Termodünaamika I seadus. Termodünaamika. Süsteemid
|
|
- ÊἙρμῆς Ηλιόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Termodünaamika I seadus Süsteemid ja olekud. Töö ja energia. Soojus Kalorimeetria Entalpia ja soojusmahtuvus Faasiülemineku entalpiad Aurustumine ja kondenseerumine Sulamine ja tahkumine Reaktsioonientalpia ja selle rakendused Hessi seadus Born-Haberi tsükkel Sidemeentalpia Kirchhoffi seadus Termodünaamika Termodünaamika on teadus energia muundumistest. Termodünaamika ei põhine aatomitel ja molekulidel põhineval aine mikroskoopilise koostise mudelil, kuid on sellega seotav statistilise termodünaamika kaudu. Süsteemid Termodünaamika baseerub eksperimentidel, kus energia muundub ühest vormist teise ja kandub ühelt kehalt teisele. Asjast selgema pildi saamiseks jagatakse maailm kaheks: süsteem on see osa, millest oleme huvitatud; kõik ülejäänu on ümbritsev keskkond. 1
2 Süsteemid Süsteem võib olla: avatud, kui ta vahetab (võib vahetada) keskkonnaga ainet ja energiat; suletud, kui toimub ainult energiavahetus; isoleeritud, kui mingit vahetust ei toimu. Töö ja energia Termodünaamika põhimõisteks on töö. Töö on liikumine mõjuva jõu vastu. Töö mingi objekti liigutamisel mõjuva jõu vastu võrdub jõu ja teepikkuse korrutisega: w = Fd Töö mõõtühikuks on džaul J. 1 J = 1 N 1 m = 1 kg m2 s-2 Töö ja energia Süsteemi summaarset võimet teha tööd nimetatakse tema siseenergiaks U. Me ei saa mõõta süsteemi koguenergiat, küll saab aga mõõta energia muutust U. Negatiivne energiamuut näitab, et süsteemi energia on vähenenud. Kui me teeme süsteemiga tööd, toimub süsteemi siseenergia kasv, U = w 2
3 Siseenergia molekulaarne olemus Siseenergia muutusega, näiteks gaasi kokkusurumisel, kaasneb reeglina molekulide kineetilise ja potentsiaalse energia muutus. Kineetiline energia muutub, kuna molekulide liikumise kiirused kasvavad, samuti kasvab molekulide pöörlemise kiirus: 3 Utrans = RT 2 3 U rot = RT või U rot = RT 2 Siseenergia molekulaarne olemus Oluline võib olla ka potentsiaalse energia muutus. Siseenergia on ekstensiivne omadus 50 grammil ainel on kaks korda rohkem siseenergiat kui 25 grammil ainel samadel tingimustel. Soojus Lisaks tööle võib süsteemi energia muutuda ka soojuse ülekandumise tulemusena. Termodünaamikas mõistetakse soojuse all energiat, mis kantakse üle tänu temperatuuri erinevusele energia voolab soojusena kõrgema temperatuuriga ruumiosast madalama temperatuuriga ossa. 3
4 Soojus Suletud süsteeme võib olla kahte tüüpi. Adiabaatne puudub soojusvahetus keskkonnaga, kuid energiat saab üle kanda tööna, U = w Mitteadiabaatne ehk diatermiline soojusvahetus keskkonnaga on olemas ja seega ka siseenergia võib muutuda ülekantud soojuse arvel, U = q Termodünaamika I seadus Isoleeritud süsteemi siseenergia on konstantne. Mitteisoleeritud süsteemi korral: U = q + w Olekufunktsioonid Süsteemi olekufunktsioonideks on sellised süsteemi olekut iseloomustavad suurused, mis ei sõltu oleku saavutamise viisist: tihedus, siseenergia. Olekufunktsiooni erinevus kahe oleku vahel sõltub ainult nendest olekutest, aga mitte viisist, kuidas ühest teise liiguti. Töö ja soojus ei ole olekufunktsioonid! 4
5 Paisumistöö Süsteem saab oma siseenergia arvelt teha erinevaid töö vorme: paisumistöö: w = -P ex raskuse tõstmine: w = mg h elektriline töö: w = φ q jne. Keemilise reaktsiooniga võib kaasneda töö, aga võib ka mitte kaasneda. Paisumistöö Konstantse ruumalaga süsteem ei saa paisuda. Eeldusel, et ka muud töö viisid on välistatud, on U = q Kui süsteemi ruumala saab muutuda ja väline rõhk on konstantne (paisumine atmosfäärirõhu vastu), siis: w = P ex Paisumisel vaakumisse tööd ei tehta ehk P ex = 0 Paisumistöö Ideaalgaasi pöörduv isotermiline paisumine: isotermiline temperatuur on konstantne; pöörduv väline rõhk on pidevalt võrdne süsteemi rõhuga. Termodünaamikas tähendab pöörduv tegelikult seda, et protsess kulgeb vastupidises suunas, kui muuta muutujat (antud juhul rõhku) lõpmata vähe. 5
6 Paisumistöö dw = P d ex w = final P d ex initial w = final initial P = nrt nrtd = nrt nrtd dw = final initial d = nrt ln final initial Soojuse hulga mõõtmine - kalorimeetria Protsess, mille käigus eraldub soojust, on eksotermiline sellised on enamik keemilisi reaktsioone. Protsess, mille toimumisel soojus neeldub, on endotermiline paljud hästi tuntud füüsikalised protsessid on endotermilised. Energia, mis süsteemist vabaneb, neelatakse keskkonnas ja vastupidi: q = -q keskk Soojuse hulga mõõtmine - kalorimeetria Seega, mõõtes keskkonnast süsteemi eraldunud või vastupidi süsteemist keskkonda eraldunud soojust, saab mõõta ka süsteemi soojuse muutust. Energia ülekannet soojusena mõõdetakse kalorimeetriga seadmega, kus soojuse ülekannet mõõdetakse temperatuuri muutuse kaudu. 6
7 Kalorimeetria Lihtne kalorimeeter koosneb reaktsiooninõust, segajast ja termomeetrist. Soojusefekti mõõdetakse konstantsel rõhul. Pommkalorimeeter uuritav protsess toimub suletud anumas, mis on sukeldatud vette. Mõõdetakse vee temperatuuri muutust. Soojusefekti mõõdetakse konstantsel ruumalal. Kalorimeetria Kalorimeetria puhul on keskkonnaks kalorimeeter ise, seega q = -q cal Mõõdetakse kalorimeetri temperatuuri muutust T, mis on proportsionaalne ülekandunud soojusega. Proportsionaalsuskonstanti nimetatakse kalorimeetri soojusmahtuvuseks C cal, mis on eelnevalt kindlaks tehtud. Soojusmahtuvus Konkreetne soojusmahtuvus C on iseloomulik mitte ainult kalorimeetrile, vaid ka erinevatele ainetele. Kuna suurema ainehulga soojusmahtuvus on suurem, tuleb aine soojusmahtuvus anda kas massiühiku või mooli aine kohta. Soojusmahtuvus sõltub reeglina temperatuurist! 7
8 Soojusmahtuvus Aine molaarne soojusmahtuvus sõltub tema ehituse keerukusest keerukamate ainete soojusmahtuvus on suurem, kuna neis on rohkem võimalusi energia salvestamiseks. edelike soojusmahtuvused on reeglina suuremad kui vastavatel tahkistel. Entalpia Kui süsteemi ruumala ei muutu ja paisumistööd ei tehta, siis on süsteemi koguenergiamuut võrdne süsteemile antud soojusega: U = q ( = const) Keemias toimub enamus reaktsioone aga konstantsel rõhul (lahtises anumas). Entalpia Siin teeb süsteem saadud soojuse arvel ka tööd ja tema siseenergia muutus on selle võrra väiksem. Siseenergia pole piisavalt hea olekufunktsioon, kirjeldamaks süsteemiga toimunud muutusi. Konstantsel rõhul toimuvate protsesside kirjeldamiseks on parem entalpia H. H = U + P 8
9 Entalpia Konstantsel rõhul on süsteemi entalpiamuut võrdne süsteemi poolt neelatud (või eraldunud) soojusega. Endotermilise protsessi korral H > 0 ja eksotermilise protsessi korral H < 0. Entalpia on olekufunktsioon, kuna seda on ka U, P ja. Soojusmahtuvused Definitsiooni järgi on soojusmahtuvus: C = q T Ilmselt sõltub soojusmahtuvus sellest, millistel tingimustel soojuse ülekanne toimub, kas konstantsel ruumalal või konstantsel rõhul. Soojusmahtuvused Soojusmahtuvus konstantsel ruumalal C : U C = T Konstantsel rõhul on soojusmahtuvused mõnevõrra suuremad, kuna osa saadud soojusest kulub paisumistöö tegemiseks: C P H = T 9
10 Ideaalgaasi soojusmahtuvused Ideaalgaasi korral P = nrt ja H = U + nrt Seega gaasi soojendamisel: H = U + nr T C P avaldub seega kui: C C P P, m H U + nr T U = = = + nr = C T T T = C + R, m + nr Gaasi soojusmahtuvuse molekulaarne alus Temperatuuril T on üheaatomilise ideaalgaasi siseenergia 3/2 RT Temperatuuri muutudes T võrra muutub siseenergia: 3 U = R T C, m = R ja CP, m = R 2 2 Molekulaarse gaasi korral: C C, m, m 5 = R (lineaarsed molekulid) 2 = 3R (mitteline aarsed molekulid) Faasiülemineku entalpia Kuna aine üleminekul ühest faasist teise aine ise ei muutu, on sellised protsessid energia seisukohast lihtsaimad vaadelda. Kuna aine üleminek ühest faasist teise toimub enamasti konstantsel rõhul, on selliste protsesside soojusülekandeid hea iseloomustada entalpiamuutude kaudu. 10
11 Aurustumine ja kondenseerumine Aine molaarsete entalpiate vahe gaasi- ja vedelas faasis annab aurustumisentalpia: H (aur) = H m (g) H m (v) = - H (kondens) Kuna aurustumisega kaasneb molekulide üksteisest lahku viimine, tuleb selleks kulutada energiat ja aurustumisentalpiad on positiivsed. Aurustumisentalpia sõltub temperatuurist. Sulamine ja tahkumine Aine molaarsete entalpiate vahe vedelas ja tahkes faasis annab sulamisentalpia: H (sul) = H m (v) H m (t) = - H (tahk) Ka sulamisentalpiad on positiivsed. Sublimatsioon on aine otsene üleminek tahkest faasist gaasifaasi. Sublimatsioonientalpia: H (sub) = H m (g) H m (t) = H (aur) + H (sul) Soojendamiskõverad Soojendamiskõver kirjeldab graafiliselt aine (proovi) temperatuuri muutust, sõltuvalt talle antud soojuse hulgast. Soojendamiskõvera kuju sõltub: aine soojusmahtuvusest; toimuvatest faasiüleminekuprotsessidest, kusjuures faasiülemineku ajal proovi temperatuur ei muutu. 11
12 Reaktsioonientalpia Keemilise reaktsiooniga kaasneb enamasti ka energia eraldumine või neeldumine. Näiteks metaani täielikul põlemisel eraldub 1 mooli metaani kohta 890 kj soojust. CH 4(g) + 2O 2(g) = CO 2(g) + 2H 2 O (v) H = -890 kj Reaktsioonientalpia H r on sama suur, kuid tema ühikuks on kj/mol. Reaktsioonientalpia Oluline on tähele panna, et mooli kohta tähendab siin tegelikult võrrandis oleva stöhhiomeetriakordaja arvu moolide kohta ehk siis: 1 mooli metaani kulumise kohta; aga samas 2 mooli hapniku kohta! CH 4(g) + 2O 2(g) = CO 2(g) + 2H 2 O (v) H r = -890 kj/mol Seos reaktsioonientalpia ja siseenergiamuudu vahel Reaktsiooni energeetilisi efekte mõõdetakse enamasti pommkalorimeetris, seega konstantsel ruumalal. Samas soovitakse enamasti andmeid avatud nõus (konstantsel rõhul) toimuvate protsesside kohta. Kui reaktsioonis ei osale gaase, on erinevus U ja H vahel väga väike ning U = H 12
13 Seos reaktsioonientalpia ja siseenergiamuudu vahel Kui reaktsiooni käigus moodustub gaasiline produkt, tuleb tema ära mahutamiseks teha tööd. H ja U vahelise seose leidmiseks kasutame siin jälle ideaalgaasi seadust: H = U + P = U + nrt H = U + P = U + nrt n = n lõpp n alg Standardsed reaktsioonientalpiad Reaktsiooni käigus vabanev või neelatav soojus sõltub ka osalevate ainete olekust. CH 4(g) + 2O 2(g) = CO 2(g) + 2H 2 O (g) H = -802 kj CH 4(g) + 2O 2(g) = CO 2(g) + 2H 2 O (v) H = -890 kj Reeglina esitatakse reaktsioonientalpiad nii, et reagendid ja produktid on standardolekus, puhtad ained rõhul 1 bar H rº. Enamasti on temperatuuriks võetud 298,15 K. Hessi seadus Entalpiamuut sõltub süsteemi alg- ja lõppolekust, mitte aga protsessi läbiviimise teest või reaktsiooni vahestaadiumitest! 13
14 Hessi seadus Nii saab arvutada näiteks oktaani mittetäieliku põlemisreaktsiooni: 2C 8 H 18(v) + 17O 2(g) = 16CO (g) + 18H 2 O (v) H 1º =? Arvutada entalpia, lähtudes täieliku põlemise entalpiast: 2C 8 H 18(v) + 25O 2(g) = 16CO 2(g) + 18H 2 O (v) H 2º = kj ja CO põlemisentalpiast: 2CO (g) + O 2(g) = 2CO 2(g) H 3º = -566 kj H 1º = H 2º 8 H 3º = kj Reaktsioonisoojused Kütteväärtuste hindamisel on kasulik kasutada standardseid põlemisentalpiaid H cº, s.o aine täielikule põlemisele (CO 2, H 2 O, N 2 jne) vastavaid reaktsioonientalpiaid. Soojusefekti arvutamisel võib reaktsioonientalpiat vaadelda kui reaktsiooni produkti (või lähteainet). Standardsed tekkeentalpiad õimalikke reaktsioone on palju ja nende reaktsioonientalpiate mõõtmine ning tabuleerimine on kallis. Lihtsam on anda kõigi ainete standardsed tekkeentalpiad ja seejärel nende kaudu arvutada reaktsioonientalpia (aineid on vähem kui reaktsioone). 14
15 Standardsed tekkeentalpiad Standardne tekkeentalpia H º f on defineeritud kui 1 mooli aine tekkimisreaktsiooni entalpia, lähtudes vajalikest elementidest nende kõige stabiilsemates vormides (v.a fosfor lähtutakse valgest fosforist). 2C (gr) + 3H 2(g) + 0,5O 2(g) = C 2 H 5 OH (v) H fº = -277,69 kj Seega on elemendi tekkeentalpia tema kõige stabiilsemas vormis 0. Standardsed tekkeentalpiad Kui ainet elementidest otse sünteesida ei saa, kasutatakse tema põlemisentalpiat ja Hessi seadust. Reaktsioonientalpia saab lihtsalt arvutada: H rº = Σn H fº (saadused) Σn H fº (lähteained) n on reaktsioonivõrrandis vastava aine ees olev stöhhiomeetriakordaja. Born-Haberi tsükkel Ioonilise tahkise tekkeenergia isoleeritud ioonidest arvutasime varem järgmisest valemist: E P z1z2 N Ae = A 4πε d See valem eeldab, et põhilise panuse energiasse annab kuloniline interaktsioon. alemi kontrollimiseks on vaja eksperimendi andmeid
16 Born-Haberi tsükkel Ioonidest koosneva kristalli kristallivõre entalpia H L on kristalli entalpia võrreldes üksteisest lõpmata kaugel paiknevate ioonide molaarse entalpiaga: H L = H m (ioonid, g) H m (tahkis) Kristallivõre entalpia võrdub soojusega, mis on vajalik tahkise aurustamiseks (konstantsel rõhul). Born-Haberi tsükkel Kristallivõre entalpiat ei saa otseselt mõõta, küll saab teda aga arvutada Born-Haberi tsüklist, mis on Hessi seaduse üks rakendusi. Born-Haberi tsükkel kasutab suletud reaktsioonide ringi (lähteained ja produktid on identsed). Kuna siin summaarne entalpiamuut peab olema 0, saab puuduva entalpiamuudu lihtsalt arvutada. Born-Haberi tsükkel Alustame puhaste elementidega. Atomiseerime nad ja viime gaasifaasi: H a = H a1 + H a2 Ioniseerime aatomid: H i = I (1) + E a(2) Laseme neil moodustada tahkise: - H L. Muudame tahkise tagasi elementideks: - H f. H a + H i H L H f = 0 16
17 Sidemeentalpia Reaktsioonientalpiat saab ka ennustada, lähtudes reaktsiooni käigus toimunud sidemete katkemise ja tekkimise entalpiatest. Sideme tugevust näitab sidemeentalpia: H B (X-Y) = [H mº (X, g) + H mº (Y, g)] H mº (X-Y, g) Sidemeentalpia on alati positiivne. Sidemeentalpia Sidemeentalpia sõltub mitte ainult seotud aatomitest, vaid ka nende naabrusest. astav varieeruvus on aga suhteliselt väike. Reeglina antakse tabelites keskmised sidemeentalpiad, mida tähistatakse ka H B. Sidemeentalpiad antakse reeglina gaasifaasi kohta. Reaktsioonientalpia muutus sõltuvalt temperatuurist Nii reagentide kui produktide entalpiad sõltuvad temperatuurist järelikult peaksid ka reaktsioonientalpiad sõltuma temperatuurist. Reaktsioonientalpia muutust sõltuvalt temperatuuri muutusest saab arvutada, lähtudes ainete soojusmahtuvustest C P : H r,2º = H r,1º + C P (T 2 T 1 ) C P = ΣnC P,m (produktid) ΣnC P,m (lähteained) Toodud valemeid tuntakse Kirchhoffi seadusena. 17
CaCO 3(s) --> CaO(s) + CO 2(g) H = kj. Näide
3. KEEMILINE TERMODÜNAAMIKA Keemiline termodünaamika uurib erinevate energiavormide vastastikuseid üleminekuid keemilistes ja füüsikalistes protsessides. 3.1. Soojuslikud muutused keemilistes reaktsioonides
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
PÕLEVAINETE OMADUSED. Andres Talvari
PÕLEVAINETE OMADUSED Andres Talvari Õppevahend on koostatud kõrgkooli õpikute alusel ja mõeldud kasutamiseks SKA Päästekolledzi rakenduskõrgharidusõppe päästeteenistuse erialal õppeaines Põlemiskeemia
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Molekulaarfüüsika - ja termodünaamika alused
Molekulaarfüüsika - ja termodünaamika alused Ettevalmistus kontrolltööks 1. Missugustel väidetel põhineb molekulaarkineetiline teooria? Aine koosneb molekulidest Osakesed on pidevas liikumises Osakestele
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
TÄIENDAVAID TEEMASID KOOLIKEEMIALE III
TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE III KEEMILINE TASAKAAL Vello Past Õppevahend TK õpilastele Tartu 007 KEEMILINE TASAKAAL 1. Keemilise tasakaalu mõiste. Tasakaalu mõiste on laialt
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
Eesti koolinoorte 43. keemiaolümpiaad
Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.
KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev
2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass
217/218. õa keemiaolümpiaadi lõppvooru ülesannete lahendused 11. 12. klass 1. a) Vee temperatuur ei muutu. (1) b) A gaasiline, B tahke, C vedel Kõik õiged (2), üks õige (1) c) ja d) Joone õige asukoht
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
F l 12. TRANSPORDINÄHTUSED JA BIOENERGEETIKA ALUSED
1. TRANSPORDINÄHTUSED JA BIOENERGEETIKA ALUSED Eluks on vajalik pidev aine ja energia transport (e suunatud liikumine) läbi biosfääri ja konkreetselt bioloogilise aine. Biosfäär ehk elukeskkond on Maa
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
RF võimendite parameetrid
RF võimendite parameetrid Raadiosageduslike võimendite võimendavaks elemendiks kasutatakse põhiliselt bipolaarvõi väljatransistori. Paraku on transistori võimendus sagedusest sõltuv, transistor on mittelineaarne
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 15. november a.
. a) A mutant E.coli B β galaktosidaas C allolaktoos D laktoos b) N = 2 aatomit Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 0. klass) 5. november 200. a. molekulis 6 prootonit + aatomit
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
TÄIENDAVAID TEEMASID KOOLIKEEMIALE I
TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE I LAHUSED Natalia Nekrassova Õppevahend TK õpilastele Tartu 008 LAHUSED Looduses ja tehnikas lahused omavad suurt tähtsust. Taimed omandavad
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Et mingit probleemi hästi uurida, katsuge enne alustamist sellest põhjalikult aru saada!
EESSÕNA Käesolev juhendmaterjal on abiks eelkõige harjutustundides ning laboratoorsete tööde tegemisel. Esimene peatükk sisaldab põhimõisteid ja mõningaid arvutamisjuhiseid, peatüki lõpus on valik anorgaanilise
Kineetiline ja potentsiaalne energia
Kineetiline ja potentsiaalne energia Koostanud: Janno Puks Kui keha on võimeline tegema tööd, siis ta omab energiat. Seetõttu energiaks nimetatakse keha võimet teha tööd. Keha poolt tehtud töö ongi energia
= 5 + t + 0,1 t 2, x 2
SAATEKS Käesoleva vihikuga lõpeb esimene samm teel füüsikastandardini. Tehtule tagasi vaadates tahaksime jagada oma mõtteid füüsikaõpetajatega, kes seni ilmunud seitsmes vihikus sisalduva õpilasteni viivad.
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
SOOJUSFÜÜSIKA ALUSED. Tehniline termodünaamika Soojusläbikanne ANDRES TALVARI
SOOJUSFÜÜSIKA ALUSED Tehniline termodünaamika Soojusläbikanne ANDRES TALVARI Õppevahend on mõeldud kasutamiseks Sisekaitseakadeemia päästekolledži üliõpilastele õppeaine Soojusfüüsika omandamisel, kuid
2 tähendab siin ühikuid siduvat
5. Eneia 5.1. Eneia ja eneia jäävuse seadus Eneia (k. k. eneos: aktiivne) on füüsika keskne mõiste, mis ühendab kõiki füüsika valdkondi. Tänu Newtoni autoiteedile oli sellel väljapaistval positsioonil
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
=217 kj/mol (1) m Ühe mooli glükoosi sünteesil lihtainetest vabaneb footoneid: Δ H f, glükoos n (glükoos) =5,89 mol (1) E (footon)
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Vanem rühm (11. ja 12. klass) Kohtla-Järve, Kuressaare, Narva, Pärnu, Tallinn ja Tartu 6. oktoober 2018 1. a) 1 p iga õige ühendi eest. (4) b) Võrrandist ():
3. IMPULSS, TÖÖ, ENERGIA
KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse
2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass
2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused 9. 10. klass 1. a) Mg 2+ + 2OH = Mg(OH) 2 (1) b) c(karedus) = 19,25 cm3 0,02000 mol/dm 3 100 cm 3 = 0,003850 M c(karedus) = 3,850 mmol/dm
Temperatuur ja soojus. Temperatuuri mõõtmise meetodid. I. Bichele, 2016
Temperatuur ja soojus. Temperatuuri mõõtmise meetodid. I. Bichele, 016 Soojuseks (korrektselt soojushulgaks) nimetame energia hulka, mis on keha poolt juurde saadud või ära antud soojusvahetuse käigus
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Deformeeruva keskkonna dünaamika
Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla
FÜÜSIKA I PÕHIVARA. Põhivara on mõeldud üliõpilastele kasutamiseks õppeprotsessis aines FÜÜSIKA I. Koostas õppejõud P.Otsnik
FÜÜSIKA I PÕHIVARA Põhivara on mõeldud üliõpilastele kasutamiseks õppeprotsessis aines FÜÜSIKA I. Koostas õppejõud P.Otsnik Tallinn 2003 2 1. SISSEJUHATUS. Mõõtühikud moodustavad ühikute süsteemi. Meie
KATEGOORIATEOORIA. Kevad 2010
KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
p A...p D - gaasiliste ainete A...D osarõhud, atm K p ja K c vahel kehtib seos
LABO RATOO RNE TÖÖ 3 Keemiline tasakaal ja reaktsioonikiirus Keemilised rotsessid võib jagada öörduvateks ja öördumatuteks. Pöördumatud rotsessid kulgevad ühes suunas raktiliselt lõuni. Selliste rotsesside
MEHAANIKA. s t. kogu. kogu. s t
MLR 700 Üldfüüsika süvakursus: Katrin Teras Ettevalmistus Üldfüüsika eksamiks Aine kood: MLR 700 Eksami aeg: 05.0.006 Kell:.00 Ruum: P-5 Konsultatsiooni aeg: 04.0.006 Kell:.00 Ruum: P-5. Ainepunkti mõiste.
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
KATEGOORIATEOORIA. Kevad 2016
KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.
Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud
1. Õppida tundma kalorimeetriliste mõõtmiste põhimõtteid ja kalorimeetri ehitust.
Kaorimeetriised mõõtmised LABORATOORNE TÖÖ NR. 3 KALORIMEETRILISED MÕÕTMISED TÖÖ EESMÄRGID 1. Õppida tundma aorimeetriiste mõõtmiste põhimõtteid ja aorimeetri ehitust. 2. Määrata jää suamissoojus aorimeetriise
I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt?
I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? (Sündmused tekitavad signaale, mida me oma meeleorganitega aistingutena
REAKTSIOONIKINEETIKA
TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE II REAKTSIOONIKINEETIKA Vello Past Õppevahend TK õpilastele Tartu 008 REAKTSIOONIKINEETIKA. Keemilise reatsiooni võrrand, tema võimalused ja
Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist
Loeng 2 Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist P2 - tuleb P1 lahendus T P~Q = { x P(x)~Q(x) = t} = = {x P(x)
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil.
LABORATOORNE TÖÖ NR. 1 STEFAN-BOLTZMANNI SEADUS I TÖÖ EESMÄRGID 1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. TÖÖVAHENDID Infrapunase
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
ORGAANILINE KEEMIA ANDRES TALVARI
ORGAANILINE KEEMIA ANDRES TALVARI Käesolev õppevahend on koostatud mitmete varem väljaantud kõrgkooli õpikute abil ja on mõeldud Sisekaitseakadeemia päästeteenistuse eriala üliõpilastele õppeaine RAKENDUSKEEMIA
8. Faasid ja agregaatolekud.
Soojusõpetus 8a 1 8. Faasid ja agregaatolekud. 8.1. Faasi ja agregaatoleku mõisted. Faas = süsteemi homogeenne ja mehaaniliselt eraldatav osa. Keemiliselt heterogeense süsteemi näide: õli + vesi. Keemiliselt
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
2001/2002 õa keemiaolümpiaadi piirkonnavooru ülesanded 8. klass
2001/2002 õa keemiaolümpiaadi piirkonnavooru ülesanded 8. klass 1. Justus von Liebig sündis 1803. aastal Saksamaal. Koolist visati ta paugutamise pärast välja, mille järel asus tööle apteekri abina. Kui
Deformatsioon ja olekuvõrrandid
Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,
HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G
HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
Molekulid ei esine üksikuna vaid suurearvuliste kogumitena.
2. AGREGAATOLEKUD Intramolekulaarsed jõud - tugevatoimelised jõud aatomite vahel molekulides - keemiline side. Nendega on seotud ainete keemilised omadused Intermolekulaarsed jõud - nõrgad elektrostaatilised
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
2. HULGATEOORIA ELEMENTE
2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.
1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...
Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega
Energiabilanss netoenergiavajadus
Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)
AATOMI EHITUS KEEMILINE SIDE
TALLINNA TEHNIKAÜLIKOOL Keemiainstituut Vambola Kallast AATOMI EHITUS KEEMILINE SIDE Õppevahend Tallinn 1997 ISBN 9789949483112 (pdf) V. Kallast, 1997 TTÜ,1997,300,223 Kr. 12.20 Sisukord Eessõna... 4 I.
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias
ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
Kordamine 2. osa Jõud looduses, tihedus, rõhk, kehad vedelikus ja gaasis. FÜÜSIKA 8. KLASSILE
Kordamine 2. osa Jõud looduses, tihedus, rõhk, kehad vedelikus ja gaasis. FÜÜSIKA 8. KLASSILE AINE TIHEDUS AINE TIHEDUSEKS nimetatakse füüsikalist suurust, mis võrdub keha (ainetüki) massi ja selle keha
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
ISC0100 KÜBERELEKTROONIKA
ISC0100 KÜBERELEKTROONIKA Kevad 2018 Üheksas loeng Martin Jaanus U02-308 (hetkel veel) martin.jaanus@ttu.ee 620 2110, 56 91 31 93 Õppetöö : http://isc.ttu.ee Õppematerjalid : http://isc.ttu.ee/martin Teemad
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
ORGAANILINE KEEMIA I osa
ORGAANILINE KEEMIA I osa (Pildiallikas: http://www.indigo.com/models/gphmodel/molymod-d-glucose.jpg ) 1. SISSEJUHATUS Orgaaniliseks keemiaks nimetatakse keemia haru, mis käsitleb orgaanilisi ühendeid ja
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [4. loeng] 1 Loengu kava Dünaamika Inerts Newtoni I seadus Inertsiaalne taustsüsteem Keha mass, aine
b) Täpne arvutus (aktiivsete kontsentratsioonide kaudu) ph arvutused I tugevad happed ja alused
ph arvutused I tugevad happed ja alused Tugevad happed: HCl, HBr, HI, (NB! HF on nõrk hape) HNO 3, H 2SO 4, H 2SeO 4, HClO 4, HClO 3, HBrO 4, HBrO 3, HMnO 4, H 2MnO 4 Tugevad alused: NaOH, OH, LiOH, Ba(OH)
Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui
Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.
4. TEMPERATUUR Termodünaamiline tasakaal Temperatuuri mõiste Termodünaamika teine seadus
Soojusõpetus 0 Küsimus: kas võiks defineerida kui energiabilansi täienduse: = A + U ja kuulutada ta mittefundamentaalseks füüsikaliseks suuruseks? Termodünaamika esimese seaduse traditsiooniline võrrand
Formaalsete keelte teooria. Mati Pentus
Formaalsete keelte teooria Mati Pentus http://lpcs.math.msu.su/~pentus/ftp/fkt/ 2009 13. november 2009. a. Formaalsete keelte teooria 2 Peatükk 1. Keeled ja grammatikad Definitsioon 1.1. Naturaalarvudeks
Veaarvutus ja määramatus
TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted
Füüsika. Mehaanika alused. Absoluutselt elastne tsentraalpõrge
9.09.017 Füüsika Mehaanika alused Absoluutselt elastne tsentraalpõrge Põrkeks nimetatakse keha liikumisoleku järsku muutust kokkupuutel teise kehaga. Kui seejuures ei teki jääkdeformatsioone, nimetatakse
LOFY Füüsika looduslikus ja tehiskeskkonnas I (3 EAP)
LOFY.01.087 Füüsika looduslikus ja tehiskeskkonnas I (3 EAP) Sissejuhatus... 1 1. Füüsika kui loodusteadus... 2 1.1. Loodus... 2 1.2. Füüsika... 3 1.3. Teaduse meetod... 4 2. Universumiõpetus... 7 3. Liikumine
Käesolevas peatükis tutvustatakse protsesside ahelat biomassist energiakandjani.
Peatükk 04-00 lk 1 04-00: Biomass energia tootmiseks Energia muundamine Nagu selgitatud tekstiosas 01-00-02a, muundati päikese energia fotosünteesi käigus bioenergiaks ja see salvestus energiarikastes
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega
Orgaanilise keemia õpiku küsimuste vastused
rgaanilise keemia õpiku küsimuste vastused 1. SÜSINIKU KEEMIA (LK 24) I osa 3. Tasapinnaline struktuurivalem Ruumiline struktuurivalem C C C C C C 4. a) b) c) 5. a) b) c) C C C C C C C C C C C C C C C
ENERGEETIKA KÕIGE TÄHTSAM. Inimkond, üldisemalt kogu elusloodus,
KÕIGE TÄHTSAM ENERGEETIKA ARVI FREIBERG Maailma asju liigutavat kaks jõudu sugutung ja surmahirm. Ehkki mitte täiesti alusetu väide, pole see kaugeltki kogu tõde. Nii üks kui teine muutuvad oluliseks alles
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [10.loeng] 1 Arvestustöö Arvestustöö sooritamiseks on vaja 50p (kes on kohal käinud piisab 40p) (maksimaalselt