαὶβάθοςἔχον. 1. solid is a (figure) having length and breadth and βʹ. Στερεοῦ δὲ πέρας ἐπιφάνεια.

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ELEMENTS BOOK 13. The Platonic Solids

ELEMENTS BOOK 13. The Platonic Solids LMNTS BOOK 13 The Platonic Solids The five regular solids the cube, tetrahedron (i.e., pyramid), octahedron, icosahedron, and dodecahedron were problably discovered by the school of Pythagoras. They are

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9

EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9 EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9 The Greek text of J.L. Heiberg (1884) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, Uol. II, Libros V-IX continens, Lipsiae, in

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

ELEMENTS BOOK 10. Incommensurable Magnitudes

ELEMENTS BOOK 10. Incommensurable Magnitudes ELEMENTS OOK 10 Incommensurable Magnitudes The theory of incommensurable magntidues set out in this book is generally attributed to Theaetetus of Athens. In the footnotes throughout this book, k, k, etc.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

2007 Classical Greek. Intermediate 2 Translation. Finalised Marking Instructions

2007 Classical Greek. Intermediate 2 Translation. Finalised Marking Instructions 2007 Classical Greek Intermediate 2 Translation Finalised Marking Instructions Scottish Qualifications Authority 2007 The information in this publication may be reproduced to support SQA qualifications

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα