Smith i diagramm. Peegeldustegur

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Smith i diagramm. Peegeldustegur"

Transcript

1 Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes Bell Laboratories, kuid oma lihtsuse ja arusaadavuse tõttu on Smithi diagramm tänini kasutusel kogu sidevaldkonnas. Kaasaegsetes network analyzer ites on alati võimalik esitada mõõtetulemusi ka Smithi diagrammil. P. H. Smith lõi diagrammi algselt peegeldus- ja seisulaineteguri leidmiseks, seepärast vaatleme pisut lähemalt, mida peegeldustegur ja seisulainetegur endast kujutavad. See aitab paremini mõista ka diagrammi sisu. Peegeldustegur Signaali levimisel transmissiooniahela lülides võib erinevate lülide ühenduskohas tekkida signaali peegeldumine. Seetõttu osa signaali võimsusest ei liigu enam kasulikus suunas, vaid peegeldub tagasi. Peegeldunud signaali võimsuse P peegeldunud saab leida valemiga: P peegeldunud = Γ 2 P sis kus P sis on sisendvõimsus on Γ on peegeldustegur. Peegeldustegur Γ on kompleksne suurus (tal on nii amplituud kui ka faas) ja see näitab, milline on peegeldunud signaali amplituud ja faas võrreldes algse signaaliga. Seejuures on teada, et peegeldustegur sõltub omavahel ühendatud kahe lüli nimetame neid liiniks ja koormuseks komplekstakistustest Z liin ja Z koormus : Z Z koormus liin Γ =. Z koormus + Z liin Universaalsuse mõttes läheme üle normeeritud takistusele avaldub: Z = Z koormus Z liin, seega peegeldustegur Γ = Z 1. Z + 1 Märkus: Z on komplekstakistus, mis koosneb nii aktiivtakistusest R kui ka reaktiivtakistusest jx (Z = R + jx). Näide. Kui Z = 0,5 + j2, siis 0,5 + j2 1 0,5 + j2 Γ = = = 0,5 + j ,5 + j2 ( 0,5 + j2)( 1,5 j2) ( 1,5 + j2)( 1,5 j2) 0,75 + j + 3 j 4 j = 2 2,25 4 j 2 3, j = = 0,52 + 0,64 j 6,25. Järelikult transmissiooniliini kaudu edastatav võimsus on 1

2 P ülekantud = P sis P peegeldunud = P sis Γ 2 P sis = 2 ( Γ ) Psis 1. Valemist on hästi näha, et kui peegeldustegur Γ = 0, siis peegeldusi ei esine ja kogu sisendisse antud võimsus kandub liinis edasi (liin on koormusega sobitatud). Juhul kui peegeldustegur Γ = 1, toimub signaali täielik peegeldumine ning kogu sisendisse antud võimsus peegeldub allika poole tagasi (ülekannet ei toimu). Järelikult iseloomustab peegeldustegur otseselt liini transmissioonikadusid! Saab näidata, et liin ja koormus on ideaalselt sobitatud ainult siis, kui mõlema takistuste aktiivosad on võrdsed ja reaktiivosad on vastasmärgiga. Sel juhul Γ = Z Z koormus koormus Z + Z liin liin = ( R + jx ) ( R jx ) ( R + jx ) + ( R jx ) = 0. Seisulainetegur (SWR ehk VSWR) Vaatleme, kuidas mõjutab peegeldumine signaali mähisjoont. Joonisel 1 on kujutatud olukorda, kus liin on koormusega sobitatud ehk Γ = 0. Sellisel juhul liinis peegeldusi ei toimu ning signaali mähisjooneks on sirge. Joonis 1 Signaali mähisjoon, kui liin on koormusega sobitatud (Γ = 0) Juhul, kui peegeldustegur on suurem, peegeldub koormuselt osa signaali tagasi ning koormusele jõuab signaal, mis on algsest signaalist väiksema amplituudiga, kuid koormusel oleva signaali mähisjoon on siiski sirge. Tagasipeegeldunud signaal aga kombineerub algse signaaliga ning selle tõttu liinis oleva signaali mähisjoone kuju muutub (vt joonis 2). 2

3 Joonis 2 Mähisjoon liinis, kui Γ = 0,5 Tekib perioodilise struktuuriga mähisjoone kõver, mis kordub iga poollaine järel (vt joonis 3). See mähisjoone kõver ei liigu ja seepärast nimetatakse tekkinud mähisjoont ka seisvaks laineks. Joonis 3 Mähisjoon liinis sobitamata koormuse korral Mähisjoone maksimaal- ja minimaalväärtuste U max ja U min suhet nimetatakse seisulaineteguriks, mida tähistatakse ingliskeelse lühendiga SWR (standing wave ratio), vahel ka VSWR (voltage standing wave ratio): SWR VSWR = U max =. U min Selgub, et SWR on otseses sõltuvuses peegeldustegurist: 3

4 1+ Γ SWR =. 1 Γ Nendest kahest valemist on näha, et kui liin on koormusega sobitatud (Γ = 0), siis SWR = 1 ja U max = U min ehk signaali mähisjoon liinis on sirge. Kui liin on koormusega täiesti sobitamata (Γ = 1), siis SWR = ja signaali mähisjoon kõigub liinis tugevasti. Järelikult mida suurem on SWR, seda halvemini on liin koormusega sobitud ehk tugevam on signaali mähisjoone kõikumine liinis. Koormus liini lõpus Kuigi eespool oli juttu seisva laine kui pinge mähisjoone perioodilisest muutumisest, siis täpselt samamoodi muutub liinis ka voolutugevus (vt joonis 4). Voolutugevuse maksimumid on seal, kus asuvad pinge miinimumid ja vastupidi. Joonis 4 Pinge ja voolu mähisjooned liinis Nii pinge kui voolutugevuse miinimumide ja maksimumide asukoht on otseselt määratud liini lõppu lülitatud koormusega Z koormus (= Z liini_lõpp ), kuna see määrab ära, milline peab olema liini lõpus pinge ja voolutugevuse vahekord. Kuna aga mõlemad mähisjooned muutuvad liinis perioodiliselt, siis on sama pinge ja voolutugevuse vahekord liinis ka perioodiliselt korduv. Ehk teisisõnu liini lõppu lülitatud takistust on võimalik mõõta ka liini mistahes punktis, mis on liini lõpust täpselt poollaine arv kordsel kaugusel (vt joonis 5). 4

5 Joonis 5 Ekvivalentsete takistuste kujunemine Kui lülitada liini lõppu lühis (Z liini_lõpp = 0), tekivad liinis pinge miinimumid täpselt poollaine arv kordsele kaugusele liini lõpust. Smithi diagrammi kasutamine Tuginedes eelnevale, on nüüd kergem mõista Smithi diagrammil kujutatut. Nagu juba teada, loodi Smithi diagramm seisulaineteguri arvutamiseks. Kuna seisulainetegur on leitav signaali mähisjoone järgi, mis on perioodilise struktuuriga, kordudes iga poole lainepikkuse tagant, siis selleks, et määrata vaatepunkti asukohta liinis, piisab poole laine pikkusest skaalast. Seepärast kirjeldab ka Smithi diagramm endast liinilõiku, mille pikkus on pool lainepikkust. Asukoha skaala on keeratud ringiks, milles pool lainepikkust on sama, mis null lainepikkust (vt joonis 6). Joonis 6 Asukoha skaala Smithi diagrammil 5

6 Kui on tarvidus liinil vaatepunkti nihutada, tuleb jälgida liikumise suunda kas liigutakse koormuse või generaatori poole (koormusest eemale). Smithi diagrammil tähendab see liikumist vastavalt kas vastupäeva või päripäeva. Nagu oli eelpool juttu, on transmissiooniahela takistus Z üldjuhul kompleksne suurus see koosneb aktiivosast R ja reaktiivosast jx ning kogutakistus on nende summa: [ Ω] Z = R + jx. Smithi diagrammilt saab kergesti lugeda nii aktiiv- kui ka reaktiivtakistuse väärtuse. Aktiivtakistus on kujutatud diagrammil konstantse väärtusega ringidel aktiivtakistuse samajoontel, mis koonduvad diagrammi paremas servas (vt joonis 7). Iga ringi ulatuses on aktiivtakistuse väärtus konstantne. Suurim ring omab väärtust R = 0 ning see on ühtlasi diagrammi välisring. Väikseim ring asub diagrammi paremas servas, see on lõpmata väike ning takistuse väärtus on siin lõpmata suur (R = ). Joonis 7 Aktiivtakistuse samajooned Smithi diagrammil Reaktiivtakistuse X väärtused saab lugeda joontelt, mis algavad diagrammi paremast servast ja on risti aktiivtakistuse samajoontega (vt joonis 8). 6

7 Joonis 8 Reaktiivtakistuse samajooned Smithi diagrammil Jooniselt on näha, et diagrammi x-teljel X = 0 ja järelikult punktidel, mis asuvad sellel joonel, takistusel reaktiivosa puudub. Seega kui me asume diagrammil x-telje peal, siis on takistus puht aktiivne. Ühendades omavahel teadmised aktiiv- ja reaktiivtakistuse leidmisest, saame Smithi diagrammilt välja lugeda mistahes kompleksse takistuse. Selleks tuleb meil lugeda aktiiv- ja reaktiivtakistuse väärtused diagrammilt eraldi aktiivtakistuse saamiseks pikendada samajooni kuni x-teljeni ning reaktiivtakistuse saamiseks pikendada samajooni kuni diagrammi servani. Saades eraldi kätte arvulised R ja X väärtused, avaldub summaarne takistus nende Z = R + jx Ω. summana: [ ] Näiteks järgmisel joonisel (joonis 9) on punktis A aktiivtakistus R = 1 ja reaktiivtakistus X = 1. Järelikult summaarne takistus on Z = R + jx = 1 + j. Punktis B on R = 0,5 ja X = -1,5, seega summaarne takistus Z = 0,5 j1,5. Punktis C on takistus Z = 0,2 + j0 = 0,2. 7

8 Joonis 9 Komplekstakistuse lugemine Smithi diagrammilt Universaalsuse mõttes on Smithi diagrammil takistus antud normeeritud kujul. Selleks, et leida takistust oomides, tuleb diagrammilt loetud väärtus korrutada läbi normeerimistakistusega Z 0, milleks võetakse üldjuhul liini takistus (tavaliselt 50 Ω või 75 Ω). Kui Z 0 = 50 Ω, siis eelmise joonise järgi on punktis B takistus Z Ω = 50 Ω (0,5 j1,5) = 25 j75 Ω. Nagu oli eespool juttu, näitab peegeldustegur Γ, milline on tagasipeegeldunud signaali amplituud ja faas võrreldes algse signaaliga. Samuti on juba teada, et peegeldustegur on seotud takistusega vastavalt valemile Γ = Z 1. Z + 1 Smithi diagrammilt saaksime R ja X väärtuste kaudu juba välja arvutada Z väärtuse ja selle kaudu omakorda peegeldusteguri Γ, kuid kuna nii Z kui ka Γ on komplekssed suurused, oleks selline meetod küllaltki tülikas. Arvutuste tegemiseks puudub ka vajadus, kuna selgub, et Smithi diagrammilt on peegeldusteguri väärtus otseselt välja loetav! Nimelt ilmneb, et kui tõmmata Smithi diagrammi keskpunktist vaadeldavasse punkti ühendav joon, siis selle joone suhteline pikkus (st pikkus jagatuna diagrammi raadiusega) võrdubki sellele punkti vastavale takistusele vastava peegeldusteguri mooduliga Γ! Veelgi enam selgub, et tõmmatud joone ja horisontaaltelje vahele jääv nurk γ võrdub peegeldusteguri faasiga (näitab, milline on peegeldunud signaali faas)! Järelikult võime tõmmatud joont vaadata kui peegeldusteguri graafilist esitust (joonis 10). 8

9 Joonis 10 Peegeldustegur Smithi diagrammil Näiteks joonisel asuva punkti B korral on peegeldusteguri mooduli pikkus (mõõdetuna diagrammilt) Γ = 0,75 ja nurk γ = 64º. Jooniselt on näha, mida ligemal on vaatluspunkt diagrammi keskpunktile, seda väiksem on peegeldustegur ehk seda paremini on koormus liiniga sobitatud. Koormus on liiniga täielikult sobitatud, kui vaadeldav punkt asub täpselt diagrammi keskel, sest sellisel juhul peegeldustegur (joone pikkus) võrdub nulliga. Vaatleme lõpetuseks, kuidas on Smithi diagrammil esitatud seisulainetegur SWR. Kuna SWR ja peegeldustegur Γ on omavahel seotud valemiga 1+ Γ SWR = ( 1 ) 1 Γ siis seisulainetegur ei sõltu peegeldusteguri faasist vaid ainult moodulist. Peegeldusteguri moodul aga iseloomustab Smithi diagrammi keskpunkti tõmmatud ringjoone raadiust. Järelikult igal punktil, mis asub diagrammi keskpunktist samal kaugusel, on samasugune seisulainetegur SWR. Nii joonistuvad välja seisulaineteguri samajooned (joonis 11). 9

10 Joonis 11 Seisulaineteguri (SWR) samajooned Smithi diagrammil Seisulaineteguri arvulise väärtuse saab lugeda diagrammilt otse aktiivtakistuse skaalalt vahemikust 1.. (vt joonis 11). Samuti võib selle välja arvutada vastavalt valemile (1). 1+ 0,75 Näiteks joonisel 12 punktile B vastav seisulainetegur on SWR = = ,75 Joonis 12 Seisulaineteguri arvutamise näide Tänapäeva raadiotehnikas on laialt levinud nn S-parameetrite kasutamine. Parameeter S 11 (nn return loss ) on otseselt seotud peegeldusteguriga: 10

11 S 11 = 20log Γ [db]. Kui liin on koormusega sobitatud (Γ = 0), siis S 11 = -. Kui liin on koormusega täiesti sobitamata (Γ = 1), siis S 11 = 0. Kuna alati 0 Γ 1, siis järelikult on S 11 alati mittepositiivne. Näiteks peegeldustegurile Γ = 0,75 vastav S 11 väärtus on: S = 20log 0,75 = 2, 5dB 11 Smithi diagrammi kasutamisest mõõteseadmetel Tavaliselt vaadeldakse seadmete tööd mitte ühel konkreetsel sagedusel, vaid teatud sagedusvahemikus. Erinevatele sagedustele vastab aga üldjuhul ka erinev liini või koormuse takistus ja seega on selle takistuse kujutise asukoht Smithi diagrammil erinev. Kui võtta vaatluse alla sagedusvahemik f 1 f 2, siis Smithi diagrammile saab kanda kõikide nendele sagedustele vastavate takistuste punktid, millest moodustub pidev joon. Iga joone punkt tähistab erinevale sagedusele vastavat takistust. Ühe suvalise seadme peegeldustegur on kantud joonisele 13. Sagedusele f 1 vastab takistus, mille juurde on märgitud f 1 ja sagedusele f 2 vastab takistus, mille juurde on märgitud f 2. Tumedal joonel liikudes saab leida kõikidele ülejäänud sagedustele vastavad takistused vahemikus f 1 f 2. Joonis 13 Sagedusvahemiku esitus Smithi diagrammil Diagrammilt on näha, et kõige halvemini on mõõdetav koormus või liin sobitatud sagedusel f 1, kuna selle punkti kaugus on diagrammi keskpunktist kõige suurem (järelikult ka peegeldustegur on kõige suurem). Kõige paremini on sobitustingimus täidetud sagedusel f A, kuna see punkt asub keskpunktile kõige lähemal (peegeldustegur on kõige väiksem). 11

12 Viiteid 1. Seisva laine kujunemise java applet: Smithi diagrammi applet:

13 13

ANTENNID JA RF ELEKTROONIKA

ANTENNID JA RF ELEKTROONIKA TALLINNA TEHNIKAÜLIKOOL Mikrolainetehnika õppetool Laboratoorne töö aines ANTENNID JA RF ELEKTROONIKA Antenni sisendtakistuse määramine Tallinn 2005 1 Eesmärk Käesoleva laboratoorse töö eesmärgiks on tutvuda

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

RF võimendite parameetrid

RF võimendite parameetrid RF võimendite parameetrid Raadiosageduslike võimendite võimendavaks elemendiks kasutatakse põhiliselt bipolaarvõi väljatransistori. Paraku on transistori võimendus sagedusest sõltuv, transistor on mittelineaarne

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Koormus 14,4k. Joon

Koormus 14,4k. Joon + U toide + 15V U be T T 1 2 I=I juht I koorm 1mA I juht Koormus 14,4k I juht 1mA a b Joon. 3.2.9 on ette antud transistori T 1 kollektorvooluga. Selle transistori baasi-emitterpinge seadistub vastavalt

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

Veaarvutus ja määramatus

Veaarvutus ja määramatus TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted

Διαβάστε περισσότερα

MATEMAATILISEST LOOGIKAST (Lausearvutus)

MATEMAATILISEST LOOGIKAST (Lausearvutus) TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks

Διαβάστε περισσότερα

Digi-TV vastuvõtt Espoo saatjalt

Digi-TV vastuvõtt Espoo saatjalt Digi-TV vastuvõtt Espoo saatjalt Digi-TV vastuvõtuks Soomest on võimalik kasutada Espoo ja Fiskars saatjate signaali. Kuna Espoo signaal on üldjuhul tugevam, siis kasutatakse vastuvõtuks põhiliselt just

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

Elastsusteooria tasandülesanne

Elastsusteooria tasandülesanne Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni

Διαβάστε περισσότερα

Sirgete varraste vääne

Sirgete varraste vääne 1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3

Διαβάστε περισσότερα

(Raud)betoonkonstruktsioonide üldkursus 33

(Raud)betoonkonstruktsioonide üldkursus 33 (Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.

Διαβάστε περισσότερα

6 Mitme muutuja funktsioonid

6 Mitme muutuja funktsioonid 6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

Deformatsioon ja olekuvõrrandid

Deformatsioon ja olekuvõrrandid Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,

Διαβάστε περισσότερα

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha

Διαβάστε περισσότερα

REAALAINETE KESKUS JAAK SÄRAK

REAALAINETE KESKUS JAAK SÄRAK REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina

Διαβάστε περισσότερα

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013 55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi

Διαβάστε περισσότερα

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2 Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee

Διαβάστε περισσότερα

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev

Διαβάστε περισσότερα

Φ 1 =Φ 0 S 2. Joonis 3.1. Trafo ehitus ja idealiseeritud tühijooksu faasordiagramm

Φ 1 =Φ 0 S 2. Joonis 3.1. Trafo ehitus ja idealiseeritud tühijooksu faasordiagramm 61 3. TRAFOD 3.1.Trafo töötamispõhimõte Trafo ehk transformaator on seade, mis muundab vahelduvvoolu elektrienergiat ühelt pingetasemelt (voltage level) teisele pingetasemele magnetvälja abil. äiteks 10kV

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid TARTU ÜLIKOOL Teaduskool Võnkumised ja lained Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov

Διαβάστε περισσότερα

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel Algebraliste võrrandite lahenduvus radikaalides Magistritöö Raido Paas Juhendaja: Mart Abel Tartu 2013 Sisukord Sissejuhatus Ajalooline sissejuhatus iii v 1 Rühmateooria elemente 1 1.1 Substitutsioonide

Διαβάστε περισσότερα

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti

Διαβάστε περισσότερα

Pinge. 2.1 Jõud ja pinged

Pinge. 2.1 Jõud ja pinged Peatükk 2 Pinge 1 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.

Διαβάστε περισσότερα

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud... Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine

PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine PEATÜKK 5 LUMEKOORMUS KATUSEL 5.1 Koormuse iseloom (1) P Projekt peab arvestama asjaolu, et lumi võib katustele sadestuda paljude erinevate mudelite kohaselt. (2) Erinevate mudelite rakendumise põhjuseks

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2010

KATEGOORIATEOORIA. Kevad 2010 KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

5. OPTIMEERIMISÜLESANDED MAJANDUSES

5. OPTIMEERIMISÜLESANDED MAJANDUSES 5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,

Διαβάστε περισσότερα

2.1. Jõud ja pinged 2-2

2.1. Jõud ja pinged 2-2 1 Peatükk 2 Pinge 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.

Διαβάστε περισσότερα

Ehitusmehaanika. EST meetod

Ehitusmehaanika. EST meetod Ehitusmehaanika. EST meetod Staatikaga määramatu kahe avaga raam /44 4 m q = 8 kn/m 00000000000000000000000 2 EI 4 EI 6 r r F EI p EI = 0 kn p EI p 2 m 00 6 m 00 6 m Andres Lahe Mehaanikainstituut Tallinna

Διαβάστε περισσότερα

ANTENNID JA RF ELEKTROONIKA. Sisukord. Loengumaterjalid Koostanud: ass. Sulev Reisberg ja prof. Andres Taklaja

ANTENNID JA RF ELEKTROONIKA. Sisukord. Loengumaterjalid Koostanud: ass. Sulev Reisberg ja prof. Andres Taklaja ANTENNID JA RF ELEKTROONIKA Loengumaterjalid Koostanud: ass. Sulev Reisberg ja prof. Andres Taklaja Sisukord. Antennide tüübid... 3. Antennide parameetrid... 4 Antenni kasutegur... 4 Suunategur (directivity)...

Διαβάστε περισσότερα

MATEMAATIKA AJALUGU MTMM MTMM

MATEMAATIKA AJALUGU MTMM MTMM Õppejõud: vanemteadur Mart Abel Õppejõud: vanemteadur Mart Abel Loenguid: 14 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Hindamine:

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

6 Vahelduvvool. 6.1 Vahelduvvoolu mõiste. Vahelduvvooluks nimetatakse voolu, mille suund ja tugevus ajas perioodiliselt muutub.

6 Vahelduvvool. 6.1 Vahelduvvoolu mõiste. Vahelduvvooluks nimetatakse voolu, mille suund ja tugevus ajas perioodiliselt muutub. 6 Vahelduvvool 6 Vahelduvvoolu õiste Vahelduvvooluks nietatakse voolu, ille suund ja tugevus ajas perioodiliselt uutub Tänapäeva elektrijaotusvõrkudes on kasutusel vahelduvvool Alalisvoolu kasutatakse

Διαβάστε περισσότερα

Sisukord. 4 Tõenäosuse piirteoreemid 36

Sisukord. 4 Tõenäosuse piirteoreemid 36 Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

Energiabilanss netoenergiavajadus

Energiabilanss netoenergiavajadus Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)

Διαβάστε περισσότερα

VFR navigatsioon I (Mõisted ja elemendid I)

VFR navigatsioon I (Mõisted ja elemendid I) VFR navigatsioon I (Mõisted ja elemendid I) 1. Suunad ja nende tähistamine. 2. Maakera ja sellega seonduv. 3. Maa magnetism. 4. Kursid (suunanurkade tüübid). 5. Navigatsiooniline kiiruste kolmnurk Min

Διαβάστε περισσότερα

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5 1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi

Διαβάστε περισσότερα

Eesti LIV matemaatikaolümpiaad

Eesti LIV matemaatikaolümpiaad Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2016

KATEGOORIATEOORIA. Kevad 2016 KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. V. Väinaste. Kehade pöördliikumine

TARTU ÜLIKOOL Teaduskool. V. Väinaste. Kehade pöördliikumine TARTU ÜLIKOOL Teaduskool V. Väinaste Kehade pöördliikumine TARTU 009 1 Kehade pöördliikumine Mehaanikas eristatakse kehade liikumise kahte põhiliiki: a) kulgliikumine b) pöördliikumine Kulgliikumise korral

Διαβάστε περισσότερα

7 SIGNAALI SPEKTRI ANALÜÜS

7 SIGNAALI SPEKTRI ANALÜÜS 1 7 SIGNAALI SPEKTRI ANALÜÜS 7.1 Üldist Perioodiliselt orduva signaali speter on tema Fourier' rida. Fourier' rea abil on signaal esitatav tema alalisomponendi ja harmooniliste summana s A o ( t) + A cos(

Διαβάστε περισσότερα

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a. Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud

Διαβάστε περισσότερα

ISC0100 KÜBERELEKTROONIKA

ISC0100 KÜBERELEKTROONIKA ISC0100 KÜBERELEKTROONIKA Kevad 2018 Neljas loeng Martin Jaanus U02-308 (hetkel veel) martin.jaanus@ttu.ee 620 2110, 56 91 31 93 Õppetöö : http://isc.ttu.ee Õppematerjalid : http://isc.ttu.ee/martin Teemad

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

5. TUGEVUSARVUTUSED PAINDELE

5. TUGEVUSARVUTUSED PAINDELE TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)

Διαβάστε περισσότερα

4. KEHADE VASTASTIKMÕJUD. JÕUD

4. KEHADE VASTASTIKMÕJUD. JÕUD 4. KEHADE VASTASTIKMÕJUD. JÕUD Arvatavasti oled sa oma elus kogenud, et kõik mõjud on vastastikused. Teiste sõnadega: igale mõjule on olemas vastumõju. Ega füüsikaski teisiti ole. Füüsikas on kehade vastastikuse

Διαβάστε περισσότερα