KORTIKOSTEROIDI BIOSINTEZA. b) 17α hidroksilaza HOH 2C OHC. j, k, l. Aldosteron HOH 2C O. f) 17β-hidroksisteroid dehidrogenaza. j, l.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KORTIKOSTEROIDI BIOSINTEZA. b) 17α hidroksilaza HOH 2C OHC. j, k, l. Aldosteron HOH 2C O. f) 17β-hidroksisteroid dehidrogenaza. j, l."

Transcript

1 KRTIKSTERIDI RMNI KRE NADUREŽNE ŽLEZDE, NASTAJU ISINTEZM IZ LESTERLA IZLVAN JE I IDENTIIKVAN K 50 RAZLIČITI RMNA MINERALKRTIKIDI (ALDSTERN) GLIKKRTIKIDI (IDRKRTIZN = KRTIZL) ISINTEZA olesterol a c, d AcoA j, k, l a) odvajanje bočnog lanca b) 17α hidroksilaza c) 5-en-β-hidroksisteroid dehidrogenaza Pregnenolon Progesteron Aldosteron d) -oksosteroid-4,5-izomeraza b c, d j, l 17a-idroksipregnenolon 17a-progesteron e c, d g idrokortizon e) 17,0-liaza f) 17β-hidroksisteroid dehidrogenaza g) aromataza h) estradiol dehidrogenaza i) 5α-reduktaza Dehidroepiandrosteron Androstendion f Estron h j) 1-hidroksilaza k) β-hidroksilaza (YP) i g l) 18-hidroksilaza 5a-Dihidrotestosteron Testosteron Estradiol

2 PRIMENA KRTIKSTERIDA MRUS ADDISNI (IPUNKIJA KRE NADUREGA) ALERGIJSKE I AUTIMUNE LESTI KLAGENSK-VASKULARNA LJENJA ČNE LESTI GASTRINTESTINALNA LJENJA EMATLŠKI PREMEĆAJI INEKIJE ZAPALJENJA KSTIJU I ZGLVA NEURLŠKI PREMEĆAJI TRANSPLATAIJA RGANA PLUĆNE LESTI LJENJA UREGA LESTI KŽE NEŽELJENI EEKTI SISTEMSKE PRIMENE KRTIKSTERIDA (U SLUČAJU DUGTRAJNE TERAPIJE): PEPTIČKI ULKUS USINGV SINDRM SUPRESIJA NADUREŽNE ŽLEZDE AKTERIJSKE I MIKTIČKE INEKIJE KATARAKTA I GLAUKM IPKALEMIJA I IPLREMIČKA ALKALZA SA PVIŠENJEM ARTERIJSKG KRVNG PRITISKA ATRIJA KŽE, STRIJE, AKNE, PURPURA (NEDVLJNA SINTEZA KLAGENA) USPREN ZARASTANJE RANA (ANTIPRLIERATIVNI EEKAT GK)

3 A α ili 5β D PREGNAN SNVNE KARAKTERISTIKE STRUKTURE KRTIKSTERIDA glik KETL 17 A glik 4 -N-4-EN

4 1 A ALDSTERN (β)-,1-dihidroksi-,0- dioksopregn-4-en-18-al MINERALKRTIKIDI PLUAETAL intramolekulska ciklizacija nukleofilna adicija alkohola na karbonil aldehida 1 AETAT, PIVALAT ZAŠTITA D 1 KSIDAIJE DEKSIKRTIKSTERN 1-hidroksi-pregn-4-en-,0-dion -deoksi derivat kortikosterona LUDRKRTIZN 9α-fluoro-β,17α, 1-trihidroksi-4-pregnen-,0-dion 9α-fluor povećava MK ali i GK aktivnost

5 GLUKKRTIKIDI kortizol jači afinitet za receptor, cirkadijalni ritam gladovanje, stresne situacije, inhibicija upalnih i imunoloških reakcija organizma sintetski analozi (smanjena metabolička, a pojačana protivupalna i imunosupresivna aktivnost) KRTIZL (IDRKRTIZN) (β)-,17,1-trihidroksipregn- 4-en-,0-dion β-dehidrogenaza KRTIZN SNVNE KARAKTERISTIKE STRUKTURE GLUKKRTIKIDA (ARMAKRE KJE USLVLJAVAJU GK AKTIVNST) PRISUSTV 4-EN--N STRUKTURE U IKLUSU A PRISUSTV IDRKSILNE GRUPE β-rijentaije PRISUSTV α-ketla U 17 β-rijentaije 0 D A 5

6 β-hidroksisteroid dehidrogenaza idrokortizon (kortizol) 5β-reduktaza Kortizon α-hidroksisteroid dehidrogenaza Urokortizol (inaktivni metabolit) α hidroksi-5β-tetrahidrokortizol) 5β Dihidrokortizol (inaktivni metabolit) 0 D 0 * A 5 α, β 5α, 5β 0α, 0β 0R TETRAIDR DERIVAT (I AZA METALIZMA U JETRI)

7 α,5β TETRAIDRKRTIZL α,5β TETRAIDRKRTIZN 0 * KRTLNI (0α ili 0β) R EKSA METALIČKA KSIDAIJA ČNG LANA KRTIZLA Kortizol Aldehid Ketokiselina NEAKT. Kortienska kiselina

8 KRTIZL MDEL SUPSTANA GLUKKRTIKIDI IMAJU IMUNSUPRESIVN I ANTIINLAMATRN DELVANJE. MEANIZAM ANTIINLAMATRNG DELVANJA: 1) KRTIKSTERIDI PSREDN LKIRAJU ENZIM SLIPAZU A TIME I SINTEZU TZV. "MEDIJATRA UPALE (LEUKTRIENI, PRSTAGLANDINI I TRMKSANI). ) LKIRAJU AKTIVNST IKLKSIGENAZE (X). ) INIIRAJU AKTIVNST AZT-KSID SINTETAZE, A KJA JE DGVRNA ZA DILATAIJU KRVNI SUDVA U UPALI. ANTIINLAMATRNI STERIDI U DNSU NA NAČIN PRIMENE I PRIMARNI TERAPIJSKI EEKAT, ANTIINLAMATRNI STERIDI SE DELE NA: SISTEMSKE ANTIINLAMAT. STERIDE I IMUNSUPRESIVE LKALNE ANTIINLAMATRNE STERIDE U DNSU NA RASTVRLJIVST, ANTIINLAMATRNI STERIDI SE DELE NA: IDRSLUILNE (UVĐENJE JNSKI GRUPA U PL. 1) (INJEKINI I TALMLŠKI RZ ALI KRATKTRAJN DEJSTV) LIPSLUILNE

9 MDIIKAIJA RASTVRLJIVSTI KRTIZLA LIPILNI ESTRI (PVEĆANJE RESRPIJE): KRTIZL 1-AETAT KRTIZL 17-UTIRAT ILI KRTIZL 1-IPINAT KRTIZL 17-UTIRAT ILI 1-PRPINAT IDRILNI ESTRI (SLI ESTARA) KRTIZL 1-DINATRIJUM-SAT 0 D KRTIZL 1-NATRIJUM-SUKINAT KRTIZNAETAT (PER S) A 5 NEDSTAI KRTIZLA: NESELEKTIVNST MK I GK REEPTRA, METALIČKA NESTAILNST, NEDVLJNA LIPILNST ZA LKALN DELVANJE D D 1 A 1 A PREDNIZLN PREDNIZN β,17α,1-trihidroksi-pregna-1,4-dien-,0-dion,5 D 5 PUTA U DNSU NA KRTIZL

10 A 5α-pregnan--on pregn-4-en--on pregna-1,4-dien--on 1 1 Prednizolon Prednizon LIPILNI 1 ESTRI PREDNIZLNA: AETAT, PIVALAT, TER. UTILAT (TERUTAT), STEARILGLIKLAT (DVJNI ESTAR IDRKSISIRĆETNE I STEARINSKE KIS.) IDRSLUILNE ESTARSKE SLI SUKINAT-NATRIJUM I m-sulenzat-natrijum PRED 1-ESTARA PZNATI SU I 17-ESTRI Prednizon β-hidroksisteroid dehidrogenaza YP450 6β-idroksiprednizolon (aktivni metabolit) YP450 Prednizolon 0α/β-hidroksisteroid dehidrogenaza 16α-idroksiprednizolon (aktivni metabolit) 0α/β-hidroksiprednizolon (inaktivni metabolit)

11 PRMENE U STRUKTURI PREDNIZLNA 9 16 ALKILVANJE, KSIDAIJA 6 ALKILVANJE, ALGENVANJE ALKILVANJE ALKILVANJE ALKILVANJE ALGENVANJE ALGENVANJE ALGENVANJE ALGENVANJE KSIDAIJA ALKILVANJE 6α-METILPREDNIZLN (URAZN-ANTIASTMATIK) 1-AETAT, SUKINAT-NATRIJUM, DINATRIJUM-SAT I AEPNAT (MEŠVITI DIESTAR 17 - PRPINAT I 1 - AETAT)

12 TRIAMINLN δ δ KETAL DIKSLAN IZPRPILIDEN TRIAMINLN AETNID (LKALN - 10X D TRIAMINLNA, SISTEMSKI - ISTA ANTIINLAMATRNA AKTIVNST) MN- i DILURIRANI DERIVATI ZA LKALNU PRIMENU LUINLN LUINLN AETNID

13 LUINNID LURMETLN 1 AETAT, U TALMLGIJI 17,1-DIPRPINAT 17-VALERAT 17-ENZAT 1-SAT-NATRIJUM ETAMETAZN DEKSAMETAZN kapi za oči, visoka resorpcija PARAMETAZN 6α, 16α

14 LUMETAZN PIVALAT (6α-LURDEKSAMETAZN) DILRAZN ANALG ETAMETAZNA, KRISTI SE DILRAZN DIAETAT, DERMSTERID ESTAR SA PIVALINSKM KIS.-DEP INALAINI I INTRANAZALNI GLUKKRTIKIDI S ST LEK 5 TPRNA NA IDRLIZU (STERNE SMETNJE) LUTIASN PRPINAT S (fluorometil)-6α,9-difluoro-β-hidroksi-16α-metil--okso-17α- (1-oksopropoksi) androsta-1,4-dien-17-karbotiolat ANTIALERGIK I ANTIASTMATIK (AERSLI ILI NAZALNE SUSPENZIJE), NE ISPLJAVA SISTEMSKU AKTIVNST PRI PER S PRIMENI! ZA LKALNU ANTIINLAMATRNU AKTIVNST JE ZNAČAJN DA 6α-PLŽAJ UDE SUPSTITUISAN.

15 l l MMETAZN URAT 7 R,S (smeša) R >>> S AINITET ZA REEPTR UDESNID 16α,17-[butilidenbis(oksi)-β,1-dihidroksipregna-1,4-dien-,0-dion NELURVANI UTILAETAL! TIREIDNI RMNI I I I ' 4' ' 1' I TIRKSIN 4 5' 5 1 N -(4-hidroksi-,5-dijodofenil)-,5-dijodo-L-tirozin I I ' 4' ' 1' 4 5' 5 I TRIJDTIRNIN -(4-hidroksi--jodofenil)-,5-dijodo-L-tirozin 1 N

16 SUPSTITUINA TERAPIJA: 1. LEVTIRKSIN (T 4 ) U LIKU Na-SLI SPRIJE DEJSTV, JAČE VEZIVANJE ZA PRTEIN TIREGLULIN - U RNIČNJ TERAPIJI ZA DRŽAVANJE PTIMALNI KNENTRAIJA TIRKSINA. LITIRNIN (T ) RZ I KRATKTRAJN DEJSTV, URGENTNA STANJA. LITRIKS SMEŠA Na-SLI T 4 I T U MASENM DNSU 4:1 4. DEKSTRTIRKSIN SINTETSKI D(+)-STEREIZMER TIRKSINA DNS STRUKTURA - DEJSTV TIREIDNI ANALGA X A R 1

17 1. ALANINSKI STATAK ČNG NIZA R 1 X A R 1 L-STEREIZMERI T 4 I T SU AKTIVNIJI D D-IZMERA NAJVEĆU TIREIDNU AKTIVNST IMAJU KISELINE SA I ATMA ANALZI T 4 I T SA ČNIM NIZM ETILAMINA MANJE AKTIVNI D ANALGA SA KARKSILNM GRUPM ZA DEJSTV NEPDAN ČNI NIZ U PLŽAJU 1. IKLUS A I PLŽAJI I 5 PRSTEN A MRA ITI SUPSTITUISAN ATMIMA JDA U PLŽAJIMA I 5 AK SE I ZAMENI r, ZADRŽAVA SE SMANJENA RMNSKA AKTIVNST SUPSTITUIJA VEĆIM ALKIL GRUPAMA NEAKTIVNI ANALZI USLV ZA DEJSTV:, 5-DISUPSTITUIJA SIMETRIČNIM LIPILNIM GRUPAMA KJE NE PRELAZE Van der Waalsov PREČNIK ATMA JDA. ATMSKI MST IZMEĐU IKLUSA A I X A R 1 DIENIL ANALG T 4 DIJEN UKLANJANJEM KISENIČNG MSTA JE NEAKTIVAN ZAMENM VEZUJUĆEG KISENIKA SUMPRM ILI METILENSKM GRUPM ANALZI SA RMNSKM AKTIVNŠĆU 4. IKLUS I PLŽAJI I 5' -IKLUS NEPDAN ZA RMNSKU AKTIVNST SUPSTITUIJA PLARNM GRUPM SMANJENJE AKTIVNSTI MNSUPSTITUISANI ANALZI SU AKTIVNIJI D, 5 ANALGA SA ISTIM ALGENM SUPSTITUENT U 5 SMANJUJE AKTIVNST DIREKTN PRPRINALN VELIČINI SUPSTITUENTA

18 5. 4 ENLNA GRUPA X A R 1 ESENIJALNA ZA PTIMALNU RMNSKU AKTIVNST ZAMENA AMIN GRUPM ZNATN SMANJENJE AKTIVNSTI 4 NESUPSTITUISANI DERIVAT - RMNSKA AKTIVNST (METALIČKA 4 - IDRKSILAIJA) 4 METILETAR IMA TIMIMETSKU AKTIVNST KSIDAIJA MLEKULA PREVĐENJE U INNSKU STRUKTURU TIRESTATII INIIIJA AKTIVNSTI TIRKSINA U ISREDINI (IPERUNKIJA-TIRETKSIKZA)-TIAMIDI (TIUREIDI, TIKARAMIDI) N N TIN TIL S N S N -TIURAIL S 4 N 5 1 N N S N 5 S N N 6-PRPILTIURAIL (6-n-propil--tiouracil) METIMAZL (AVISTAN)

STEROIDI. Koja jedinjenja imaju steroidnu strukturu? Od koliko i kojih ciklusa se sastoji steroidno jezgro?

STEROIDI. Koja jedinjenja imaju steroidnu strukturu? Od koliko i kojih ciklusa se sastoji steroidno jezgro? Koja jedinjenja imaju steroidnu strukturu? d koliko i kojih ciklusa se sastoji steroidno jezgro? TERII 0 Kako su vezani prstenovi u steroidnoj strukturi?, I ili TR, TR, TR Konformacije cikloheksana? Koja

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

STEROIDNI HORMONI ANTIKONCIPIJENSI I ANABOLICI

STEROIDNI HORMONI ANTIKONCIPIJENSI I ANABOLICI STERIDNI RMNI ANTIKNCIPIJENSI I ANABLICI STERIDNI PLNI RMNI 2 3 1 A 5 10 11 9 6 C B 12 8 7 18 13 17 D 14 15 16 ESTRADIL estra-1,3,5(10)-trien-3,17β-diol 2 1 10 3 5 4 12 19 11 6 9 8 7 21 3 C 18 C 20 13

Διαβάστε περισσότερα

STEROIDI U TERAPIJI STEROIDI

STEROIDI U TERAPIJI STEROIDI STERIDI U TERPIJI STERIDI BILJNG I ŽIVTINJSKG PREKL GRČKI: STERES (ČVRST), STER (LJ) PRIRDNI PRIZVDI STERIDNE STRUKTURE: RMNI, KRDITNIČNI GLIKZIDI, STERLI (LESTERL), ŽUČNE KISELINE, SPGENINI, NTIBITII

Διαβάστε περισσότερα

BETA ADRENERGIČKI BLOKATORI

BETA ADRENERGIČKI BLOKATORI BETA ADRENERGIČKI BLOKATORI KOMPETITIVNI INHIBITORI KATEHOLAMINA NA BETA ADRENERGIČKIM RECEPTORIMA LEKOVI KOJI SPECIFIČNO BLOKIRAJU BIOLOŠKI ODGOVOR NA IZOPRENALIN, A DELIMIČNO NA ADRENALIN PARCIJALNI

Διαβάστε περισσότερα

STEROIDI U TERAPIJI STEROIDI

STEROIDI U TERAPIJI STEROIDI STERIDI U TERPIJI STERIDI BILJNG I ŽIVTINJSKG PREKL GRČKI: STERES (ČVRST), STER (LJ) PRIRDNI PRIZVDI STERIDNE STRUKTURE: RMNI, KRDITNIČNI GLIKZIDI, STERLI (LESTERL), ŽUČNE KISELINE, SPGENINI, NTIBITII

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola)

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) 1 Adicija alkohola 2 AETALI I PLUAETAL AETALI 3 Adicijom jednog mola alkohola na mol aldehida ili ketona nastaje poluacetal

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

8-OKSO-5-TIA-1-AZABICIKLO[4.2.0]OKTEN-2

8-OKSO-5-TIA-1-AZABICIKLO[4.2.0]OKTEN-2 EFALPII -homoanalozi penicilina -stabilniji u + i na β-laktamaze -manje reaktivni -isti mehanizam dejstva kao penicilini A B EFAM beta laktam + tetrahidrotiazin EFEM- EFEM- (IUPA) (Primenjena nomenklatura)

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014 Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina Predavanja iz opšte biohemije Školska 2014/2015. godina Aminokiseline 1 Metabolizam aminokiselina Proteini iz

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Sekundarne struktura proteina Fibrilni proteini

Sekundarne struktura proteina Fibrilni proteini Sekundarne struktura proteina Fibrilni proteini Nivoi strukture proteina (strukturna hijerarhija) proteina Nivoi strukture proteina Primarna struktura Sekundarna struktura Super-sekundarna struktura Tercijarnastruktura

Διαβάστε περισσότερα

Kvantitativni odnosi strukture i dejstva

Kvantitativni odnosi strukture i dejstva FARMAEUTSKA HEMIJA 1 KVANTITATIVNI DNSI STRUKTURE I DEJSTVA LEKVA Predavač: Prof. dr. Slavica Erić Kvantitativni odnosi strukture i dejstva X N H N 4-X-pirazoli X Log1/Ki heksil 6.9 pentil 6.82 propil

Διαβάστε περισσότερα

ОРГАНСКA ХЕМИЈA ХАЛОГЕНАЛКАНИ

ОРГАНСКA ХЕМИЈA ХАЛОГЕНАЛКАНИ ОРГАНСКA ХЕМИЈA Предавања ХАЛОГЕНАЛКАНИ Др Весна Антић, ванредни професор Др Малиша Антић, ванредни професор Halogenalkani - alkilhalogenidi- Halogenalkani su jedinjenja opšte formule R-X, gde je X atom

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

A L D O L N A R E A K C I J A

A L D O L N A R E A K C I J A A L D L A E A K C I J A * U PTI^IM USLVIMA * Katalizovane bazama * Katalizovane kiselinama * U APTI^IM USLVIMA (eakcije preformiranih enolata ili dirigovane adicije) * U baznim uslovima * U kiselim uslovima

Διαβάστε περισσότερα

Supstituisane k.k. Sinteza Aminokiseline Biodegradabilni polimeri Peptidi. Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori

Supstituisane k.k. Sinteza Aminokiseline Biodegradabilni polimeri Peptidi. Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori Supstituisane k.k. Značaj Sinteza Aminokiseline Biodegradabilni polimeri Peptidi Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori Hidroksikiseline Kozmetička industrija kreme Biološki

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Kardiotonični glikozidi

Kardiotonični glikozidi Kardiotonični glikozidi GLIKZIDI Aglikon Šećer Cijanidni glikozidi (amigdalin) Kardiotonični glikozidi Saponini (steroidna ili triterpenska jedinjenja) Antraglikozidi (antracen) Amigdalin Kardiotonični

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

C kao nukleofil (Organometalni spojevi)

C kao nukleofil (Organometalni spojevi) C kao nukleofil (Organometalni spojevi) 1 Nastajanje nukleofilnih C atoma i njihova adicija na karbonilnu grupu Ukupan proces je jedan od najkorisnijih sintetskih postupaka za stvaranje C-C veze 2 Priroda

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

RASTVORLJIVOST LEKOVA

RASTVORLJIVOST LEKOVA FIZIČK-HEMIJSKA KARAKTERIZACIJA LEKVA RASTVRLJIVST LEKVA Rastvorljivost leka u GIT-u Portalna vena Krvna plazma Enterociti Aktivni transport Tableta Raspadanje tablete Pasivna difuzija Rastvaranje Lek

Διαβάστε περισσότερα

virusi - virion Faze u razvoju virusne infekcije:

virusi - virion Faze u razvoju virusne infekcije: virusi - intracelularni paraziti, jezgro (nukleinska kiselina) + kapsid (proteinski omotač -RK virusi, DK virusi, retrovirusi (RK virusi, sintetišu DK preko virusne RK) virion (virusna partikula) Faze

Διαβάστε περισσότερα

KVANTITATIVNI ODNOSI STRUKTURE I DEJSTVA LEKOVA

KVANTITATIVNI ODNOSI STRUKTURE I DEJSTVA LEKOVA FAMACEUTSKA HEMIJA 1 KVATITATIVI DSI STUKTUE I DEJSTVA LEKVA Predavač: Doc. dr. Slavica Erić Kvantitativni odnosi strukture i dejstva X H 4-X-pirazoli X heksil pentil propil metil J -propil -izopropil

Διαβάστε περισσότερα

UVOD U FARMACEUTSKU-MEDICINSKU HEMIJU

UVOD U FARMACEUTSKU-MEDICINSKU HEMIJU UVD U FARMACEUTSKU-MEDICINSKU HEMIJU H 2N CH 2 C CH 3 NH 2 H 3C N NH FARMACEUTSKA-MEDICINSKA HEMIJA ISTRAŽUJE: HEMIJA LEKVA SBINE LEKVITIH SUPSTANCI METDE DBIJANJA PSTUPKE PREČIŠĆAVANJA KVANTITATIVNE DNSE

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

DERIVATI KARBOKSILNIH KISELINA. Jedinjenja izvedena iz karboksilnih kiselina

DERIVATI KARBOKSILNIH KISELINA. Jedinjenja izvedena iz karboksilnih kiselina DERIVATI KARBKSILNIH KISELINA Jedinjenja izvedena iz karboksilnih kiselina Podela derivata karboksilnih kiselina Derivati kiselina (zamena H grupe u CH grupi) hloridi kiselina amidi kiselina anhidridi

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Trigonometrijski oblik kompleksnog broja

Trigonometrijski oblik kompleksnog broja Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ АЛДЕХИДИ И КЕТОНИ

ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ АЛДЕХИДИ И КЕТОНИ ОСНОВИ ОРГАНСКЕ ХЕМИЈЕ Предавања АЛДЕХИДИ И КЕТОНИ Др Весна Антић, ванредни професор Др Малиша Антић, ванредни професор ALDEIDI I KETNI Metanal Aldehid Keton Metanal Etanal Propanon 1-buten μ = 0,3 D Propanal

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

β α β α β α α α β α β α β α α γ α β α) β β β αβ α β β β α β α β μ μ μ μ μ μ μ α β α μ α β αβ α β α α β α α α α αβ α β α β α β α α β α α α α α α α α α α α α α α α α α β β γδ β αβ α α β β β β β β

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

DIURETICI PODELA DIURETIKA PREMA MEHANIZMU DEJSTVA PODELA:

DIURETICI PODELA DIURETIKA PREMA MEHANIZMU DEJSTVA PODELA: DIUETII PDELA: PEMA EMIJSKJ STUKTUI PEMA MEAIZMU DEJSTVA PEMA JAČII DEJSTVA (JAKI, UMEEI I SLABI) PEMA MESTU DEJSTVA (PKSIMALI TUBUL, ELEVA PETLJA, DISTALI TUBUL, SABII KAAL) PEMA EFEKTU A SASTAV FILTATA

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Priveznice W re r R e o R p o e p S e l S ing n s

Priveznice W re r R e o R p o e p S e l S ing n s Priveznice Wire Rope Slings PRIVEZNICE OD ČEIČNO UŽEA (RAE) jenosruke SINE WIRE ROPE SINS Sanar EN P P P P P P P P P P P P ozvoljeno operećenje kg elemeni priveznice prekina jenokrako vešanje ) ouvaanje

Διαβάστε περισσότερα

a) diamminsrebro hlorid b) srebrodimmin hlorid v) monohlorodiammin srebrid g) diamminohloro argentit

a) diamminsrebro hlorid b) srebrodimmin hlorid v) monohlorodiammin srebrid g) diamminohloro argentit PRIRDN-MATEMATI^KI FAKULTET PRIEMEN ISPIT P HEMIJA studii po biologija-hemija juli 2000 godina I grupa 1. Formulata na amonium hidrogenfosfat e: a) NH 4 H 2 P 3 b) (NH 4 ) 2 HP 4 v) (NH 4 ) 2 HP 3 g) NH

Διαβάστε περισσότερα

σ (otvorena cijev). (34)

σ (otvorena cijev). (34) DBLOSTJN POSUD CIJVI - UNUTARNJI ILI VANJSKI TLAK 8 "Dobo je htjeti, ali teba i znati." Z. VNUČC, 9. NAPRZANJA I POMACI DBLOSTJN POSUD ILI CIJVI NASTAVAK. Debelostjena osa oteećena ntanjim tlaom Debelostjena

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar)

REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar) REGIONALNO-METAMORFNE STENE (200-800ºC; 2-10 kbar) PODELA PREMA TEKSTURI 1. ŠKRILJAVE I 2. MASIVNE METAMORFNE STENE PODELA PREMA STEPENU KRISTALINITETA (NE ZAVISI OD STEPENA METAMORFIZMA) 1. STENE VISOKOG

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

ANTIMIKROBNI LEKOVI -ANTIBIOTICI-

ANTIMIKROBNI LEKOVI -ANTIBIOTICI- ATIMIKBI LEKVI -ATIBITII- Poreklo prirodni proizvodi, sintetski i polusintetski - strukturni analozi prirodnih antibiotika Antibiotici - sprečavaju rast jedne ili više vrsta M, aktivni u niskim koncentracijama,

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα