Kolokvij iz Klasične mehanike

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kolokvij iz Klasične mehanike"

Transcript

1 Kolokvij iz Klasične ehanike Hokejist na ledeni ploskvi v Tivoliju sune pak s hitrostjo 30 /s natančno v seri proti severu. Za koliko bo zaradi vrtenja Zelje na poti 50 pak skrenil z začetne seri? Ljubljana se nahaja na geografski širini 46 0 in pak drsi brez trenja. 2. Zapiši Lagrangeovo funkcijo in ustrezne enačbe za siste uteži in škripcev, ki jih prikazuje slika. Upoštevaj, da je vrvica neraztegljiva, ter da potuje po škripcih brez zdrsavanja. Oba škripca iata aso in poler R. Reši enačbe in koentiraj reštev., R u 3. Po žične obroču, ki se vrti okoli navpične osi s kotno hitrostjo Ω, brez trenja drsi drobna utež (glej sliko). Zapiši Lagrangeovo funkcijo in ustrezne enačbe. Pokaži da obstaja ejna kotna hitrost vrtenja, do katere je ravnovesna lega uteži na dnu obroča. Za ta prier reši enačbe gibanja za ajhna nihanja. R g

2 Izpit iz Analitične ehanike Po žične vodilu, katerega obliko podaja zveza z = a (1 + cos( kx )), brez trenja drsi drobna utež ase. Skiciraj obliko vodila, zapiši Lagrangeovo funkcijo in enačbe, poišči stabilne ravnovesne lege ter izračunaj frekvence pripadajočih ajhnih nihanj. 2. Pri ini golfu se luknjica preera 2R nahaja v središču lijaka, ki ga opišeo z zvezo z = α r 1, α > 0. Tu je r oddaljenost od središča luknjice. Luknjico ciljao z velike razdalje l, pri čeer žogico suneo z začetno hitrostjo v 0. Za kolikšen kot glede na ser proti središču luknjice seo zgrešiti, da bo žogica še zadela? Navodilo: žogico obravnavaj kot točkasto telo in upoštevaj, da je vzpetina blaga t.j. hitrost žogice v navpični seri lahko zaneariš. 3. Vztrajnik preera 2R s pravokotno prečko dolžine l, se brez zdrsavanja (točka A iruje) kotali po ravni podlagi nagnjeni za kot ε glede na vodoravnico (glej sliko). Zapiši gibalne enačbe in jih reši za prier ajhnega nihanja okoli ravnovesne lege. Naig: uporabi Lagrangeov foralize podobno kot v prieru vrtavke. 4. Za trojno nihalo, kot ga prikazuje slika, izračunaj za ajhna nihanja lastne nihajne načine in ustrezne lastne frekvence. Dolžine neraztegnjenih vzeti so enake razaku a ed vpetji posaičnih nihal. Naig: upoštevaj sietrijo. a a l l l k k

3 Izpit iz analitične ehanike V cirkusu opazujeo dva klovna, ki izvajata točko, katere del je balanasiranje palice na nosu. Točko izvajata na vrteče podiju, pri čeer prvi stoji na robu, drugi pa od središča hodi proti prveu s hitrostjo v. V katero ser in pod kakšni koto sta nagnjeni palici obeh klovnov? Podij se vrti počasi, tako da ves čas velja 2 ω r g. 2. V atoarne plinu ed dvea atooa deluje sila, ki jo določa potencial 6 V ( r) = C / r, C > 0. Izračunaj presek za združitev delcev kot funkcijo energije. 3. Tanko palico (z dolžino l in aso ) navpično postavio na konico prsta. Če s prsto ne lovio ravnotežja bo palica sčasoa padla Izračunaj silo na prst v odvisnosti od kota nagiba ed padanje palice. Uporabi etodo Lagranževih ultiplikatorjev. 4. Elektron v vodikove atou vidi statično električno polje protona kot agnetno 1 polje: B = v E. Delovanje le-tega na agnetni oent elektrona 2 c e μ = 0 s opišeo s Hailtonovo funkcijo H = μ B, kjer je s lastna vrtilna količina elektrona (spin). S Poissonovii oklepaji zapiši gibalno enačbo za spin elektrona in izračunaj frekvenco precesije (pojavu pravio sklopitev spin-tir). Za poler orbite elektrona vzei Bohrov radij r B =0.053n, za velikost tirne vrtilne količine pa l=h/2π.

4 Izpit iz analitične ehanike V skledo, ki ia obliko polkrogle s polero R, položio kroglico z aso in polero r. Obravnavaj ravninsko kotaljenje kroglice po skledi - zapiši gibalne enačbe ter jih reši za prier ajhnega nihanja. Kako se spreinja frekvenca nihanja, če večao poler kroglice? 2. Izračunaj totalni sipalni presek, da koet trči v Sonce. Koet obravnavaj kot točkasto telo, Sonce pa ia poler R. 3. Palica z aso in dolžino l, ki jo postavio v kot ed steno in tlei pod koto ϑ 0, brez trenja zdrsne (glej sliko). Zapiši Lagrangeovo funkcijo in ustrezne vezi. Za generalizirane koordinate vzei x, y težišča in kot ϑ. Izrazi silo, s katero stena deluje na palico pri kotu ϑ in ugotovi, pri katere kotu se palica odlepi od stene. Uporabi etodo Lagrangeovih ultiplikatorjev. 4. Elektron v vodikove atou vidi statično električno polje protona kot agnetno 1 polje: B = v E. Delovanje le-tega na agnetni oent elektrona 2 c e μ = 0 s opišeo s Hailtonovo funkcijo H = μ B, kjer je s lastna vrtilna količina elektrona (spin). S Poissonovii oklepaji zapiši gibalno enačbo za spin elektrona in izračunaj frekvenco precesije (pojavu pravio sklopitev spin-tir). Za poler orbite elektrona vzei Bohrov radij r B =0.053n, za velikost tirne vrtilne količine pa l=h/2π.

5 Izpit iz Analitične ehanike Žično vodilo, katerega obliko podaja zveza z = α x, se s konstantno kotno hitrostjo Ω vrti okoli navpične osi (le-ta sovpada s sietrijsko osjo vodila). Po vodilu brez trenja drsi drobna utež ase. Zapiši Lagrangeovo funkcijo in ustrezne enačbe, ter jih reši za prier ajhnega nihanja. Interpretiraj rešitve. Naig: L in enačbe je siselno zapisati v vrteče sisteu vodila. 2. Pri ini golfu se luknjica preera 2R nahaja na vrhu blage vzpetine, ki jo 1 opišeo z zvezo z = α r, kjer je r oddaljenost od središča luknjice. Luknjico ciljao z velike razdalje l, pri čeer žogico suneo z začetno hitrostjo v 0. Za kolikšen kot glede na ser proti središču luknjice seo zgrešiti, da bo žogica še zadela? Navodilo: žogico obravnavaj kot točkasto telo in upoštevaj, da je vzpetina blaga t.j. hitrost žogice v navpični seri lahko zaneariš. 3. Po površini gladke polkrogle brez trenja z vrha zdrsne drobna utež. Z etodo Lagrangeovih ultiplikatorjev določi kot pri katere se utež odlepi od površine krogle in izračunaj, kako daleč od oboda polkrogle pade na tla.?? 4. Za trojno nihalo, kot ga prikazuje slika, izračunaj za ajhna nihanja lastne nihajne načine in ustrezne lastne frekvence. Dolžine neraztegnjenih vzeti so enake razaku a ed vpetji posaičnih nihal. Naig: upoštevaj sietrijo. a a l l l k k

6 Kolokvij iz Klasične ehanike Izračunaj sipalni presek za trk točkastega projektila s tarčo preera 2R, če ed njia deluje privlačna sila, ki jo opišeo s centralni potencialo 3 V = α / r, α > 0. Navodilo: skiciraj efektivni potencial in ugotovi kakšen je potrebni pogoj za trk (dva priera!). 2. V laboratoriju na vesoljski postaji zavrtio kvader ase in s stranicai a, b = a in c = a / 2 okoli telesne diagonale s kotno hitrostjo ω. Kvader nato spustio da se vrti kot prosta vrtavka. Kako se kvader vrti za opazovalca v laboratoriju? Naig: rešitve najprej zapiši v lastne sisteu kvadra in jih nato transforiraj v laboratorijski siste. 3. Za dvojno nihalo prikazano na sliki izračunaj lastne frekvence in lastne nihajne načine ter zapiši rešitev za prier začetnih pogojev x T ( t = 0) = (0,0) in x& T t = 0) = ( v,0). ( 0

7 Kolokvij iz analitične ehanike Na vodoravno podlago navpično postavio tanko palico (z dolžino l in aso ). Palica sčasoa pade, ed padanje pa spodnji konec palice pri neke nagibu zdrsne. Izračunaj zvezo ed koto nagiba pri zdrsu in koeficiento lepenja ed palico in podlago. Uporabi etodo Lagrangeovih ultiplikatorjev. 2. Lagrangeovo funkcijo za nabit delec v agnetne polju zapišeo kot 1 L = q 2 i + e q i Ai. Pokaži, da se Hailtonova funkcija, ki je definirana 2 i i 1 2 kot H = piq i L v te prieru zapiše kot H = ( p i ea i ). 2 i 3. Vztrajnik preera 2R s pravokotno prečko dolžine l, se brez zdrsavanja (točka A iruje) kotali po ravni podlagi nagnjeni za kot ε glede na vodoravnico (glej sliko). Zapiši gibalne enačbe in jih reši za prier ajhnega nihanja okoli ravnovesne lege. Naig: uporabi Lagrangeov foralize podobno kot v prieru vrtavke. i 4. Model neke olekule napravio tako, da tri enake kroglice (atoe) z aso povežeo z dvea enakia vzetea (k) kot prikazuje slika. Izračunaj lastne nihajne načine in pripadajoče frekvence nihanja. Atoi se lahko gibljejo sao vzdolž daljše sietrijske osi olekule.

8

9 Kolokvij iz analitične ehanike Vrteča restavracija na stolpu v Torontu se zavrti dvakrat v inuti, česar se orajo pri svoje delu navaditi natakarji, ki raznašajo hrano. Kako je glede na gladino juhe v krožniku na izi, nagnjena gladina tiste, ki jo natakar ravnokar nese io nas? Natakar hiti v radialni seri proti gostu na obodu restavracije s hitrostjo 1/s, naša iza pa je 20 oddaljena od osi vrtenja. 2. Hoogen valj se lahko prosto vrti okoli navpične osi. Na obod valja je pritrjeno spiralno vodilo s hodo p [/2π] po katere brez trenja drsi drobna utež z aso. V začetku utež iruje na vrhu valja, ko pa jo spustio zaradi teže oddrsi navzdol. Zapiši Lagrangeovo funkcijo za opisan siste, ter reši ustrezne enačbe. 3. Pokaži, da je v prieru keplerjevskega potenciala V = k / r (k>0) t.i. Runge- Lenzov vektor R = p L k ( r / r) konstanta gibanja. Tu sta: p = r gibalna količina in L = r r vrtilna količina. Naig: oglej si časovni odvod vektorja R in upoštevaj, da se vrtilna količina ohranja. 4. Z drobni projektilo ustrelio na težko irojočo tarčo. Tarčo opišeo s V 0, r < r0 centralno sietrični potencialo V =. Izračunaj potrebno kinetično 0, r r0 energijo projektila, če naj le-ta, pri izbrane udarne paraetru, prodre v notranjost tarče. Izračunaj totalni sipalni presek za ta isti proces.

10 1. kolokvij iz analitične ehanike Zapiši gibalne enačbe za prost delec v vrteče koordinatne sisteu in jih reši. Pokaži, da te rešitve, transforirane v inercialni koordinatni siste, predstavljajo enakoerno gibanje. 2. V lesen valj s polero R = 20 c in aso M = 1 kg je na razdalji r = 15 c od osi vgrajena tanka železna palica z aso 50 g (glej sliko). Zapiši enačbe gibanja za prost valj, če ga položio na ravno podlago. Poišči ravnovesne lege in razišči ajhna nihanja valja. Naig: upoštevaj, da je M. 3. Pokaži, da je v prieru keplerjevskega potenciala V = k/r (K > 0) t.i. Runge- Lenzov vektor R = p L k ( r/r) konstanta gibanja. Tu sta: p = r gibalna količina in L = r r vrtilna količina. Naig: oglej si časovni odvod vektorja R. 4. Izračunaj diferencialni sipalni presek pri elastične sipanju drobnega projektila z aso na irujoči okrogli tarči z aso M v prierih, ko je M in = M. Kolokviji iz analitične ehanike, verzija: 13. januar

11 2. kolokvij iz analitične ehanike V kroglasti skledi s polero R brez trenja drsi palica dolžine l in ase (l < R, glej sliko). Z etodo Lagrangeovih nožiteljev ugotovi, s kolikšno silo pri dane kotu θ deluje skleda na palico, če le-ta v skleti prosto ravninsko niha. Naig: zapiši siste Lagrangeovih enačb in vezi ter izrazi ustrezni nožitelj. Enačb ne rešuj. 2. Okoli zvezde krožita dva planeta, prvi pri oddaljenosti r in drugi pri r (velja r r in ). Ravnini orbit obeh planetov oklepata kot γ. Orbita prvega planeta zaradi otnje, ki jo predstavlja drugi planet, precedira (gledano v časovnih razdobjih dolgih v prieri z obhodnia časoa obeh planetov). Izračunaj frekvenco precesije. Naig: zapiši hailtonovo funkcijo za celoten siste in poglej, kako se spreinja vektor vrtilne količine prvega planeta. Poagaj si z razvoje: 1 r r = 1 r (1 + ) r r r 2 Kolokviji iz analitične ehanike, verzija: 13. januar

12

13

14

15

16

1. kolokvij iz Klasične mehanike I, 20. 4. 2012

1. kolokvij iz Klasične mehanike I, 20. 4. 2012 1. kookvij iz Kasične ehanike I, 20. 4. 2012 1. Deec z aso se brez trenja gibje po obroču z radije R. Obroč se vrti s konstantno frekvenco ω okrog osi, ki gre skozi fiksno točko na obroču in je pravokotna

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Teorijska fizika I (FMF, Pedagoška fizika, 2009/10)

Teorijska fizika I (FMF, Pedagoška fizika, 2009/10) dr. Andreja Šarlah Teorijska fizika I (FMF, Pedagoška fizika, 2009/10) kolokviji in izpiti Vsebina Mehanika in elastomehanika 2 1. kolokvij 2 2. kolokvij 3 1. izpit 4 2. izpit 5 3. izpit (2011) 6 4. izpit

Διαβάστε περισσότερα

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI), Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Fakulteta za matematiko in fiziko 10. december 2001

Fakulteta za matematiko in fiziko 10. december 2001 Naloge iz fizike I za FMT Aleš Mohorič Fakulteta za matematiko in fiziko 10. december 2001 1 Meritve 1. Izrazi svojo velikost v metrih, centimetrih, čevljih in inčah. 2. Katera razdalja je daljša, 100

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

45 o. Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI),

45 o. Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI), Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI), 26. 11. 2004 1. Letalo leti na višini 200 m v vodoravni smeri s hitrostjo 100 m/s. V trenutku, ko je letalo nad opazovalcem na tleh, iz letala izpustimo paket.

Διαβάστε περισσότερα

Dinamika togih teles

Dinamika togih teles Univerza v Ljubljani Fakulteta za strojništvo LADISK Laboratorij za dinamiko strojev in konstrukcij Dinamika togih teles Rešeni kolokviji in izpiti Dr Janko Slavič 5 oktober 01 Zadnja različica se nahaja

Διαβάστε περισσότερα

Pisni izpit iz Mehanike in termodinamike (UNI), 9. februar 07. Izpeljite izraz za kinetično energijo polnega homogenega valja z maso m, ki se brez podrsavanja kotali po klancu navzdol v trenutku, ko ima

Διαβάστε περισσότερα

Pregled klasične fizike

Pregled klasične fizike dr. Andreja Šarlah gradivo za vaje Vsebina 1 Matematični pripomočki 3 2 Od atomov do vesolja 5 3 Lagrangeov in Hamiltonov formalizem 5 3.1 Gibanje v sferno simetričnem potencialu................ 10 3.2

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 1 (UNI)

1. kolokvij iz predmeta Fizika 1 (UNI) 0 0 0 4 0 0 8 0 0 0 0 0 0 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 1 (UNI) 3.1.010 1. Po vodoravni ledeni ploskvi se brez

Διαβάστε περισσότερα

SEMINARSKA NALOGA IZ FIZIKE NIHANJE VZMETNO, MATEMATIČNO IN FIZIČNO NIHALO

SEMINARSKA NALOGA IZ FIZIKE NIHANJE VZMETNO, MATEMATIČNO IN FIZIČNO NIHALO SEMINARSKA NALOGA IZ FIZIKE NIHANJE VZMETNO, MATEMATIČNO IN FIZIČNO NIHALO Katjuša Reja Mozetič Politehnia Nova Gorica Šola za znanost o oolju, študjsi progra Oolje 1 Nihanje je v naravi zelo pogost pojav.

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

1. kolokvij iz Fizike za študente FKKT Ljubljana,

1. kolokvij iz Fizike za študente FKKT Ljubljana, 1. kolokvij iz Fizike za študente FKKT Ljubljana, 16. 11. 2015 1. Majhen vzorec na dnu epruvete vstavimo v ultracentrifugo in jo enakomerno pospešimo do najvišje hitrosti vrtenja, pri kateri se vzorec

Διαβάστε περισσότερα

Vaje iz fizike 1. Andrej Studen January 4, f(x) = C f(x) = x f(x) = x 2 f(x) = x n. (f g) = f g + f g (2) f(x) = 2x

Vaje iz fizike 1. Andrej Studen January 4, f(x) = C f(x) = x f(x) = x 2 f(x) = x n. (f g) = f g + f g (2) f(x) = 2x Vaje iz fizike 1 Andrej Studen January 4, 2012 13. oktober Odvodi Definicija odvoda: f (x) = df dx = lim f(x + h) f(x) h 0 h Izračunaj odvod funkcij po definiciji: (1) f(x) = C f(x) = x f(x) = x 2 f(x)

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

KLASIČNA MEHANIKA. Peter Prelovšek

KLASIČNA MEHANIKA. Peter Prelovšek KLASIČNA MEHANIKA Peter Prelovšek 2. junij 2013 2 Kazalo 1 Newtonova mehanika 7 1.1 Izhodišča, meje in osnove klasične mehanike.......... 7 1.1.1 Osnovni pojmi...................... 7 1.1.2 Newtonovi zakoni.....................

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

Kinematika, statika, dinamika

Kinematika, statika, dinamika Kinematika, statika, dinamika 0. december 016 1 Gibanje v eni dimenziji 1.1 Količine in osnovne enačbe Osnovna naloga kinematike je opis lege (pozicije) telesa x v odvisnosti od časa t s funkcijo x(t).

Διαβάστε περισσότερα

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) 7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem

Διαβάστε περισσότερα

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič. VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

2. Vlak vozi s hitrostjo 2 m/s po ovinku z radijem 20 m. V vagonu je na vrvici obešena luč. Kolikšen kot z navpičnico tvori vrvica (slika 1)?

2. Vlak vozi s hitrostjo 2 m/s po ovinku z radijem 20 m. V vagonu je na vrvici obešena luč. Kolikšen kot z navpičnico tvori vrvica (slika 1)? 1. pisni test (KOLOKVIJ) iz Fizike 1 (UNI), 27. 11. 2006 1. Kako visoko nad ekvatorjem bi se nahajala zemeljska geostacionarna orbita, če bi bil dan na Zemlji dvakrat krajši, kot je sedaj? Polmer Zemlje

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje.

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje. 2. Dinamika 2.1 Sila III. PREDNJE 2. Dinamika (sila) Grška beseda (dynamos) - sila Gibanje teles pod vplivom zunanjih sil 2.1 Sila Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica

Διαβάστε περισσότερα

MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004

MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004 MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004 NTF, Visokošolski strokovni program KINEMATIKA 18. 2. 2004 Osnovne kinematične količine.: položaj r, hitrost, brzina, pospešek. Definicija vektorja

Διαβάστε περισσότερα

FIZIKA 1 (2013/14) Predavanja. prof. dr. Anton Ramšak soba: 426, Jadranska 19. torek: od do 13 h (VFP)

FIZIKA 1 (2013/14) Predavanja. prof. dr. Anton Ramšak   soba: 426, Jadranska 19. torek: od do 13 h (VFP) Predavanja FIZIKA 1 (2013/14) prof. dr. Anton Ramšak e-mail: anton.ramsak@fmf.uni-lj.si soba: 426, Jadranska 19 torek: od 10 15 do 13 h (VFP) Tekoča snov na predavanjih in obvestila profesorja http://www-f1.ijs.si/

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12

TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12 TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12 Program: STROJNIŠTVO UN-B + GING UN-B Štud. leto 2008/09 Datum razpisa: 21.11.2008 Rok za oddajo: 19.12.2008 1. naloga Graf v = v(t) prikazuje spreminjanje hitrosti

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za strojništvo. Računske vaje iz fizike

Univerza v Ljubljani Fakulteta za strojništvo. Računske vaje iz fizike Univerza v Ljubljani Fakulteta za strojništvo Darja Horvat, Rok Petkovšek, Andrej Jeromen, Peter Gregorčič, Tomaž Požar, Vid Agrež Računske vaje iz fizike Ljubljana, 2014 1 Kazalo 1 Uvod 2 Premo gibanje

Διαβάστε περισσότερα

DELO IN ENERGIJA, MOČ

DELO IN ENERGIJA, MOČ DELO IN ENERGIJA, MOČ Dvigalo mase 1 t se začne dvigati s pospeškom 2 m/s 2. Izračunaj delo motorja v prvi 5 sekunda in s kolikšno močjo vleče motor dvigalo v tem časovnem intervalu? [ P mx = 100kW ( to

Διαβάστε περισσότερα

Naloge in seminarji iz Matematične fizike

Naloge in seminarji iz Matematične fizike Naloge in seminarji iz Matematične fizike Odvodi, Ekstremi, Integrali 1. Za koliko % se povečata površina in prostornina krogle, če se radij poveča za 1 %? 2. Za koliko se zmanjša težni pospešek, če se

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

5 Modeli atoma. 5.1 Thomsonov model. B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 2014, 1

5 Modeli atoma. 5.1 Thomsonov model. B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 2014, 1 B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 204, 5 Modeli atoma V nasprotju s teorijo relativnosti, ki jo je formuliral Albert Einstein v koncizni matematični obliki in so jo kasneje

Διαβάστε περισσότερα

Izpit iz predmeta Fizika 2 (UNI)

Izpit iz predmeta Fizika 2 (UNI) 0 0 0 4 1 4 3 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: Izpit iz predmeta Fizika 2 (UI) 26.1.2012 1. Svetloba z valovno dolžino 470 nm pada

Διαβάστε περισσότερα

Pisni izpit iz predmeta Fizika 2 (UNI)

Pisni izpit iz predmeta Fizika 2 (UNI) 0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni

Διαβάστε περισσότερα

VEKTORJI GIBANJE V ENI DIMENZIJI. a (t) 0 0 a 0

VEKTORJI GIBANJE V ENI DIMENZIJI. a (t) 0 0 a 0 VEKTORJI 1. Mlad jadralec se uči jadrati. Najprej naredi 180 m proti vzhodu, nato se obrne in naredi 80 m v smeri 330º glede na sever. Ponovno spremeni smer in naredi 150 m v smeri jugozahoda, ko se odloči,

Διαβάστε περισσότερα

LADISK Laboratorij za dinamiko strojev in konstrukcij. Višja dinamika. Rešene naloge iz analitične mehanike. Dr. Janko Slavič. 22.

LADISK Laboratorij za dinamiko strojev in konstrukcij. Višja dinamika. Rešene naloge iz analitične mehanike. Dr. Janko Slavič. 22. Univerza v Ljubljani Fakulteta za strojništvo LADISK Laboratorij za dinamiko strojev in konstrukcij Višja dinamika Rešene naloge iz analitične mehanike Dr. Janko Slavič 22. avgust 2012 Zadnja različica

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006

1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. Dana je množica predpostavk p q r s, r t, s q, s p r, s t in zaključek t r. Odloči, ali je sklep pravilen ali napačen. pravilen, zapiši

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE

DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Seinarska naloga iz fizike DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Maja Kretič VSEBINA SEMINARJA: - Delo sile - Kinetična energija - Potencialna energija - Zakon o ohraniti

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS Mehanika L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 2. januar 2004 Kazalo 1 Gibalne enačbe 4 1 Posplošene koordinate...............................

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6 Vsebina MERJENJE... 1 GIBANJE... 2 ENAKOMERNO... 2 ENAKOMERNO POSPEŠENO... 2 PROSTI PAD... 2 SILE... 2 SILA KOT VEKTOR... 2 RAVNOVESJE... 2 TRENJE IN LEPENJE... 3 DINAMIKA... 3 TLAK... 3 DELO... 3 ENERGIJA...

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!

1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti! UNI: PISNI IZPIT IZ Atomike in optike, 3. junij, 7.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!.naloga:

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a:

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a: FIZIKA 1. poglavje: Mehanika - B. Borštnik 1 MEHANIKA(prvi del) Kinematika Obravnavamo gibanje točkastega telesa. Izberemo si pravokotni desni koordinatni sistem (sl. 1), to je takšen, katerega os z kaže

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Seznam domačih nalog - Matematična fizika 1

Seznam domačih nalog - Matematična fizika 1 Seznam domačih nalog - Matematična fizika 1 2016/2017 V {zavitih oklepajih} so številke nalog, ki so relevantne za rezervacijo. dopolnjeval, ko bo to potrebno. Seznam nalog se bo Spletna stran za rezervacije:

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Zbirka nalog iz Matematične fizike za VSŠ

Zbirka nalog iz Matematične fizike za VSŠ Zbirka nalog iz Matematične fizike za VSŠ Borut Paul Kerševan Dostopno na http://www-f9.ijs.si/ kersevan/ COBISS ID: [COBISS.SI-ID 242144000] ISBN: 978-961-92548-1-3 Naslov: Zbirka nalog iz Matematične

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Nihanje in valovanje, zbirka kolokvijskih nalog

Nihanje in valovanje, zbirka kolokvijskih nalog Barbara Rovšek Nihanje in valovanje, zbirka kolokvijskih nalog z rešitvami 1 Nihanje 11 Kinematika (nedušenega) nihanja 1 Nihalo niha z nihajnim časom 4 s V nekem trenutku je njegov odmik od mirovne lege

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek. DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 2 (VSŠ)

1. kolokvij iz predmeta Fizika 2 (VSŠ) 0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1. kolokvij iz fizike za študente kemije Ljubljana,

1. kolokvij iz fizike za študente kemije Ljubljana, 1. kolokvij iz fizike za študente kemije Ljubljana, 4. 12. 2008 1. Dve kroglici sta obešeni na enako dolgih vrvicah. Prvo kroglico, ki ima maso 0.4 kg, dvignemo za 9 cm in spustimo, da se zaleti v drugo

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

NALOGE K PREDMETU DELOVNO OKOLJE -PRAH

NALOGE K PREDMETU DELOVNO OKOLJE -PRAH NALOGE K PREDMETU DELOVNO OKOLJE -PRAH 1. Kakšna je povprečna hitrost molekul CO 2 pri 25 C? 2. Kakšna je povprečna hitrost molekul v zraku pri 25 C, kakšna pri 100 C? M=29 g/mol 3. Pri kateri temperaturi

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J.

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Kotar Prosim, da kakršnekoli vsebinske ali pravopisne napake sporočite

Διαβάστε περισσότερα

1 3D-prostor; ravnina in premica

1 3D-prostor; ravnina in premica 1 3D-prostor; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru, ki nimata skupne

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Govorilne in konzultacijske ure 2014/2015

Govorilne in konzultacijske ure 2014/2015 FIZIKA Govorilne in konzultacijske ure 2014/2015 Tedenske govorilne in konzultacijske ure: Klemen Zidanšek: sreda od 8.00 do 8.45 ure petek od 9.40 do 10.25 ure ali po dogovoru v kabinetu D17 Telefon:

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα