Erik Birčák, Filip Brázdovič, Andrea Cillingová, Filip Červenák, Katarína Juríková, Lucia Zeiselová. Katedra geneaky PriF UK, BraAslava

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Erik Birčák, Filip Brázdovič, Andrea Cillingová, Filip Červenák, Katarína Juríková, Lucia Zeiselová. Katedra geneaky PriF UK, BraAslava"

Transcript

1 Erik Birčák, Filip Brázdovič, Andrea Cillingová, Filip Červenák, Katarína Juríková, Lucia Zeiselová Katedra geneaky PriF UK, BraAslava

2 » Aký priestor pre cvičenia ponúka ideálne geneacké kurikulum?» Aké vlastnosa by malo mať ideálne cvičenie?» Ako vyzerajú cvičenia z geneaky na zahraničných univerzitách?» Aké by malo byť ideálne cvičenie podľa študentov?» Návrh harmonogramu modelového cvičenia

3 Cvičenie ročník Hodinová dotácia Základné cvičenie z geneaky 2/Z 2/týždeň Pokročilá geneaka 3/Z 2/týždeň Pokročilé cvičenia I 4/Z 4/týždeň Pokročilé cvičenia II 4/L 4/týždeň

4 » Mali by cvičenia prebiehať každý týždeň alebo v blokoch?» Mali by študena pracovať samostatne alebo v skupine?» Koľko študentov by malo byť naraz na jednom cvičení?» Aké metódy by sa mali študena na cvičení naučiť?» Mali by na seba jednotlivé cvičenia nadväzovať?» Mali by na organizácii cvičení spolupracovať rôzne pracoviská?» Mali by mať študena možnosť upravovať náplň cvičení?» Do akej miery by mali byť cvičenia prepojené s prednáškami?» Mala by byť súčasťou cvičení aj práca s počítačom?» Akým spôsobom by mali byť študena hodnotení?

5 » Vybrané univerzity: Harvard, Oxford, Universites Paris- Diderot & Paris- Descartes, Ludwig- Maximilians Universität München, Universitat de Barcelona» ŠtudenA sami navrhujú niektoré experimenty» Cvičenia sú často prepojené so stážou» Často prebiehajú blokovo» Obsahujú moderné molekulárno- biologické metódy

6 » Dotazník pre študentov 4. ročníka (1. ročník magisterského štúdia)» Ako študena hodnoaa súčasnú podobu cvičení?» Aké zmeny by uvítali?» Aké by malo byť ideálne cvičenie?» 14 otázok: výber z možnosl hodnotenie 1-5 v krátkosa vyjadriť názor

7 1. Preferujete cvičenia, ktoré prebiehajú blokovo (počas niekoľkých dní raz za semester) alebo cvičenia, ktoré sa konajú pravidelne každý týždeň? Poznámky: - blokové cvičenia viac pripomínajú skutočnú prácu v laboratóriu

8 2. Preferujete, keď na seba jednotlivé cvičenia nadväzujú (t.j. celý semester na cvičeniach pracujete na miniprojekte)? Poznámky: - dlhodobý cieľ projektu je lepšia moavácia k práci

9 3. Preferujete na cvičeniach samostatnú prácu alebo prácu v skupine? Poznámky: - ideálna veľkosť skupiny je 2-3 študena

10 4. Chceli by ste sa podieľať na rozhodovaní o náplni cvičení (napr. formou výberu z ponúknutých úloh/metód)? Poznámky: - ak má byť možnosť výberu, mali by byť dopredu od začiatku oboznámení s možnosťami

11 5. Považujete v rámci cvičenia za dôležitejšie naučiť sa jednotlivé metódy, alebo tvorivo rozmýšľať o experimentoch? Poznámky: - tvorivé myslenie uplatnia pri vlastných experimentoch, metódy budú potrebovať vedieť čo najskôr

12 6. Je podľa vás súčasná hodinová dotácia cvičení primeraná? Poznámky: - popri cvičení je dostatok času aj na prácu v laboratóriu

13 7. Ste schopní po absolvovaní cvičenia príslušnú metódu samostatne zopakovať? Poznámky: - Problém skupín, niektoré veci sú na cvičení predpripravené

14 8. Do akej miery ste spokojný so súčasným stavom cvičení z geneaky?

15 9. Ktoré témy/metódy (max. 3) preberané na cvičeniach vás najviac zaujali? I. Western bot II. DNA topology assay III. Purifikácia proteínov exprimovaných v E. coli 10. Aké metódy preberané na cvičeniach podľa vás využijete aj po skončení štúdia? I. Western blot II. PCR III. ELFO

16 11. Čo sa vám páči na súčasnej podobe cvičení z geneaky? I. Prístup vyučujúcich, atmosféra, možnosť opýtať sa na detaily II. Variabilita tém a metód 12. Čo by ste zmenili na súčasnej podobe cvičení z geneaky? I. Organizácia (pravidelné cvičenia, stále rozdelenie do skupín) II. Menšie skupiny III. PoskytnuAe materiálov vopred

17 » Všeobecná schéma cvičenia: Forma miniprojektu Malé skupiny, ideálne 2-3 študena Každý týždeň 4-6 hodín Využívať modelové organizmy, používané na pracovisku Implementovať moderné metódy, nie na úkor konceptu cvičenia BioinformaAka a plánovanie Základné metódy Analýza 1A Analýza 1B Spoločné metódy Analýza 2A Analýza 2B

18 » Pokročilé cvičenie I Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae 1. etapa: In silico analýza génu Abf2, plánovanie experimentov, návrh primerov 2. etapa: Príprava konštruktov, transformácia kmeňa ΔAbf2 3. etapa: potvrdenie expresie génu Abf2 4. etapa: Analýza mtdna Analýza sekvencie Abf2 návrh primerov PCR, klonovanie, transformácia Fluorescenčná mikroskopia Izolácia mtdna Southern blot Western blot RT- PCR

19 » MožnosA hodnotenia: V rámci sekcie protokoly môžu študena skúšajúcemu prezentovať výsledky svojich experimentov ako na konferencii Protokoly TeoreAcká skúška PrakAcká skúška Popis a interpretácia hlavných výsledkov Štruktúra ako časa results a discussion v článkoch Písomný test VedomosA týkajúce sa experimentov, získané na cvičeniach Skúška z metód Študent musí samostatne predviesť vybranú metódu

20 » Organizačná stránka» Forma miniprojektu» Malé skupiny (2-3 ľudia)» Cvičenia každý týždeň (nie blokovo)» Pevný harmonogram cvičení a materiály poskytnuté vopred» Obsahová stránka» Dizajn experimentu v rámci cvičenia» Možnosť voľby experimentu» Súčasťou hodnotenia prakacká skúška

21

22 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 1. cvičenie:» Analýza dvoch sekvencií delečných derivátov génu Abf2. Úlohou je zisať, ktorý z delečných derivátov bude pravdepodobne komplementovať deléciu Abf2, idenafikovať konzervované oblasa proteínu, predikovať funkčné domény. In silico konštrukcia vektorov (výber vhodného vektora, výber selekčného markera pre kvasinky aj baktérie, výber tagu). Návrh primerov na PCR amplifikáciu variantov Abf2 z vektora.

23 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 2. cvičenie:» Amplifikácia génu Abf2 z templátového plazmidu pomocou PCR, elektroforeacká ceparácia, vyrezanie z gélu, restrikčné šaepenie vektora aj inzertu, ligácia» 3. cvičenie:» Transformácia baktérií (chemicky alebo elektroporáciou) pripravenou ligačnou zmesou, príprava médií pre kvasinky

24 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 4. cvičenie:» (Deň pred cvičením je potrebné zaočkovať transformanty do tekutého média) Izolácia plazmidovej DNA, restrikčná analýza konštruktu» 5. cvičenie:» Transformácia kvasiniek, výber analýzy expresie Abf2, príprava roztokov a materiálov na nasledujúce cvičenie

25 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 6. cvičenie (línia western blot):» Príprava proteínových extraktov, PAGE separácia proteínov, transfer na membránu, uloženie do blokovacieho roztoku» 7. cvičenie (línia westernblot):» Inkubácia s primárnymi a následne sekundárnymi proalátkami, vyvolávanie, analýza pozorovaných signálov

26 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 6. cvičenie (línia fluorescenčá mikroskopia):» Fixácia buniek, pridanie značených proalátok, pozorovanie lokalizácie proteínu vo fluorescenčnom mikroskope» 7. cvičenie (línia fluorescenčná mikroskopia):» Farbenie farbičkami Mitotracker/DiOC6, pozorovanie mitochondriálnej DNA, štaasacké vyhodnotenie

27 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 8. cvičenie:» Izolácia mitochondriálnej DNA z kvasiniek

28 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 9. cvičenie (línia southern blot):» Separácia DNA v géli, premývanie, transfer na membránu, imobilizácia DNA» 10. cvičenie (línia southern blot):» (deň vopred je potrebné pridať značenú sondu) hybridizácia, odmývanie prebytočnej sondy, založenie membrány do kazety so screen- om

29 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 9. cvičenie (línia qpcr):» Návrh primerov na qpcr, realizácia qpcr» 10. cvičenie (línia qpcr):» ŠtaAsAcké vyhodnotenie výsledkov qpcr pomocou príslušného so>ware- u

30 » Harmonogram Téma: Sledovanie úlohy proteínu Abf2 v udržiavaní mitochondriálnej DNA kvasinky Saccharomyces cerevisiae» 11. cvičenie:» Vyhodnotenie cvičení, možnosť prakacky si zopakovať základné metódy a samostatne si vyskúšať niektoré prístroje» 12. cvičenie:» Zápočet, hodnotenie z protokolovej, teoreackej a prakackej časa

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

(1 ml) (2 ml) 3400 (5 ml) 3100 (10 ml) 400 (25 ml) 300 (50 ml)

(1 ml) (2 ml) 3400 (5 ml) 3100 (10 ml) 400 (25 ml) 300 (50 ml) CPV 38437-8 špecifikácia Predpokladané Sérologické pipety plastové -PS, kalibrované, sterilné sterilizované γ- žiarením, samostne balené, RNaza, DNaza, human DNA free, necytotoxické. Použiteľné na prácu

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Model redistribúcie krvi

Model redistribúcie krvi .xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S 1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Analýza údajov. W bozóny.

Analýza údajov. W bozóny. Analýza údajov W bozóny http://www.physicsmasterclasses.org/index.php 1 Identifikácia častíc https://kjende.web.cern.ch/kjende/sl/wpath_teilchenid1.htm 2 Identifikácia častíc Cvičenie 1 Na web stránke

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ Page 1 of 67 Page 2 of 67 Page 3 of 67 Page 4 of 67 1. Page 5 of 67 Page 6 of 67 Page 7 of 67 2. Page 8 of 67 Page 9 of 67 Page 10 of 67 Page 11 of 67 Page 12 of 67 Page 13 of 67 Page 14 of 67 Page 15

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu

Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Analýza nukleových kyselín

Analýza nukleových kyselín Analýza nukleových kyselín elektroforetická analýza ( agaróza, PAGE) Southern, Northern- analýza, dot blot, Western - blotting Elfo analýza Elektroforetická analýza nukleových kyselín (Agaróza a PAGE)

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Χαρακτηριςμόσ και δυναμική ζκφραςη του γονιδίου CYP450 τησ οικογζνειασ 71Α από την ελιά

Χαρακτηριςμόσ και δυναμική ζκφραςη του γονιδίου CYP450 τησ οικογζνειασ 71Α από την ελιά Γεωπονικό Πανεπιστήμιο Αθηνών Τμήμα Γεωπονικής Βιοτεχνολογίας Εργαστήριο Μοριακής Βιολογίας Χαρακτηριςμόσ και δυναμική ζκφραςη του γονιδίου CYP450 τησ οικογζνειασ 71Α από την ελιά ΚΟΤΥΑ ΑΙΚΑΣΕΡΙΝΗ Μεταπτυχιακή

Διαβάστε περισσότερα

PROMO AKCIA. Platí do konca roka 2017 APKW 0602-HF APKT PDTR APKT 0602-HF

PROMO AKCIA. Platí do konca roka 2017 APKW 0602-HF APKT PDTR APKT 0602-HF AKCIA Platí do konca roka 2017 APKW 0602-HF APKT 060204 PDTR APKT 0602-HF BENEFITY PLÁTKOV LAMINA MULTI-MAT - nepotrebujete na každú operáciu špeciálny plátok - sprehľadníte situáciu plátkov vo výrobe

Διαβάστε περισσότερα

Molekulárna biológia a jej využitie v laboratórnej diagnostike na OKM FNsP Skalica a.s. Kos S., Kóňová L., Vašková M.,

Molekulárna biológia a jej využitie v laboratórnej diagnostike na OKM FNsP Skalica a.s. Kos S., Kóňová L., Vašková M., Molekulárna biológia a jej využitie v laboratórnej diagnostike na OKM FNsP Skalica a.s. Kos S., Kóňová L., Vašková M., Štruktúra OKM FNsP Skalica, a.s. 1993 Bakteriológia Priama diagnostika -kultivácia,

Διαβάστε περισσότερα

FYZIKÁLNEHO EXPERIMENTU VANIA VZDELÁVANIA. RNDr. Karol Kvetan, CSc. Ing. Robert Riedlmajer, PhD.

FYZIKÁLNEHO EXPERIMENTU VANIA VZDELÁVANIA. RNDr. Karol Kvetan, CSc. Ing. Robert Riedlmajer, PhD. DIAĽKOV KOVÉ OVLÁDANIE FYZIKÁLNEHO EXPERIMENTU AKO SÚČASS ASŤ E-LEARNINGOVÉHO VZDELÁVANIA VANIA RNDr. Karol Kvetan, CSc. Ing. Robert Riedlmajer, PhD. Je známa skutočnosť, že výučba technických disciplín

Διαβάστε περισσότερα

Sylabus predmetu a podmienky na získanie kreditov

Sylabus predmetu a podmienky na získanie kreditov Sylabus predmetu a podmienky na získanie kreditov Názov predmetu: ORGANICKÁ CHÉMIA 1 Ročník: 2. Semester: zimný Rozsah: 4-1-3 Spôsob ukončenia: skúška Počet kreditov: 11 Typ predmetu: povinný Študijný

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Záverečná práca od A po Z

Záverečná práca od A po Z Univerzita Mateja Bela v Banskej Bystrici Fakulta humanitných vied Jana Klincková - Pavel Sůra Záverečná práca od A po Z Banská Bystrica 2004 1 Autori: Doc. PhDr. Jana Klincková, PhD. Doc. RNDr. Pavel

Διαβάστε περισσότερα

Zadanie projektov z Optimálneho riadenia 1, r. 2016/17

Zadanie projektov z Optimálneho riadenia 1, r. 2016/17 Zadanie projektov z Optimálneho riadenia 1, r. 2016/17 Výber témy: Každá dvojica si vyberie ľubovoľnú tému z poskytnutých piatich tém. Zvolenú tému zapíše na hárok zavesený na stene medzi M267 a M268 do

Διαβάστε περισσότερα

Kontrolné otázky z jednotiek fyzikálnych veličín

Kontrolné otázky z jednotiek fyzikálnych veličín Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom... (TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Ing. Pavol Vajdečka PROJEKTOVÁ VÝUKA FYZIKY NA ZÁKLADNÍ ŠKOLE Katedra didaktiky fyziky Vedoucí diplomové práce: RNDr. Vojtěch Žák,

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Modelovanie dynamickej podmienenej korelácie kurzov V4

Modelovanie dynamickej podmienenej korelácie kurzov V4 Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

VYBRANÉ BIOCHEMICKÉ A MOLEKULÁRNE-BIOLOGICKÉ METÓDY V LEKÁRSKOM VÝSKUME A MEDICÍNSKEJ DIAGNOSTIKE. Skriptá. Oľga Križanová

VYBRANÉ BIOCHEMICKÉ A MOLEKULÁRNE-BIOLOGICKÉ METÓDY V LEKÁRSKOM VÝSKUME A MEDICÍNSKEJ DIAGNOSTIKE. Skriptá. Oľga Križanová VYBRANÉ BIOCHEMICKÉ A MOLEKULÁRNE-BIOLOGICKÉ METÓDY V LEKÁRSKOM VÝSKUME A MEDICÍNSKEJ DIAGNOSTIKE. Skriptá Oľga Križanová Ústav molekulárnej fyziológie a genetiky SAV, Vlárska 5, 833 34 Bratislava Ústav

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť. Vzdelávacia oblasť:

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť. Vzdelávacia oblasť: Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Βιομόρια, δομή κυττάρου, διαμερισματοποίηση. Ν. Κ. Μοσχονάς n_moschonas@med.upatras.gr Εργ. Γεν. Βιολογίας, Τμ. Ιατρικής Παν/μιο Πάτρας

Βιομόρια, δομή κυττάρου, διαμερισματοποίηση. Ν. Κ. Μοσχονάς n_moschonas@med.upatras.gr Εργ. Γεν. Βιολογίας, Τμ. Ιατρικής Παν/μιο Πάτρας Βιομόρια, δομή κυττάρου, διαμερισματοποίηση Ν. Κ. Μοσχονάς n_moschonas@med.upatras.gr Εργ. Γεν. Βιολογίας, Τμ. Ιατρικής Παν/μιο Πάτρας Ποια είναι τα χαρακτηριστικά της ζωής; Θρέψη Αναπαραγωγή Εξέλιξη Ερεθιστικότητα

Διαβάστε περισσότερα

Sylabus predmetu a podmienky na získanie kreditov. Názov predmetu: TOXIKOLÓGIA A BEZPEČNOSŤ PRÁCE Ročník: 1.

Sylabus predmetu a podmienky na získanie kreditov. Názov predmetu: TOXIKOLÓGIA A BEZPEČNOSŤ PRÁCE Ročník: 1. Sylabus predmetu a podmienky na získanie kreditov Názov predmetu: TOXIKOLÓGIA A BEZPEČNOSŤ PRÁCE Ročník: 1. Semester: zimný Rozsah: 0-1-0 Spôsob ukončenia: klasifikovaný zápočet Počet kreditov: 2 Typ predmetu:

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

Μαρία Τσοπανοµίχαλου PhD. Μοριακής Βιολογίας. ΝΕΕΣ Κοργιαλένειο Μπενάκειο

Μαρία Τσοπανοµίχαλου PhD. Μοριακής Βιολογίας. ΝΕΕΣ Κοργιαλένειο Μπενάκειο Μαρία Τσοπανοµίχαλου PhD. Μοριακής Βιολογίας ΝΕΕΣ Κοργιαλένειο Μπενάκειο Καταφεύγουµε στις µοριακές τεχνικές Συλλέγουµε το δείγµα για µοριακές τεχνικές ιάσπαση ιστικών δοµών ιαχωρισµός των κυττάρων ιάσπαση

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

Biogénne pozitrónové PET rádionuklidy

Biogénne pozitrónové PET rádionuklidy Netradičné rádionuklidy pre prípravu pravu PET rádiofarmák. P. Rajec 1,2, J. Ometáková 2 1.Biont, a.s., BIONT a.s., Karlovesk8 63, 842 29 Bratislava 2.Katedra jadrovej chémie Prírodovedecká fakulta Univerzity

Διαβάστε περισσότερα

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM Program výučby predmetu LABORATÓRNE CVIČENIE Z ANORGANICKEJ CHÉMIE Bakalárske

Διαβάστε περισσότερα

Analýza hlavných komponentov

Analýza hlavných komponentov Analýza hlavných komponentov Motivácia Úloha: Navrhnite scenáre zmien výnosovej krivky pre účely stresového testovania v dlhopisovom portfóliu Problém: Výnosová krivka sa skladá z väčšieho počtu bodov,

Διαβάστε περισσότερα

CHÉMIA Ing. Iveta Bruončová

CHÉMIA Ing. Iveta Bruončová Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

SAMSUNG ELECTRONICS CO., LTD TEST REPORT SAMSUNG ELECTRONICS CO., LTD. 1, Samsung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do 17113, Korea

SAMSUNG ELECTRONICS CO., LTD TEST REPORT SAMSUNG ELECTRONICS CO., LTD. 1, Samsung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do 17113, Korea SAMSUNG ELECTRONICS CO., LTD TEST REPORT Prepared For: SAMSUNG ELECTRONICS CO., LTD 1, Samsung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do 17113, Korea Product Name: LED Model Number: SPMWHX1228FXXXXXXXX Prepared

Διαβάστε περισσότερα

Riešenie cvičení z 5. kapitoly

Riešenie cvičení z 5. kapitoly Riešenie cvičení z 5. kapitoly Cvičenie 5.1. Vety prepíšte pomocou jazyka predikátovej logiky, použite symboly uvedené v úlohách. (a Niekto má hudobný sluch (H a niekto ho nemá. ( H( ( H( (b Niektoré dieťa

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU

ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU V teste, ktorý máš vyriešiť, je 20 úloh. Na prácu je určených 120 minút. Úlohy nemusíš

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B . písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c

Διαβάστε περισσότερα

Výpočet. grafický návrh

Výpočet. grafický návrh Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado

Διαβάστε περισσότερα

4SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM

4SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM 4SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Fakulta chemickej a potravinárskej technológie Oddelenie anorganickej chémie ÚACHTM Program výučby predmetu LABORATÓRNE CVIČENIE Z ANORGANICKEJ CHÉMIE Bakalárske

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Παπαγεωργίου Χρυσοβαλάντης - Ιωάννης

Παπαγεωργίου Χρυσοβαλάντης - Ιωάννης Τ.Ε.Ι ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΘΕΡΜΟΚΗΓΠΑΚΩΝ ΚΑΛΛΙΕΡΓΕΙΩΝ ΚΑΙ ΑΝΘΟΚΟΜΙΑΣ Ι ε κ δοιεων ΒΙΒΛΙΟΘΗΚΗί \ "Τροποποίηση του βιοσυνθετικού μονοπατιού καροτενοειδών στη ζύμη Xanthophyllomyces

Διαβάστε περισσότερα

ROZSAH ANALÝZ A POČETNOSŤ ODBEROV VZORIEK PITNEJ VODY

ROZSAH ANALÝZ A POČETNOSŤ ODBEROV VZORIEK PITNEJ VODY ROZSAH ANALÝZ A POČETNOSŤ ODBEROV VZORIEK PITNEJ VODY 2.1. Rozsah analýz 2.1.1. Minimálna analýza Minimálna analýza je určená na kontrolu a získavanie pravidelných informácií o stabilite zdroja pitnej

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Vzdelávací program Štíhly a inovatívny podnik Six Sigma praktické skúsenosti

Vzdelávací program Štíhly a inovatívny podnik Six Sigma praktické skúsenosti Vzdelávací program Štíhly a inovatívny podnik Six Sigma praktické skúsenosti prof. Ing. Ján KOŠTURIAK, PhD. Ing. Anna STRNÁTKOVÁ Ing. Ján CHAĽ 19. 20. 6. 2007 IPA Slovakia Veľký Diel 3323, 010 08 Žilina

Διαβάστε περισσότερα

PREDMET: Fyzika Charakteristika učebného predmetu

PREDMET: Fyzika Charakteristika učebného predmetu PREDMET: Fyzika Charakteristika učebného predmetu Základnou charakteristikou predmetu je hľadanie zákonitých súvislostí medzi pozorovanými vlastnosťami prírodných objektov a javov, ktoré nás obklopujú

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα