ANGLISKO-MAKEDONSKI RE^NIK NA MATEMATI^KI TERMINI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ANGLISKO-MAKEDONSKI RE^NIK NA MATEMATI^KI TERMINI"

Transcript

1

2 MAKEDONSKA AKADEMIJA NA NAUKITE I UMETNOSTITE NAUM CELAKOSKI VESNA CELAKOSKA-JORDANOVA EMILIJA CELAKOSKA ANGLISKO-MAKEDONSKI RE^NIK NA MATEMATI^KI TERMINI POVE]E OD TERMINI, IZRAZI, FRAZI I SINONIMI ENGLISH-MACEDONIAN DICTIONARY OF MATHEMATICAL TERMS MORE THAN TERMS, EXPRESSIONS, PHRASES AND SYNONYMS SKOPJE 2015

3 Izdava~: Makedonska akademija na naukite i umetnostite Urednik: Akad. Don~o Dimovski Publisher: Macedonian Academy of Sciences and Arts Editor: Akad. Dončo Dimovski Recenzenti: D-r Dimitra Kar~icka Popeska CIP - Каталогизација во публикација Национална и универзитетска библиотека "Св. Климент Охридски", Скопје 51(038)=111=163.3 ЦЕЛАКОСКИ, Наум Англиско-македонски речник на математички термини : повеќе од термини, изрази, фрази и синоними / Наум Целакоски, Весна Целакоска-Јорданова, Емилија Целакоска. - Скопје : Македонска академија на науките и уметностите, стр. : табели ; 24 см На наспор. насл. стр.: English-Macedonian Dictionary of Mathematical Terms: more than terms, expressions, phrases and synonyms. - Библиографија: стр Содржи и: Прилози ISBN Целакоска-Јорданова, Весна [автор] 2. Целакоска, Емилија [автор]. - I. Јорданова, Весна Целакоска- види Целакоска-Јорданова, Весна а) Математика - Речници, англиско-македонски COBISS.MK-ID

4 S O D I N A Predgovor. 5 Upatstvo za koristewe na Re~nikot.. 7 Spisok na kratenki.. 9 RE^NIK NA MATEMATI^KI TERMINI, A Z PRILOZI Prilog I. Angliska azbuka Prilog II. Gr~ka azbuka Prilog III. Nazivi na broevi Prilog IV. Matemati~ki znaci Literatura 293 3

5

6 PREDGOVOR Matematikata kako osnova na egzaktnite nauki i tehnikata, igra golema uloga vo nivniot razvoj. No, i obratno, razvojot na egzaktnite nauki i tehnikata, so potrebite da se re{at va`ni problemi od nivniot delokrug, vo golema mera go pottiknuvaat razvojot na matematikata. Toa zaemno vlijanie vo poslednive decenii pridonese da niknat i da se formiraat novi nau~ni pravci, novi golemi oblasti na istra`uvawe, kako vo matematikata, taka i vo tehni~kite nauki. Kako posledica, imame ogromno namno`uvawe na matemati~ki tekstovi od razni vidovi i pravci, a so toa i zgolemeno koli~estvo matemati~ki termini. So ogled na toa {to angliskiot jazik s# pove}e se koristi (re~isi preovladuva) vo literaturata na matemati~kite i tehni~kite nauki, neophoden e specijalen anglisko-makedonski re~nik na matemati~ki termini: za sledewe takva literatura, za site vidovi nau~ni kontakti me u matemati~arite, a i za potrebite na drugi lica in`eneri, studenti ili u~enici vo Republika Makedonija, koi{to koristat matemati~ka literatura na angliski jazik. Predlo`eniov Anglisko-makedonski re~nik na matemati~ki termini e prv od vakov vid vo Republika Makedonija. Negovata cel e da im pomogne na site koi vo svojata dejnost se svrzani so matemati~ki tekstovi napi- {ani na angliski jazik. Pri izrabotkata se koristeni pove}e izvori (re~nici, u~ebnici i dr.), a najkoristenite se navedeni vo delot Literatura, na krajot od knigava. Re~nikot sodr`i prevodi, pred s#, na matemati~ki termini od angliski na makedonski jazik, re~isi od site oblasti na sovremenata matematika. Pokraj niv, dodadeni se i ~esto upotrebuvani termini od: fizikata, mehanikata, informati~kite tehnologii, astronomijata,... i op{to, termini {to se sre}avaat vo matemati~ki 5

7 6 tekstovi od egzaktnite, tehni~kite i ekonomskite nauki. Vo slu~ai koga vo makedonskiot jazik nema ustanoven ekvivalenten termin (a tie slu~ai ne se retki), se dava kus opis na smislata na toj termin (vo zagradi, so itali~ni bukvi). Paralelno so spomnatite termini se dava i prevod na zborovi koi{to ne se specijalni matemati~ki termini, t.e. se zborovi od obi~niot govor, no koi{to ~esto se sre}avaat vo matemati~ki tekstovi. Vklu~eni se i imiwa na zna~ajni matemati~ari so periodot vo koj `iveele, a vo ~ija ~est se imenuvani nekoi matemati~ki poimi. So toa, Re~nikot sodr`i okolu naslovni zbora. Re~nikot e namenet za: matemati~ari, in`eneri, studenti po matematika, studenti na tehni~ki i na drugi fakulteti, kako i za u~enici {to se upateni da se slu`at so matemati~ka literatura na angliski jazik. Avtorite se nadevaat deka zainteresiran korisnik na Re~nikot }e mo`e da pro~ita relativno ednostaven matemati~ki tekst od u~ebnik, monografija, statija ili referat ({to se objavuva, na primer, vo Mathematical Reviews), re~isi bez obra}awe kon drugi re~nici. Im blagodarime na recenzentite prof. d-r Dimitra Kar~icka i prof. Popeska za sugestiite i konkretnite predlozi, koi{to pridonesoa da se podobri Re~nikot. Posebna blagodarnost mu iska`uvame na urednikot akad. prof. d-r Don~o Dimovski, ~ie{to nesebi~no anga`irawe go ovozmo`i objavuvaweto na ovaa kniga. ]e mu bideme blagodarni i na sekoj ~itatel {to }e ni upati dobronamerna kritika ili sugestija za eventualni nedostatoci na Re~nikot, ili }e ni uka`e na konkretni gre{ki od koja bilo priroda, zaradi negovo podobruvawe. Skopje, fevruari 2015 god. Avtorite

8 UPATSTVO ZA KORISTEWE NA RE^NIKOT 1) Angliskite naslovni zborovi se rasporedeni po azbu~en red i se zapi{ani so polucrni (bold) bukvi. Sekoj edine~en nasloven zbor e snabden so gramati~ka karakteristika, so kratenka: n (imenka), a (pridavka), v (glagol), adv (prilog), itn. Primer 1. altitude n visina. 2) Ako eden ist zbor se javuva i kako imenka i kako pridavka, itn., toga{ nivnite prevodi se ozna~eni so posebni, svetli rimski cifri. Primer 2. metric I a metri~ki, metri~en; II n metrika. 3) Koga nekoj termin ima nekolku zna~ewa, toga{ prevodite na tie zna~ewa se ozna~uvaat so posebna svetla arapska cifra, prosledena so to~ka. Primer 3. bundle n 1. vrzop; 2. geom. snop; 3. top. raslojuvawe; rasloen prostor. 4) Za golem broj termini e uka`ano, so kratenka, vo koja nau~na oblast se koristi toj termin: alg., an., geom., m. log., itn., (v. Kratenki na str. ix). Primer 4. derive v 1. m. log. izveduva; dobiva, izvlekuva (zaklu~ok); 2. in`. odveduva, pomestuva, odvojuva. 5) Za zborovi od drug jazik se uka`uva na potekloto na zborot (lat., gr~., i dr.). Primer 5. multi- pref lat. mnogu-, multi-. 6) Nekoi posebni izrazi, idiomi ili te{koprevedlivi frazi se izdvoeni na soodvetno mesto po znakot. Primer 6. Izrazot to that end e staven pod naslovniot zbor end i e izdvoen so: [ to that end so taa cel]. 7) Ako po naslovniot zbor doa aat drugi zborovi, toga{ naslovniot zbor e zamenet so znakot (bran~e, tilda) i po toj znak se navedeni drugite zborovi. Ako, pak, pred naslovniot zbor ima drugi zborovi, toga{ znakot, prosleden so zapirka, e zapi{an pred drugite zborovi. Na primer: 7

9 8 measure n 1. mera; 2. edinica za merewe, merna edinica, merka, sistem merki; 3. merilo, kriterium; [ set of measure zero mno`estvo so mera nula]. algebra alg. algebra so mera. function an. mera. of a set t. mn. mera na mno`estvo. of concentration t. ver. mera na koncentracija. of sensitivity num. mera na ~uvstvitelnost; pon. delitel. ring prsten so mera. space an. prostor so mera., additive an. aditivna mera., angular geom. agolna mera, sistem merki za merewe agol., common zaedni~ki delitel., convergence in an. konvergencija po mera. Nekoi slo`eni termini, kako na primer additive measure, zaradi preglednost, staveni se na dvete mesta i koga nasloven zbor e prviot i koga nasloven zbor e vtoriot (vo primerov: i pod additive i pod measure). 8) Za polesno nao awe na baraniot zbor, na gorniot del od sekoja stranica, nad crtata, odlevo se napi{ani prvite tri bukvi na prviot zbor od levata kolona, a oddesno prvite tri (ili ~etiri) bukvi na posledniot zbor od vtorata kolona.

10 SPISOK NA KRATENKI Makedonski alg. algebra alg. geom. algebarska geometrija amer. amerikanski; upotreblivo vo SAD an. analiza i teorija na funkcii arh. arhai~no, zastareno astr. astronomija brit. britanski bukv. bukvalno v. vidi Vel. Brit. Velika Britanija geod. geodezija geom. geometrija geofiz. geofizika germ. germanski (jazik) gram. gramati~ki gr~. gr~ki (jazik) ekon. ekonomika `arg. `argon zast. zastareno inf. informati~ki tehnologii, informatika in`. in`enerstvo is. t. isto taka kib. kibernetika komp. komparativ lat. latinski (jazik) lin. pr. linearno programirawe mat. matematika meh. mehanika m. log. matemati~ka logika na pr. na primer num. numeri~ki metodi odn. odnosno ozn. oznaki ok. okolu op. up. op{toupotrebuvano zna~ewe pon. ponekoga{ pr. primer razg. razgovorno SAD Soedineti Amerikanski Dr`avi skr. skrateno, kratenka soodv. soodvetno sp. sporedi stat. statistika sup. superlativ t. br. teorija na broevi t. ver. teorija na verojatnost t. igr. teorija na igri t. mn. teorija na mno`estva fiz. fizika fr. francuski (jazik) Angliski a adjective (pridavka) adv adverb (prilog) cj conjunction (svrznik) ex. example (primer) n noun (imenka) num. card. numeral cardinal (koli~estven broj) num. ord. numeral ordinal (reden broj) pl plural (mno`ina) pp past participle (minat particip) pref prefix (prefiks) prep preposition (predlog) pron pronoun (zamenka) pt past tense (minato vreme) sing singular (ednina) suf suffix (sufiks) syn synonym (sinonim) v verb (glagol) 9

11

12 ABA 11 ABS A abacus n (pl abaci) 1. abak, smetalka; 2. nomogram, koordinatna mre`a. abandon v napu{ta; se otka`uva od; prekinuva; gubi (nade`). abbreviate v skratuva. a notation skratuva oznaka. abbreviation n kratenka, skratenica, skratuvawe (oznaki). Abel, Niels Henrik ( ). s inequality Abelovo neravenstvo. s method of summation Abelov metod na sumirawe. s test for convergence Abelov kriterium za konvergencija. s theorem on power series Abelova teorema za stepenski redovi. Abelian a Abelov; abelski. extension Abelovo (ili abelsko) pro{iruvawe. group Abelova (ili abelska ili komutativna) grupa. aberation n otklonuvawe, otstapuvawe (od standard). -able suf (sufiks na pridavki, iska`uva mo`nost za ostvaruvawe soodvetna operacija ili sostojba); odgovara na sufiksot -liv [ countable prebrojliv; readable ~itliv]. about I adv pribli`no, okolu, skoro; II prep naokolu, vo vrska so. above I adv gore, odozgora; II prep nad. all nad s#; pove}e. average pove}e od prosek., bounded from ograni~en odozgora. abridge v skratuva (na pr., oznaki). abridged (ili short) division, multiplication skrateno delewe, mno`ewe. abrupt a nenadeen, otse~en; prekinat. abscissa n (pl abscissas ili abscissae) apscisa. absolute a apsoluten, bezusloven, nezavisen. cell reference inf. apsolutna referenca na }elijata. constant apsolutna konstanta. convergence an. apsolutna konvergencija. error num. apsolutna gre{ka. inequality bezuslovno neravenstvo. link inf. apsolutna vrska. maximum apsoluten maksimum. minimum minimum. number 1. konkreten broj (izrazen so cifri i aritmeti~ki znaci, a ne so bukveni algebarski oznaki); 2. neimenuvan broj. probability bezuslovna verojatnost. term in an expression konstanten ~len vo izraz. value of a complex number apsolutna vrednost ili modul na kompleksen broj. value of a vector modul ili dol`ina na vektor. absolutely adv apsolutno, bezuslovno. continuous an. apsolutno neprekinat. abstract I a apstrakten; II n 1. m. log. apstrakcija; 2. konspekt, rezime, pregled; III v 1. m. log. apstrahira, se ottrgnuva, se svrtuva (od ne{to); 2. rezimira, pravi izvod. algebra alg. apstraktna ili univerzalna algebra. game t. igr. apstraktna igra. mathematics ~ista matematika. number neimenuvan broj. space apstrakten prostor (na pr., evklidski, vektorski, topolo{ki). abstraction n m. log. apstrakcija. absurd a apsurden, besmislen. absurdity n apsurd, besmislenost.

13 ABU 12 ACC abundant a obilen, bogat, prepoln. number (= redundant number) obilen broj (broj pri koj zbirot na negovite deliteli, bez samiot broj, e pogolem od brojot; na pr.: 12 < ). abut v t. mn. dopira, (se) grani~i. accelerate v (se) zabrzuva. accelerated a zabrzan; [ uniformly (variably) accelerated motion ramnomerno (promenlivo) zabrzano dvi`ewe]. acceleration n meh. zabrzuvawe. of convergence podobruvawe ili zabrzuvawe na konvergencijata. of a falling body zabrzuvawe na telo {to pa a. of gravity zabrzuvawe na gravitacija. accent n [or accent as a symbol] ozn. akcent, prim, {trih (nad bukva). accept v prima, prifa}a, dopu{ta. acceptable a prifatliv, dopu{tliv. quality level (AQL) stat. dopu{tlivo nivo na defektni proizvodi (vo ispituvan primerok, {to mo`e da se smeta za zadovolitelen prosek na procesot). quality range stat. dopu{tliv interval na menuvawe na kvalitetot. use policy inf. prifatlivi pravila za koristewe. acceptance n prifa}awe. boundary stat. granica na priem. line linija na priem. number dozvolen broj defektni proizvodi vo primerokot. region oblast na prifa}awe hipoteza. accepted a prifaten, dopu{ten. access n pristap, dostap, vlez, priem. code inf. kod za pristap. control list inf. kontrolna lista za pristap. permission inf. dozvola za pristap. point inf. pristapna to~ka. provider inf. davatel na pristap. violation inf. prekr{uvawe na pravilata za pristap. accessibility n pristapnost. aids inf. pomagala za pristap. wizard inf. vol{ebnik za pristap. accessible a dosti`en, dostapen, ostvarliv. point dosti`na to~ka. subgroup alg. dosti`na podgrupa. accessory n inf. dodatok. accident n 1. slu~aj, slu~ajnost; 2. nesre}en slu~aj. insurance stat. osiguruvawe od nesre}ni slu~ai. rate procent ili stapka na nesre}ni slu~ai. ~ statistics statistika na nesre}ni slu~ai. accidental a slu~aen. error stat. slu~ajna gre{ka. variance slu~ajna disperzija. according to adv spored; po; vo soglasnost so. account I n 1. smetka; 2. kone~na presmetka, bilans; II v smeta, presmetuva. balance inf. sostojba na smetkata. expiration inf. rok na va`ewe na korisni~kata smetka. lockout inf. zaklu~uvawe na korisni~kata smetka. manager inf. administrator na korisni~ka smetka. accountable a odgovoren (za ne{to). accountant n smetkovoditel. accumulate v natrupuva, akumulira, nasobira. accumulation n trupawe, natrupuvawe, akumulacija. point t. mn. to~ka na natrupuvawe ili to~ka na zgusnuvawe.

14 ACC 13 ADD accuracy n pravilnost, to~nost (vo smisla na merata na otstapuvawe od vistinskata ili to~nata vrednost). of a solution to~nost na re{enie., attainable dosti`na to~nost. accurate a pravilen, to~en. accurate to... adv so to~nost do... [ accurate to three decimal places so to~nost do tri decimalni mesta]. ace n t. igr. 1. znak~e, bod (vo igra so karti ili so kocki); 2. as; kocka, zar; zar so edno znak~e. acentral a necentralen. element alg. necentralen element. achieve v ostvaruva, postignuva (cel, rezultat). achievement n dostigawe, ostvaruvawe. acnode n izolirana to~ka (na kriva). across I adv popreku, po {irina; II prep preku, niz. action n 1. dejstvo, akcija; 2. kib. rabota, dejstvo, vozdejstvo, vlijanie; [ law of action and reaction zakon za akcija i reakcija (tretiot Wutnov zakon); principle of least action princip na najmalo dejstvo; delayed action zabaveno dejstvo]. space prostor na dejstvo. query inf. nalog za akciski pra{alnik. statement inf. instrukcija. active a inf. aktiven. content inf. aktivna sodr`ina. document inf. aktiven dokument. field inf. aktivno pole. object inf. aktiven objekt. server pages inf. aktivni stranici na serverot / opslu`uva~ot. window inf. aktiven prozorec. activate v aktivira. actual a vistinski, realen, aktuelen, koj{to fakti~ki postoi. error fakti~ka gre{ka. infinity aktuelna beskone~nost. actuarial a aktuarski (koj{to se odnesuva na osiguritelna dejnost). statistics statistika na osiguruvawe. actuary n aktuar (stru~no lice obu~eno za matematika, statistika, verojatnost i finansii, koe poseduva analiti~ki i delovni ve{tini, a koi gi primenuva vo analizata na finansiskata neizvesnost i rizicite za kompleksnite finansiski i socijlni sistemi). acute a ostar, ostroagolen. accent inf. akcent. angle ostar agol. triangle ostroagolen triagolnik. ad absurdum adv lat. kon apsurd. adapter n adapter, prisposobuva~. add v dodava, sobira, vklu~uva. -in inf. dodava. -on inf. dodava. -on device inf. dodaten ured. together sobira, nao a zbir. output rezultat na sobirawe. up sobira. up to v zna~i, se sveduva na. addend n sobirok. adder n sumator, ured za sobirawe. addition n sobirawe, dodavawe, sumirawe; [ addition and subtraction formulas of trigonometry trigonometriski formuli za sobirawe i odzemawe, adicioni teoremi; normal addition theorem t. ver. teorema za sobirawe na normalno raspredeleni slu~ajni veli~ini; proportion by addition izvedena proporcija, ( a+ b): b= ( c+ d): d (dobiena od osnovnata a: b= c: d ). addition sign znakot plus (+). additional a dodaten, dopolnitelen. display inf. dopolnitelen ekran.

15 MAC 139 MAK M machine n ma{ina, mehanizam, naprava, alatna ma{ina. learning ma{insko u~ewe., digital digitalna ma{ina., jet meh. reaktiven motor., logical m. log. logi~ka ma{ina. Maclaurin, Colin ( ). expansion Maklorenov razvoj. s series Maklorenov red (teorema). s theorem Maklorenova teorema. macro- pref gr~. (ozna~uva golem opfat) celosno, makro-. macrostatistics n statistika na golemi primeroci, makrostatistika. made I a napraven; II v v. make. magic(al) a magi~en. square magi~en kvadrat. magma n (= groupoid) alg. magma, grupoid. magnetic a fiz. magneten. field fiz. magnetno pole. magnetics n fiz. magnetika, nauka za magnetizmot. magnification n fiz. zgolemuvawe. ratio (= deformation ratio) an. pon. koeficient na rastegnuvawe (pri konformno preslikuvawe). magnifier n lupa. magnify v zgolemuva. magnitude n golemina; dol`ina; veli~ina; magnituda; va`nost. of a star astr. magnituda na yvezda. of a vector dol`ina na vektor ili modul na vektor., geometric geometriska veli~ina., order of in`. red na golemina. mail n inf. po{ta (pisma, spisanija, nau~ni trudovi, dokumenti). merge inf. cirkularna po{ta. recipient inf. prima~ na po{ta. mailbox n inf. po{tensko sanda~e. mailer n po{tar. -daemon inf. administrator za po{ta. mailing a inf. pra}awe (ne{to) po po{ta. adress po{tenska adresa. label oznaka (nalepnica) za adresa. list spisok na prima~i. main a glaven, osnoven. diagonal glavna dijagonala. document inf. glaven dokument. routine osnovna programa. variable kib. osnovna promenliva. maintain v 1. odr`uva vo ispravnost, ~uva, pazi; 2. opslu`uva, koristi. maintainance n 1. odr`uvawe vo ispravnost, ~uvawe, tekoven remont; 2. opslu`uvawe, eksploatacija. charges (ili maintainance cost) ekon. eksploatacioni rashodi., routine normalno ~uvawe. major a pogolem, golem; vi{, glaven, pova`en, osnoven. arc pogolemot lak (od dvata laka na kru`nica, odredeni od sekanta). axis golema oska (na elipsa). premise m. log. pogolemata (ili glavnata) pretpostavka. majorant n (= upper bound) franc. majorant, ograni~uva~ odozgora. majority n mnozinstvo, golem del. majorize v majorira, ocenuva ozgora. majorized a majoriran. majorizing a majoranten, majorira~ki. region majorantna oblast. make v (pt, pp made) 1. pravi, sozdava; 2. izrabotuva, proizvodi; 3. iznesuva, e ednakov, so~inuva; [ the line makes with the x-axis an angle of 30 o pravata pravi so x-oskata agol od 30 o ; two and three makes five dva i tri e ednakvo na pet].

16 MAK 140 MAR Makeham, William Matthew ( ) s formula for bonds ekon. Mekamova formula za menici. s law Mekamov zakon. makeshift a privremen, improviziran. mal- pref vo slo`eni zborovi ozna~uva lo{, nepravilen. malfunction n neispravnost, nepravilna rabota. manage v upravuva, rakovodi (pretprijatie); se snao a, uspeva. management n upravuvawe, rakovodewe (so pretprijatie); ve{tina da se vladee so ne{to. console inf. upravuva~ka konzola. sciences metodi na upravuvawe (so pretprijatie). system inf. upravuva~ki sistem. manager n direktor, upravitel. manifold I n geom. mnoguobrazie; II a raznoviden, raznoroden, mnogukraten. manipulate v manipulira, rakuva, rakovodi, upravuva. manner n na~in, metod (na dejstvo). mantissa n mantisa. manual I n prira~nik; II a ra~en, ra~no izraboten. manufacture I n proizvodstvo, obrabotka; pl proizvodi, fabrikati; II v proizveduva, obrabotuva. manuscript n rakopis. many I a mnogu, vo golem broj; II n mno{tvo. [ as many isto tolku; how many? kolku?; not so many as ne tolku kolku, pomalku od]. many-body problem fiz. problemot na nekolku tela. many-valued a mnoguzna~en. function an. mnoguzna~na funkcija. logic m. log. mnoguzna~na logika. map I v preslikuva; II n 1. preslikuvawe; 2. karta, plan. -colouring problem top. problem na boewe karti. mapping n (= map) preslikuvawe. into = injection (v.). onto = surjection (v.)., affine geom. afino preslikuvawe., analytic analiti~no preslikuvawe., angle-preserving = conformal map., closed an. zatvoreno preslikuvawe., conformal an. konformno preslikuvawe., open an. otvoreno preslikuvawe. margin n 1. kraj, granica, praznoto pole (na pe~atena stranica); 2. ekon. mar`a (razlikata me u kupovnata i proda`nata cena). marginal a 1. napraven na praznite poliwa (na list); 2. stat. marginalen; 3, ekon. marginalen. category stat. marginalna kategorija. cost ekon. marginalna cena. distribution marginalna (poedine~na) raspredelba. probability marginalna verojatnost. mark I n 1. znak, beleg, oznaka; 2. ocenka; 3. traga; 4. cel; 5. marka (pari); II v 1. ozna~uva, odbele`uva; 2. pravi zabele{ki (nekomu); [ to hit the mark ja poga a celta; to be up the mark e na potrebno nivo; below the mark {to potfrluva]. marker n 1. obele`uva~; beleg, znak; 2. t. igr. marker, broja~. variable stat. dvozna~na promenliva. market I n ekon. pazar, berza; plasman, trgovija; II v prodava, plasira, trguva. price (syn. value) pazarna cena. marketable a ekon. stokoven, pazaren. marketing n ekon. trgovija, marketing. campaign marketin{ka kampawa.

17 MAR 141 MAT Markov (or Markoff), Andrei Andreevich Марков, Андрей Андреевич) ( ). Markovian a markovski. chain markovska veriga. machine kib. markovska ma{ina. process t. ver. markovski proces. markup n inf. oznaka. baloon inf. balon~e. marriage n brak, svadba. problem lin. pr. problem na izbor. theorem teorema (na Hol) za `enidba. martingale n 1. t. ver. martingal; 2. t. igr. udvojuvawe na vlogot pri poraz. Mascheroni, Lorenzo ( ). s constant (= Eulers constant) Maskeronieva konstanta. mask I n in`., inf. maska, paravan; II v krie, maskira. mass n 1. fiz. masa; 2. masa, glaven del; tolpa, gramada, kup; iznos. flow fiz. potok na masa. point fiz. materijalna to~ka. production masovno proizvodstvo., inertial inercijalna masa. master I a glaven, vode~ki, osnoven; II v sovladuva; nau~uva ne{to temelno; upravuva, rakovodi; III n magister. control kib. glavno upravuvawe. dokument inf. glaven dokument. routine inf. glavna programa. -slave inf. glaven pot~inet. match I v sostavuva; sparuva; se soglasuva; usoglasuva, izedna~uva; II n 1. sparuvawe, par; ne{to sporedlivo / usoglaseno; 2. kibrit~e. matched a pribran, usoglasen. groups stat. usoglaseni grupi. pairs stat. usoglaseni parovi. matching n sporeduvawe; soglasuvawe. coins t. igr. sporeduvawe moneti. material I a materijalen, vistinski; II n materijal, supstancija. point materijalna to~ka. s flow chart ekon. karta na rashod na materijali. mathematical a matemati~ki. expectation t. ver. matemati~ko o~ekuvawe. induction m. log. matemati~ka indukcija. logic matemati~ka logika. model matemati~ki model. probability matemati~ka verojatnost, apriorna verojatnost. system matemati~ki sistem. table tablica na vrednosti (na funkcija). mathematician n matemati~ar. mathematics n matematika. education metodika na nastavata po matematika. education research didaktika na matematikata. of finance finansiska matematika (syn. mathematics of investment matematika na investirawe)., abstract (or pure) apstraktna (ili ~ista) matematika., applied primeneta matematika., computational numeri~ka matematika., pure ~ista matematika. matrices n matrici., equivalent alg. ekvivalentni matrici., similar alg. sli~ni matrici. matrix n (pl matrices) matrica, tablica. algebra alg. matri~na algebra. calculus matri~no smetawe. element element na matrica. game t. igr. matri~na igra. inversion num. matri~no invertirawe, nao awe inverzna matrica. norm alg. norma na matrica.

18 Prilog IV 281 Prilog IV MATHEMATICAL SYMBOLS (MATEMATI^KI ZNACI) Aritmetika. Algebra. Teorija na broevi + Plus; positive. Plus; pozitiven. Minus; negative. Minus; negativen. ± ab, a b, a b a: b a, a / b b a a a a a a a Plus or minus; Positive or negative. Minus or plus; negative or positive. a times b; a multiplied by b. a divided by b; the ratio of a to b. Plus ili minus; pozitiven ili negativen. Minus ili plus; negativen ili pozitiven. a po b; a pomno`eno so b. a podeleno so b; a vrz b; a sprema b (kaj odnos). = b a is equal to b. a e ednakvo so b. b b a is not equal to b. a does not equal to b. a is identically equal to b; a is identical with b. a ne e ednakvo so b; a e razli~no od b. a e identi~ki ednakvo so b; a e identi~no so b. < b a is less than b. a e pomalo od b. b a is less than or equal to b. a e pomalo od ili ednakvo na b. > b a is greater than b. a e pogolemo od b. b a is greater than or equal to b. a e pogolemo od ili ednakvo na b. n a aaa... to n factors. a na n-ti; n mno`iteli a. 0 a the number 1 (if a 0 ). a na nulti ( 0 a = 1, 0 a ). 2 a a squared; the square of a. a na kvadrat; kvadrat od a. 3 a a cubed. a na treti; a na kub.

19 282 Prilog IV n a a, n a, 1/2 a the reciprocal of a ; 1/ a The square root of a (the positive square root of a, for positive a). n n a na minus n (recipro~na vrednost od a ; 1/ a. n Kvadraten koren od a (pozitivniot kvadraten koren od a, za pozitiven a). 1/n a The nth root of a. n-ti koren od a. m/ n a The nth root of a Absolute value of a; modulus of a. m a. n-ti koren od a ' a prime. a prim. a " a double prime; a second. a sekundum. m a. Apsolutna vrednost od a; modul od a. a a sub n, a subscript n. n a en, a dolen indeks en. log b a Logarithm (base b) of a. Logaritam od a so osnova b log a, lg a ln a, log e a Common (Briggsian) logarithm of a; log a is used for log10 a when the context shows that the base is 10. Natural (Napierian) logarithm of a. Obi~en (Brigzov) logaritam od a; lg a se koristi za log10 a koga kontekstot uka`uva deka osnova e 10. Priroden (Neperov) logaritam od a. ( ) Parentheses. Mali zagradi. [ ] Brackets. Sredni zagradi. { } Braces. Golemi zagradi. Vinculum (used as a symbol of aggregation). Povrzuva~ka crta (se koristi nad izrazi). p% p percent; p per cent. p procenti. n! n factorial. n faktoriel. P n Pnk (, ), P n k The number of permutations of n things; Pn = n! The number of permutations of n things taken k at a time; np k = n!/ ( n k)! = = nn ( 1)( n 2)...( n k+ 1). Brojot na permutacii od n elementi; Pn = n! Brojot na varijacii bez povtoruvawe od klasa k od n elementi (kaj nas se koristi oznakata V n k ). n

20 Prilog IV 283 n k, n C k n over k; combinations of n things k at a time. a b a divides b; a is contained in b. a b a is divisible by b; b is contained in a. x a (mod m) G.C.D. or g.c.d. L.C.D. or l.c.d. L.C.M. or l.c.m. ( a, b ) [ a, b ] [x] ϕ ( n) x is congruent to a modulus m or modulo m; x a is divisible by m. Greatest common divisor. Least common denominator. Least common multiple. The G.C.D. of a and b; the open interval from a to b; ordered pair of a and b. The L.C.M. of a and b; the closed interval from a to b. The greatest integer not greater than x. Eulers ϕ-function of n (= the number of positive integers prime to n and not greater than n). n nad k; kombinacii od n elementi zemeni po k. a e delitel na b; a se sodr`i vo b. a e delivo so b; b se sodr`i vo a. x e kongruentno so a po modul m ili modulo m; x a e delivo so m. NZD ili n.z.d.; najgolem zaedni~ki delitel. NZI ili n.z.i.; najmal zaedni~ki imenitel. NZS ili n.z.s.; najmal zadni~ki sodr`atel. NZD na a i b; otvoren interval od a do b; podreden par a, b. NZS na a i b; zatvoren interval od a do b. Cel del od x (= najgolemiot cel broj {to ne e pogolem od x). Ojlerovata ϕ-funkcija od n (= brojot na prirodni broevi, zaemno prosti so n i ne pogolemi od n). dn ( ) The number of divisors of n. Brojot na deliteli na n. π ( n) The number of primes that are not greater than n. i, j, k Unit vectors along the coordinate axes. a b a b, [a b] Scalar product (= dot product) of the vectors a and b. Vector product (= cross product, of the vectors a and b. Brojot na prosti (broevi) {to ne se pogolemi od n. Edini~ni vektori na koordinatnite oski. Skalaren proizvod na vektorite a i b. Vektorski proizvod na vektorite a i b.

21 284 Prilog IV [a b c] (a b c) arg z Re( z ) Im( z ) a ij The scalar triple product of the vectors a, b and c: [a b c] = (a b) c. Argument, amplitude, or phase of z. Real part of z; Re( z) = x if z = x + iy and x and y are real. Imaginary part of z; Im( z) = y if z = x + iy and x and y are real. The determinant whose element in the ith row and jth column is a ij. Me{an proizvod na vektorite a, b i c: [a b c] = (a b) c. Argument, amplituda ili faza na z. Realen del od z; Re(z) = x ako z = x + iy i x i y se realni. Imaginaren del od z; Im( z) = y ako z = x + iy i x i y se realni. Determinanta ~ij{to element vo i-tata redica i j-tata kolona e a ij. a ij or [ a ij] adj A, [ A ij] The matrix whose element in the ith row and jth column is a. ij Adjoint of the matrix A, A = [ a ij ]. A Cofactor of the element a ij ij in the matrix [ a ij]. A Complex conjugate of the matrix A. Matrica ~ij{to element vo i-tata redica i j-tata kolona e a ij. Adjungiranata matrica na matricata A = [ a ij ]. Algebarskiot komplement na a ij vo matricata [ a ij ]. Konjugirana matrica od matricata A. 1 A Inverse of the matrix A. Inverzna matrica na matricata A. T A ', A Transpose of the matrix A. Transponirana matrica na matricata A. H A*, A Hermitian conjugate of the H T matrix A; A = A. Ermitski transponirana matrica na matricata A. A The norm of the matrix A. Norma na matricata A.

22 Prilog IV 285 Geometrija elementarna i analiti~na. Trigonometrija AB, AB The line segment between the points A and B. Otse~kata AB (od prava) me- u to~kite A i B; kaj nas AB e dol`inata na AB. AB The directed line segment from A to B; the ray from A to B. Naso~enata otse~ka od A do B; vektorot AB (so po~etok A i kraj B). a b a is parallel to b. a e paralelno so b. a b a perpendicular to b. a e normalno na b. ABC The angle ABC (vertex B). Agolot ABC (so teme B). o α α degrees (angle). α stepeni (agolni). α ' α minutes (angle). α minuti (agolni). α " α seconds (angle). α sekundi (agolni). rad α α radians. α radijani. Triangle. Triagolnik., Congruent; is congruent to. Skladen; e skladen so. s.a.s. Side, angle, side. s.a.s. strana, agol, strana. s.s.s. Side, side, side. s.s.s. strana, strana, strana Is similar to. E sli~en so. Therefore; hence. Spored toa; sledstveno. π O ( xy, ) The ratio of the circumference of a circle to the diameter, the Greek letter pi, equal to Origin of a coordinate system. Rectangular coordinates of a point in a plane. Odnosot na perimetarot na krug i dijametarot, gr~kata bukva pi, ednakov na 3, Koordinaten po~etok na koordinaten sistem. Pravoagolni koordinati na to~ka vo ramnina.

23 286 Prilog IV ( xyz,, ) Rectangular coordinates of a point in space. Pravoagolni koordinati na to~ka vo prostor. (, r θ ) Polar coordinates. Polarni koordinati. ( r, θ, z) Cylindrical coordinates. Cilindri~ni koordinati. ( ρθϕ,, ) Spherical coordinates of a point in space. Sferni koordinati na to~ka vo prostor. sin Sine. Sinus. cos Cosine. Kosinus. tan Tangent. Tangens (na{a oznaka: tg). ctn, cot Cotangent. Kotangens (oznaka: ctg). sec Secant. Sekans. csc Cosecant. Kosekans. 1 sin x, arcsin x The principal value of the angle whose sine is x (when x is real); inverse sine x; antisine x. Glavnata vrednost od agolot ~ij{to sinus e x (koga x e realen); arkus sinus od x; inverzen sinus od x. sinh Hyperbolic sine. Hiperboli~en sinus (na{a oznaka: sh). cosh Hyperbolic cosine. Hiperboli~en kosinus; ch. tanh Hyperbolic tangent. Hiperboli~en tangens; th. coth Hyperbolic cotangent. Hiperboli~en kotangens (kaj nas oznakata e cth). 1 sinh x, arcsinh x The number whose hyperbolic sine is x; inverse hyperbolic sine of x; antihyperbolic sine of x. Brojot ~ij hiperboli~en sinus e x; inverzen hiperboli- ~en sinus od x; area sinus hiperboli~en od x; (oznaka kaj nas: arshx). Logika. Teorija na mno`estva Therefore. Sledstveno, spored toa. T True. Te; to~no. False. Ne te; neto~no.

24 Prilog IV 287 p, p, p' Not p. Ne p. p q, p q, p& q Both p and q ; p and q. p i q. p q At least one of p and q; p or q. p q If p, then q. p q p if and only if q ; p iff q. p ili q. Ako p, toga{ q; p go povlekuva q; p go implicira q. p ako i samo ako q; p e ekvivalentno so q. p akko q. Meet. Konjunkcija. Join. Disjunkcija. Implication. Implikacija. or If and only if; iff. Ekvivalencija; akko. For all. Za sekoj. x For all x. Za sekoj x. There exists. Postoi. x There is an x such that. Postoi x takov {to. x M x belongs to the set M. x M x does not belong to the set M. x mu pripa a na mno`estvoto M ; x e vo M. x ne mu pripa a na mno`estvoto M ; x ne e vo M. Empty set. Prazno mno`estvo. M = N The sets M and N coincide. M N Each point of M belongs to N ; M is a subset of N. M N M N M is a subset of N. Sometimes: M is a proper subset of N. Each point of N belongs to M ; M contains N as a subset. Mno`estvata M i N se ednakvi. M e podmno`estvo od N. M e podmno`estvo od N ; M e vistinsko podmno`estvo od N. M e nadmno`estvo na N ; N e podmno`estvo od M.

25 288 Prilog IV Each point of N belongs to M e nadmno`estvo od N ; M N M ; M contains N as a N e podmno`estvo od M. subset. Sometimes: N is a Obi~no: N e vistinsko proper subset of M. podmno`estvo na M. Inclusion. Inkluzija. M N, M N M N, M + N M \ N, M N The intersection of M and N. The join (or sum) of M and N. The complement of N in M ; all points of M not in N. c M, MM, ' The complement of M. A M α α The set of all points which belong to M α for some α A. A M α α M N ℵ ℵ 0 c ω The set of all points which belong to M α for al α A. The sets M and N are equivalent, i.e. they can be put into one-to-one correspondence. Aleph, the first letter of the Hebrew alphabet Aleph-null; aleph-zero. The cardinal number of the set of positive integers Continuum. The cardinal number of the set of all real numbers Omega. The ordinal number of the positive integers in their natural order. M presek N ; presek na mno`estvata M i N. M unija N ; unija na mno`estvata M i N. Pazlika na M so N ; M minus N ; komplementot na N vo M. Komplementot na M; M komplement. Mno`estvoto od site to~ki {to pripa aat na M α za nekoj α A. Mno`estvoto od site to~ki {to pripa aat na M α za sekoj α A. Mno`estvata M i N se ekvivalentni, t.e. postoi biekcija me u niv. Alef, prvata bukva od staroevrejskata azbuka. Alef-nula. Kardinalniot broj na mno`estvoto na prirodnite broevi. Kontinuum. Kardinalniot broj na mno`estvoto na realnite broevi. Omega. Ordinalniot broj na prirodnite broevi vo nivniot priroden redosled.

26 Prilog IV 289 π Q.E.D. Pi. The ordinal number of all integers in their natural order. Quod erat demonstrandum (Lat., which was to be proved). Pi. Ordinalniot broj na celite broevi vo nivniot priroden redosled. [to treba{e da se doka`e. (Se koristi na krajot od dokazot na tvrdewe.) Matemati~ka analiza ( a n ), [ a n ], { a n } n x i 1 n xi i= 1, x i= 1 i The sequence whose terms are a, a,..., a, n Sum of certain terms, the terms being indicated by the context or by added notation The sum of n terms x i, one for each positive integer i from 1 to n, i.e. the sum x1+ x x n. The infinite series x1+ x x n...; the sum of this series. Niza ~ii{to ~lenovi se a, a,..., a, n Zbir na nekoi ~lenovi, pri {to ~lenovite se odredeni od kontekstot ili so dodadena notacija. Zbirot na n ~lenovi x i, za sekoj priroden broj i od 1 do n, t.e. zbirot x1+ x x n. Beskone~niot red x1+ x x n...; zbirot na ovoj red. n xi i= 1 The product of n terms x i, one for each positive integer i from 1 to n; xx x n. Proizvodot na n ~lenovi x i, za sekoj priroden broj i od 1 do n, t.e. xx x n. s (or σ ) Length of arc. Dol`ina na lak. ρ Radius of curvature. Radius na krivina. κ Curvature of a curve. Krivina na kriva. τ Torsion of a curve. Torzija na kriva. l.u.b. or sup g.l.b. or inf Least upper bound, supremum. Greatest lower bound, infimum. Najmala gorna me a, supremum. Najgolema dolna me a, infimum.

27 290 Prilog IV lim y = b x a The limit of y as x approaches a is b. Limesot na y koga x se stremi kon a e b. The greatest of the accumulation points of the sequence zgusnuvawe na nizata ( t Najgolemata od to~kite na lim t n n n ); ( t n ); limit superior of ( t n ). limes superior od ( t n ). The least of the accumulation Najmalata od to~kite na lim t n n points of the sequence ( t n ); zgusnuvawe na nizata ( t n ); limit inferior of ( t n ). limes inferior od ( t n ). Approaches; implies. Se stremi; povlekuva. lim limsup ; Limit superior. Limes superior. lim liminf ; Limit inferior. Limes inferior. f( a+ 0), f( a+ ), lim f( x) x a+ f( a 0), f( a ), lim f( x) x a The limit on the right of f at a. The limit on the left of f at a. Desen limes na f vo a. Lev limes na f vo a. f '( a ) The derivative of f at a. Izvodot na f vo a. f '( a+ ) f '( a ) The derivative on the right of f at the number a. The derivative on the left of f at the number a. ( f, g ) Inner product of the functions f and g. f Norm of the function f, 1/2 i.e. ( f, f ). Desniot izvod na f vo to~kata a. Leviot izvod na f vo to~kata a. Vnatre{en proizvod na funkciite f i g. Norma na funkcijata f, 1/2 t.e. ( f, f ). y An increment of y. Narasnuvawe na y. dy Differential of y. Diferencijal na y. d D The operator. dx Operatorot. d dx

28 Izdava~: Makedonska akademija na naukite i umetnostite * Naum Celakoski, Vesna Celakoska-Jordanova, Emilija Celakoska Anglisko-makedonski re~nik na matemati~ki termini * Lektura: Sofija ^olakovska-popovska * Tehni~ko ureduvawe i kompjuterska obrabotka: Avtorite * Tira`: 300 primeroci * Pe~ati: Bomat grafiks - Skopje

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83

Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83 Special Report Notice of Disclaimer...................... iii List of Figures.................................... x List of Tables.................................... Preface...................................

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Решенија на задачите за основно училиште. REGIONALEN NATPREVAR PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO REPUBLIKA MAKEDONIJA 25 april 2009

Решенија на задачите за основно училиште. REGIONALEN NATPREVAR PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO REPUBLIKA MAKEDONIJA 25 april 2009 EGIONALEN NATPEVA PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO EPUBLIKA MAKEDONIJA 5 april 9 Zada~a Na slikata e prika`an grafikot na proena na brzinata na dvi`eweto na eden avtoobil so tekot na vreeto

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини

Διαβάστε περισσότερα

MATRICES

MATRICES MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα