sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α ="

Transcript

1 KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α sin α cos α tan α - ) täiendusnurga valemid sin(9 - α) = cos α cos(9 - α) = sin α tan(9 - α) = tan ) negatiivse nurga trigonomeetrilised funktsioonid sin(- α) = -sin α cos(- α) = cos α tan(- α) = -tan α 5) summa ja vahe trigonomeetrilised funktsioonid sin(α β) = sin α cos ± cos α sin cos(α β) = cos α cos sin α sin tan tan tan(α β) = tan tan 6) kahekordse nurga trigonomeetrilised funktsioonid sin α = sin cos cos α = cos² - sin² tan tan α = tan 7) poolnurga trigonomeetrilised funktsioonid cos sin = cos cos = cos tan = = cos sin cos = cos sin

2 8) seosed täisnurkses kolmnurgas B c a C b A a) sin = c a sin = c b b) cos = c b cos = c a c) tan = b a tan = a b 9) sin(α + n 6 ) = sin cos(α + n 6 ) = cos tan(α + n 6 ) = tan ) sin cos tan ja cot ) Siinusteoreem a b c sin sin sin ) Koosinusteoreem a = b² + c² - bc cos b = a² + b² - ab cos c = a² + b² -abcos b C a A c B

3 ) Trigonomeetrilised funktsioonid Funktsioon y = sin Määramispiirkond X=R Muutumispiirkond Y= ; Paaritu funktsioon sin(- α) = -sin α Periood = 6 y,5,,5, ,5 y=sin -, -,5 Funktsioon y = cos Määramispiirkond X=R Muutumispiirkond Y= ; Paarisfunktsioon cos(- α) = cos α Periood = 6 y,5 y=cos, ,5 - -,5 Funktsioon y = tan Määramispiirkond X=R/{(n+)/}, nz Muutumispiirkond Y=R Paaritu funktsioon tan(- α) = -tan α Periood = 8 5, y,,,,, , , -, -, -5,

4 ) Trigonomeetrilised põhivõrrandid ja nende lahendivalemid () sin = m = (-) n arcsin m + nπ, kus nz () cos = m = arccos m n, kus nz () tan = m = arctan m n, kus nz NB! sin ja cos korral tuleks kontrollida lahendeid n = ja n =, tan n = korral a) Võrrandi teisendamine algebraliseks võrrandiks Näide Lahendame võrrandi tan²- tan + = Teeme asenduse tan = u Saame võrrandi u² - u + = Viete i teoreemi põhjal saame lahendid u = ja u = Leiame nüüd tundmatu väärtused lahendades võrrandid tan = ja tan = tan = = arctan n = n, nz Kontrolliks leiame võrrandi erilahendi, kui n = : v = tan² - tan + = - + = v = p Lahend: = n, nz b) Homogeensete trigonomeetriliste võrrandite lahendamine Homogeensed võrrandid esituvad kujul a sin bcos (või asin bsin cos ccos jne) Selliste võrrandite lahendamiseks jagame võrrandi mõlemad pooled koosinuse kõrgema astmega läbi Näide Lahendame võrrandi sin + cos = sin + cos = :cos tan + = tan = - : tan = -,5 = arctan(,5) n, nz Kontroll Leiame erilahendi, kui n = : arctan(,5) arctan(,5) 6 57 v = sin ( 6 57 ) + cos ( 6 57 ),96,89 Lahend: = arctan(,5) n, nz c) Teguriteks lahutamise meetod Näide Lahendame võrrandi sin sin sin sin sin sin Korrutise nulliga võrdumise tingimusest saame: n ) sin = = arcsin n : = arcsin n n =, nz n ) sin sin : sin

5 = (-) n arcsin + nπ : n 9 n, nz Kontroll n =, nz Leiame erilahendid: n = = v sin sin v = p n = = v sin sin v = p n n, nz Leiame erilahendid 9 n = v sin sin v p n = v sin sin v p Lahendid on = n n ja n, nz 9 NÄITEÜLESANDED sin tan ) Tõesta samasus = tan cos sin Lahendus Teisendame esmalt vasaku poole murru lugeja: sin sin cos sin sin (cos ) sin cos cos cos Murru nimetajast saame: cos sin sin cos sin (cos ) sin Jagades lugeja ja nimetaja omavahel saame tan cos cos cos ) Lahenda võrrand sin = cos - sin Lahendus Lihtsustame esmalt võrrandi paremat poolt kasutades ruutude vahe valemit ning lõpuks kahekordse nurga koosinuse valemit cos - sin = cos sin cos sin = cos sin = = cos cos Saame nüüd võrrandi sin cos = cos sin cos cos = cos(sin ) = 5

6 Kasutades korrutise nulliga võrdumise tingimust saame kaks võrrandit () cos = () sin = Lahendame esimese võrrandi cos = = n, n Z Teisest võrrandist sin = sin = : sin =,5 n = n, n Z 6 Kontroll = n, n Z n = = v= sin =, p= cos sin = cos sin - n = = 5 5 = v= sin = sin = v= sin = sin n = n, n Z 6 n = = v= sin = sin = 6 6 p cos sin = v = p 5 = ; p= 5 5 cos sin v = p = ; p= cos sin v = p,866 ;,875,5 =,866 v = p 5 5 n = = v= sin,866; p cos sin,5,875, 866 v = p Vastus Võrrandi lahenditeks on = n ja n = n, n Z 6 ) Riigieksam999 (5p) Leidke sin, kui sin rahuldab võrrandit cos = 7sin² ja Lahendus Teisendame võrrandi vasakut poolt kasutades kahekordse nurga koosinuse valemit cos = cos² - sin² = - sin² - sin² = -sin² Saime võrrandi -sin² = 7sin² - 9sin² = 9sin² = :9 sin² = sin Kuna, siis sin < sin = ja kuna 9 on III veerandi nurk,siis ka cos on negatiivne ning 6

7 cos = - sin Leiame nüüd sin = sin cos = 9 Vastus sin 9 ) Riigieksam (p) Lahendage võrrand cos + sin =, kui ; Leidke parameetri a kõik väärtused, mille korral võrranditel cos + sin = ja cos a leiduvad ühised lahendid, kui ; Leidke funktsiooni y = cos periood ja skitseerige selle funktsiooni graafik, kui ; Skitseerige samale joonisele funktsiooni y = cos graafik Lahendus a) Lahendame võrrandi cos + sin = cos + sin = ( )² cos² + cos sin + sin² = Kuna sin² + cos² =, siis cos sin = sin = n = n, n Z = n, n Z ; Leiame lahendid lõigul Kui n = = cos + sin = ; n = = cos + sin = n = = cos + sin = - võõrlahend n = = cos + sin = - võõrlahend n = = cos + sin = n = - = - cos (- )+ sin(- )= - võõrlahend n = - = - cos(- ) + sin(- )= - võõrlahend n = - = - cos (- ) + sin( - ) = n = - =- cos (- ) + sin( - )= Võrrandi cos + sin = lahendid, kui ; on ;,5 ;;,5 ; b) Leiame parameetri a kõik väärtused, mille korral võrranditel cos + sin = ja cos a leiduvad ühised lahendid, kui ; Selleks asendame võrrandis cos a -i väärtused eelmises punktis saadud tulemustega 7

8 a a a a a 5 cos cos cos cos cos cos c) Leiame funktsiooni y = cos perioodi Kui funktsiooni periood on T, siis funktsiooni y = sin k (y = cos k või y = tan k) perioodi leiame k T, kus Saame :,5 = = 7º k R Skitseerime funktsioonide y = cos ja y = cos graafikud Kasutame selleks ka eelmises punktis leitud väärtusi y cos,5, , y cos - -,5 5) (Riigieksam 5p) Vaatleme funktsioone f() = cos ja g() = cos a) Avaldage cos suurus cos kaudu b) Lõigul ; () lahendage võrrand f() = g() () joonestage ühes ja samas teljestikus funktsioonide f() ja g() graafikud Leidke joonise abil väärtused, mille korral f() > g() Lahendus a) Avaldame cos suurus cos kaudu Kasutame kahekordse nurga koosinuse valemit ning seost sin² + cos² = cos = cos² - sin² = cos² ( - sin²) = cos² 8

9 b) Lahendame võrrandi f() = g() ehk cos = cos Kasutame selleks eelmises punktis saadud tulemust cos² = cos cos² - cos = Lahendame saadud ruutvõrrandi cos suhtes D = (-) = 9 cos cos või cos Lahendame võrrandid cos = ja cos = -,5 cos = = n n, n Z cos = -,5 = n, n Z Leiame erilahendid lõigul ; () = n n, n Z n = = v= cos = ja p= cos= n = = v= cos = ja p= cos =- võõrlahend n = = v= cos = ja p= cos = () = n, n Z n = = v= cos = -,5 ja p= cos = -,5 5 5 n = = v= cos = -,5 ja p= cos =,5 võõrlahend n = = v= cos = -,5 ja p= cos =,5 võõrlahend 8 n = = v= cos = -,5 ja p= cos = -,5 Seega saime võrrandi cos = cos lahenditeks lõigul ; ; ; ; Joonestame samas teljestikus funktsioonide f() = cos ja g() = cos graafikud Funktsiooni f() = cos perioodiks on 6º : = 8º ja g() = cos perioodiks 6º y = cos,5 y = cos, ,5 - -,5 9

10 Leiame joonise abil väärtused, mille korral f() > g()selleks on vahemik o ; o ehk ; sin 6) Riigieksam (p) On antud funktsioon f()=, ; sin a) Selgitage, kas funktsioon f() on määratud ka lõigul [;] b) Leidke vahemikus (;) () funktsiooni f() nullkohad; () vahemikud, kus funktsioon f() on positiivne ja kus see on negatiivne; () funktsiooni f() kasvamis- ja kahanemisvahemikud; () funktsiooni f() maksimumpunkt; c) Skitseerige funktsiooni f() graafik vahemikus (;) Lahendus a) Leiame funktsiooni väärtused lõigu otspunktides sin f()= ei ole määratud, kuna sin = ja murru nimetaja ei tohi olla null sin sin f()= ei ole määratud, kuna sin = ja murru nimetaja ei tohi olla null sin Seega on funktsioon määratud ainult vahemikus ; b) Leiame funktsiooni nullkohad sin sin sin : sin,5 sin sin Lahendivalemist saame n 8, n Z Leiame erilahendid vahemikust ; sin Kui n = = º kontroll: sin,5 sin5 Kui n = = 5º kontroll: sin5,5 n 5 Seega funktsiooni f() nullkohad vahemikus ; on ; 6 6

11 sin Positiivsuspiirkonna leidmiseks tuleb lahendada võrratus > ja sin sin negatiivuspiirkonna leidmiseks < Kasutades leitud nullkohti skitseerime sin märgikõvera f()< º f()> 5º f()< Leiame jooniselt vahemikud, kus funktsioon f() on positiivne ja kus ta on negatiivne 5 5 X ; ja X ; ; Kasvamis- ja kahanemisvahemike leidmiseks leiame funktsiooni tuletise cos sin cos sin cos f sin sin Kasvamisvahemiku leidmiseks lahendame võrratuse f () > Kahanemisvahemiku leidmiseks lahendame võrratuse f () < cos Kuna f avaldises murru nimetaja on alati positiivne, siis määrab sin võrratuse lahendid avaldis cos f ()> º 9º f ()< 8º Leiame jooniselt, et vahemikus ; kasvamis- ja kahanemisvahemikud vastavalt X ; ning X ; Kuna kohal = 9º läheb kasvamine üle kahanemiseks, siis on tegemist sin 9 maksimumkohaga ning leiame punkti ordinaadi y = sin 9 Funktsiooni f() maksimumpunkt P ma ; c) Skitseerime funktsiooni graafiku vahemikus ; Kasutame eelnevalt leitud nullkohti ja maksimumpunkti koordinaate ning leiame lisaks veel mõned funktsiooni väärtused f(5º) -,9; f(6º),8; f(º),8; f(65º) -,9

12 ,5,5 - -, ,5 - -,5 - f() ÜLESANDED ) Lahenda võrrand sin + cos = V: n, n, n Z ) On antud funktsioon f() = sin - sincos + cos a) Lihtsusta f() + sin - cos b) Lahenda võrrand f() = c) Lahenda võrratus f() cos V: ; n, arctan n, n Z ; R ) KRE 97 Lahenda võrrand cos - cos = cos( - ) n V: = n, = n, nz 6 ) KRE97 Lihtsusta avaldis: sin( ) sin( ) cos( ) cos( ) tan( ) ja arvuta, kui V: + tan; sin( ) cos( ) 5) Lihtsusta avaldis: V : tan sin tan( ) cos( ) cos ( ) 6) RE998 On antud jooned y = sin ja y = cos Milliste väärtuste korral lõigust ; on nende joonte puutujad paralleelsed? (Leia sirgetega = ja = ning antud joontega piiratud kujundi pindala- integraali ülesanne!) V: = - ja S=

13 7) RE999 (5p) Leia sin, kui cos rahuldab võrrandit 5cos² + 5cos - = ja V: 5 8) RE RE999 (5p) Rombi ühe tipu juures olev nurk rahuldab tingimust sin cos Leia rombi pindala, kui pikem diagonaal on V: 96 9) RE Kolmnurga ühe tipu juures olev nurk rahuldab tingimust sin cos Leia kolmnurga pindala, kui kolmnurga küljed on erineva pikkusega ja nurga vastaskülg on 6 ning lähiskülg 6 V: 8 cos ) RE On antud funktsioon f ( ), ; cos Selgita, kas funktsioon f() on määratud lõigul Leia vahemikus ; a) funktsiooni f() nullkohad; ; b) vahemikud, kus funktsioon f() on positiivne ja kus see on negatiivne; c) funktsiooni f() kasvamis- ja kahanemisvahemikud; d) funktsiooni f() maksimumpunkt Skitseeri funktsiooni f() graafik vahemikus otspunktides; a), ; b) X ;, X c) X ;, X ; ; d) Pma ; ; V: Ei ole määratud ; ; ; ) Riigieksam (p) Lahenda võrrand cos - sin =, kui ; Leia parameetri b kõik väärtused, mille korral võrranditel cos - sin = ja sin b leiduvad ühised lahendid, kui ; Leia funktsiooni y = sin periood ja skitseeri selle funktsiooni graafik, kui ; Skitseerige samale joonisele funktsiooni y = sin graafik V: ) ; ;; ; ;); ;) ) (Riigieksam 5p) Vaatleme funktsioone f() = cos ja g() = sin a) Avalda cos suurus sin kaudu b) Lõigul ; () lahenda võrrand f() = g() () joonesta ühes ja samas teljestikus funktsioonide f() ja g() graafikud Leia joonise abil väärtused, mille korral f() < g()

14 5 5 V: cos sin ; ; ; ; ; ) Riigieksam (5p) Antud on funktsioon f() = sin lõigul ; a) Lahenda võrrand f() = b) Joonesta funktsiooni y = sin graafik ja kandke eelmises punktis leitud lahendid joonisele c) Kolmnurgas ABC olgu C = 9º, A = ja AB = Tõesta, et kolmnurga ABC pindala võrdub väärtusega f() d) Leia nurk nii, et eelmises punktis antud kolmnurga pindala väärtus on V: 5 ;75 ;95 ;55 ;5 ) Riigieksam (p) Amsterdam - Berliin - Praha moodustavad kolmnurga (vt joonist), mille kaks nurka on 5 ja Kui kaugel on Amsterdam Berliinist ja Praha Amsterdamist? Vastused anna täpsusega km Berliin B Amsterdam A 8 km Praha V: 6 km ja 77 km 5) Riigieksam (p) Kolm teed magistraaltee, maantee ja külavahetee moodustavad kolmnurga ABC, milles A = B = 5 ja AB = km (vt joonist) Kui pikk on teelõik AC? Kell pööras liikluseeskirjade rikkuja punktis A magistraalteelt maanteele ja jätkas sõitu kiirusega km/h ristmiku C suunas Samal ajal (kell ) alustas punktist B sõitu mööda külavaheteed ristmiku C suunas politseiinspektor, kes jõudis kohale 5 sekundiga Kas politseiinspektor jõudis ristmikule C enne liikluseeskirjade rikkujat? Põhjenduseks esitage arvutused 5 P A magistraaltee km B 5 külavahetee maantee V: AC on ligikaudu,6 km; kiiruseületaja s 6) Riigieksam (p) Antud on funktsioon f() = cos lõigul ; a) Lahenda võrrand f() = b) Joonesta funktsiooni y = sin graafik ja kandke eelmises punktis leitud lahendid joonisele C

15 c) Kolmnurgas ABC olgu C = 9, B = ja AB = Tõesta, et kolmnurga f ABC kaatetite summa võrdub cos sin d) Leia nurk nii, et eelmises punktis antud kolmnurga pindala väärtus oleks 5 7 V: ; ; ; ; ) Riigieksam (5p) Antud on funktsioon f() = cos sin a) Lihtsusta funktsiooni avaldist b) Arvutage f() täpne väärtus, kui sin = 5 c) Määra, kas f() on paaris- või paaritu funktsioon d) Lahenda võrrand f() = lõigul ; e) Joonesta ühes ja samas teljestikus funktsioonide y = cos ja y = -cos graafikud lõigul ; V: cos ; ; paarisfunktsioon ; 5 ;5 ;5 ;5 5 8) RE 5(5p) Joonesta samas teljestikus funktsioonide y = sin ja y = cos graafikud Määra lõigul ; graafikute lõikepunkti koordinaadid Põhjenda 5 vastust V: L ; 9) RE 6(5p) Leia suuruse a väärtused, mille korral võrrandil cos = 5a leidub lahend, mis kuulub lõiku ; V:, a,6 ) RE 7(p) Antud on funktsioon y =sin lõigul ; ) Leia funktsiooni nullkohad ja muutumispiirkond ) Joonista funktsiooni graafik ) Kasutades saadud graafikut, leia a) funktsiooni positiivsus- ja negatiivsuspiirkond; b) argumendi väärtused, mille korral y <- 7 V: ;; ; ; X ; ; X ;, X ; ; ; 6 6 ) RE 8(p) Kolmnurkse väljaku ühe külje pikkus on m, selle külje lähisnurgad on ja 7 ning kolmanda nurga tipus asetseb kolmnurga tasapinnaga ristuv lipumast Lipumasti tipp paistab nürinurga tipust maapinna suhtes 7 nurga all Arvutage väljaku pindala ja lipumasti kõrgus V: m ;, m ) RE 8(5p) ) Lihtsusta avaldis cos + sin tan + cos ) Joonesta funktsioonide f() = cos ja g() = cos graafikud lõigul ; ühes ja samas teljestikus ning leidke graafikute lõikepunktide abstsissid ;, mille korral g() < ) Leia osa ) joonise abil argumendi väärtused lõigul f() V: cos ; ; ; ; ; ;, ; 5) RE 9(p) Sirge tee ääres asuvad talud A, B ja D Iga talu juurest viib otsetee 5

16 postkontorisse C (vt joonist) Kulude kokkuhoiu eesmärgil otsustas vallavalitsus sulgeda liiklemiseks teed AC ja BC ning jätkata vaid teede AB ja CD hooldamist Plaanil mõõtkavaga : on tee AB pikkus 9 mm Teades, et teede AD ja BD pikkus on võrdne ning CAB = 5 ja ABC = 5, leidke, mitme kilomeetri võrra pikeneb teede sulgemise tõttu talude A ja B elanike teekond postkontorisse C? Lõppvastus andke täpsusega, km V: A:,9 km võrra ja B:,9 km võrra 6) RE 9(5p) On antud funktsioonid 5 f ( ) sin sin 6 6 ja g() = sin ) Näita, et f () = cos ) Leia võrrandi g() = cos lahendid, mis asuvad lõigul [;π ] ) Joonesta ühes ja samas koordinaatteljestikus funktsioonide y = f () ja y = g() graafikud ning lahendage joonise põhjal võrratus f () > g() lõigul [;π ] 7 7 V: ; ; ; ; ; ; ) RE (p) Rööpküliku KLMN diagonaal LN on 6,7 cm ja külg LM on 5, cm Nurk KNL on º Märgi andmed joonisele Arvuta rööpküliku KLMN ümbermõõt ja pindala Nurga KNL poolitaja lõikab rööpküliku külge KL punktis T Arvuta lõikude KT ja TL pikkused NB! Kõik lõppvastused ümarda kümnendikeni V: P 9,7cm; S 5,cm ; KT,cm; TL 5,cm 8) RE (p) Joonisel on funktsioonide f() = cos ja g() = sin graafikud lõigul [; ] ) Kirjuta joonisele funktsioonide nimetused ) Lahenda võrrand cos = sin lõigul [; ] ) Joonesta samale joonisele funktsiooni h() = cos graafik lõigul [; ] ) Leia jooniselt kõigi kolme funktsiooni ühine negatiivsuspiirkond lõigul [; ] 6

17 9) RE (5p) Kolm kaatrit kohtusid merel punktis O Pärast kohtumist suundus esimene kaater põhja, teine ida ja kolmas lõuna suunas ) Kaks tundi pärast kohtumist olid kaatrid jõudnud vastavalt punktidesse A,B ja C, mis on täisnurkse kolmnurga ABC tippudeks I ja II kaatri vaheline kaugus oli 6 km ning II kaatri kiirus oli 6 km/h võrra suurem I kaatri kiirusest Leia I ja III kaatri vaheline kaugus tundi pärast kohtumist ) I ja III kaater peatusid pärast -tunnist sõitu, II kaater jätkas liikumist samadel tingimustel veel ühe tunni ja jõudis punkti D Leidke nurga ADC suurus / V: km; 8 9 ) RE (p) a) Arvuta avaldise sin sin täpne väärtus, kui cos b) Leia funktsiooni f ( ) sin suurim ja vähim väärtus lõigul ; c) Leia parameetri a väärtused nii, et võrrandil sin a 9a sin oleks lõigul ; täpselt neli erinevat lahendit V: ; ymin,; yma ; a, a 8, a, a 9 9 ) KT Seinale on riputatud suur Hiina lehvik Lehvik on kujult ringi sektori kujuline, kesknurgaga o ja raadiusega cm Leidke selle lehviku pindala Vastus ümardage ühelisteni V: 9 cm ) KT Omanik tahab tellida purjelaevale kolmnurkse purje Leidke purje ümbermõõt ja pindala Kas ristkülikukujulisest kangast mõõtmetega m m on võimalik valmistada selline puri (NB! Ilma õmblusteta)? Põhjendage oma vastust (näiteks tehke joonis) V: m, 6 m, on võimalik 6 o o cm 7

18 ) RE (5p) Maatükist ABCD, kus AB= 5 m, BC= 5m, AD= m, ABC = 9º, BAD = º ja BCD = 9º, õnnestus müüa vaid kolmnurkne osa ABD a) Tehke ülesande tekstile vastav joonis ja märkide andmed joonisele b) Arvutage müüdud maatüki ümbermõõt c) Mitu protsenti kogu maatükist jäi müümata? Lõppvastus ümardage kümnendikeni V: P=5 m; 55,6% 8

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül. Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM

MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Lea Lepmann Tiit Lepmann MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Ülesanded, lahendused, kommentaarid ja soovitused Kõigi käesolevas kogumikus kasutatud riigi- ja katseeksamite ülesannete autoriõigused

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele

MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele TALLINNA TEHNIKAÜLIKOOL Matemaatikainstituut MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele Tallinn 24 3 MATEMAATILINE ANALÜÜS II

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a.

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a. Geomeetria põhivara Jan Willemson 19. mai 2000.a. 1 Kolmnurk Kolmnurgas tasub mõelda järgmistest lõikudest ja sirgetest: kõrgused, nurgapoolitajad, välisnurkade poolitajad, külgede keskristsirged, mediaanid,

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35 Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja

Διαβάστε περισσότερα

Kitsas matemaatika-3 tundi nädalas

Kitsas matemaatika-3 tundi nädalas Kitsas matemaatika-3 tundi nädalas Õpitulemused I kursus-arvuhulgad. Avaldised. Võrrand, võrratus. 1) eristab ratsionaal-, irratsionaal- ja reaalarve; 2) eristab võrdust, samasust, võrrandit ja võrratust;

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.

Διαβάστε περισσότερα

6 Mitme muutuja funktsioonid

6 Mitme muutuja funktsioonid 6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

Eesti LIV matemaatikaolümpiaad

Eesti LIV matemaatikaolümpiaad Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester Matemaatiline analüüs IV praktikumiülesannete kogu 4. a. kevadsemester . Alamhulgad ruumis R m. Koonduvad jadad. Tõestage, et ruumis R a) iga kera s.o. ring) U r A) sisaldab ruutu keskpunktiga A = a,b),

Διαβάστε περισσότερα

Mathematica kasutamine

Mathematica kasutamine mathematica_lyhi_help.nb 1 Mathematica kasutamine 1. Sissejuhatus Programmi Mathematica avanemisel pole programmi tuum - Kernel - vaikimisi käivitatud. Kernel on programmi see osa, mis tegelikult teostab

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα

Ainevaldkond Matemaatika gümnaasiumi ainekava

Ainevaldkond Matemaatika gümnaasiumi ainekava Ainevaldkond Matemaatika gümnaasiumi ainekava 1. Ainevaldkonna õppeainete kohustuslikud kursused Lai matemaatika koosneb 14 kursusest: 10 klass: 1. Avaldised ja arvuhulgad 2. Võrrandid ja võrrandisüsteemid

Διαβάστε περισσότερα

Vektor. Joone võrrand. Analüütiline geomeetria.

Vektor. Joone võrrand. Analüütiline geomeetria. Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil,

Διαβάστε περισσότερα

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2 Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).

Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline). Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

Eesti koolinoorte 26. füüsika lahtine võistlus

Eesti koolinoorte 26. füüsika lahtine võistlus Eesti koolinoorte 6. füüsika lahtine võistlus 8. november 05. a. Vanema rühma ülesannete lahendused. (RONGIVILE) Tähistagu L veduri kaugust jaamaülemast hetkel, mil vedurijuht alustab vile laskmisega.

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

Ainevaldkond Matemaatika

Ainevaldkond Matemaatika Ainevaldkond Matemaatika 1 Matemaatikapädevus Matemaatika õpetamise eesmärk gümnaasiumis on matemaatikapädevuse kujundamine, see tähendab suutlikkust tunda matemaatiliste mõistete ja seoste süsteemsust;

Διαβάστε περισσότερα

5. TUGEVUSARVUTUSED PAINDELE

5. TUGEVUSARVUTUSED PAINDELE TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi

Διαβάστε περισσότερα

Ehitusmehaanika. EST meetod

Ehitusmehaanika. EST meetod Ehitusmehaanika. EST meetod Staatikaga määramatu kahe avaga raam /44 4 m q = 8 kn/m 00000000000000000000000 2 EI 4 EI 6 r r F EI p EI = 0 kn p EI p 2 m 00 6 m 00 6 m Andres Lahe Mehaanikainstituut Tallinna

Διαβάστε περισσότερα

IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel

IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel Allar Veelmaa, Loo Keskkool Gümnaasiumi riiklik õppekava 1 (edaspidi GRÕK) järgi võib õpilane valida kitsa ja laia matemaatikakursuse

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,

Διαβάστε περισσότερα

Eesti koolinoorte 51. täppisteaduste olümpiaad

Eesti koolinoorte 51. täppisteaduste olümpiaad Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba

Διαβάστε περισσότερα

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester

Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester Matemaatiline analüüs II praktikumiülesannete kogu 5. a. kevadsemester . Kahe ja kolme muutuja funktsiooni määramispiirkond, selle raja, kinnisus ja lahtisus. Olgu X ja Y hulgad. Kujutus e. funktsioon

Διαβάστε περισσότερα

Elastsusteooria tasandülesanne

Elastsusteooria tasandülesanne Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

REAALAINETE KESKUS JAAK SÄRAK

REAALAINETE KESKUS JAAK SÄRAK REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant

Διαβάστε περισσότερα

Sissejuhatus. Kinemaatika

Sissejuhatus. Kinemaatika Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida

Διαβάστε περισσότερα

Lexical-Functional Grammar

Lexical-Functional Grammar Lexical-Functional Grammar Süntaksiteooriad ja -mudelid 2005/06 Kaili Müürisep 6. aprill 2006 1 Contents 1 Ülevaade formalismist 1 1.1 Informatsiooni esitus LFG-s..................... 1 1.2 a-struktuur..............................

Διαβάστε περισσότερα

LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST. Koostanud Hilja Afanasjeva

LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST. Koostanud Hilja Afanasjeva LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST EESSÕNA Koostanud Hilja Afanasjeva Enne selle teema käsitlemist avame mõned materjalist arusaamiseks vajalikud mõisted hulgateooriast.

Διαβάστε περισσότερα

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon

Διαβάστε περισσότερα

5. OPTIMEERIMISÜLESANDED MAJANDUSES

5. OPTIMEERIMISÜLESANDED MAJANDUSES 5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

Elastsusteooria põhivõrrandid,

Elastsusteooria põhivõrrandid, Peatükk 4 Elastsusteooria põhivõrrandid, nende lahendusmeetodid ja lihtsamad ruumilised ülesanded 113 4.1. Elastsusteooria põhivõrrandid 114 4.1 Elastsusteooria põhivõrrandid 1. Tasakaalu (diferentsiaal)võrrandid

Διαβάστε περισσότερα

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud... Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega

Διαβάστε περισσότερα

Staatika ja kinemaatika

Staatika ja kinemaatika Staatika ja kinemaatika MHD0071 I. Staatika Leo eder Mehhatroonikainstituut Mehaanikateaduskond allinna ehnikaülikool 2016 Sisukord I Staatika 1. Sissejuhatus. 2. Newtoni seadused. 3. Jõud. 4. ehted vektoritega.

Διαβάστε περισσότερα

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov

Διαβάστε περισσότερα

(Raud)betoonkonstruktsioonide üldkursus 33

(Raud)betoonkonstruktsioonide üldkursus 33 (Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass

2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass 217/218. õa keemiaolümpiaadi lõppvooru ülesannete lahendused 11. 12. klass 1. a) Vee temperatuur ei muutu. (1) b) A gaasiline, B tahke, C vedel Kõik õiged (2), üks õige (1) c) ja d) Joone õige asukoht

Διαβάστε περισσότερα

Energiabilanss netoenergiavajadus

Energiabilanss netoenergiavajadus Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)

Διαβάστε περισσότερα

Deformatsioon ja olekuvõrrandid

Deformatsioon ja olekuvõrrandid Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,

Διαβάστε περισσότερα

Smith i diagramm. Peegeldustegur

Smith i diagramm. Peegeldustegur Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes

Διαβάστε περισσότερα

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on

Διαβάστε περισσότερα

Eesti koolinoorte 58. füüsikaolümpiaad

Eesti koolinoorte 58. füüsikaolümpiaad Eesti koolinoorte 58. füüsikaolümpiaad 29. jaanuar 2011. a. Piirkondlik voor. Gümnaasiumi ülesannete lahendused Eessõna Allpool on toodud iga ülesande üks õige lahenduskäik (mõnel juhul ka enam. Kõik alternatiivsed

Διαβάστε περισσότερα

Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid

Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid Marek Kolk, Tartu Ülikool Viimati muudetud : 6.. Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid Aritmeetilised operaatorid Need leiab paletilt "Calculator" ja ei vaja eraldi kommenteerimist.

Διαβάστε περισσότερα

Matemaatilised ja trigonomeetrilised funktsioonid

Matemaatilised ja trigonomeetrilised funktsioonid Matemaatilised ja trigonomeetrilised funktsioonid Alustame nüüd Exceli põhiliste töövahenditega - funktsioonidega. Võtame esimesena sihikule Matemaatilised ja trigonomeetrilised funktsioonid. Kuigi kogu

Διαβάστε περισσότερα

I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal

I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]

Διαβάστε περισσότερα

1.2. Ainevaldkonna õppeainete kohustuslikud kursused ja valikkursused

1.2. Ainevaldkonna õppeainete kohustuslikud kursused ja valikkursused Vabariigi Valitsuse 06.01.2011. a määruse nr 2 Gümnaasiumi riiklik õppekava lisa 3 1. Ainevaldkond Matemaatika 1.1. Matemaatikapädevus Matemaatikapädevus tähendab matemaatiliste mõistete ja seoste süsteemset

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85 7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα