AFINNÉ TRANSFORMÁCIE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "AFINNÉ TRANSFORMÁCIE"

Transcript

1 AFINNÉ TRANSFORMÁCIE Definícia0..Zobrazenie f: R n R m sanazývaafinné,ak zachováva kolinearitu(t.j. priamka sa zobrazí buď na priamku alebo na jeden bod), zachovávadeliacipomer(t.j.akprekolineárnebody A, B, Cplatí C A=λ(B A) prenejaké λ R,potomaj f(c) f(a)=λ(f(b) f(a))). Afinnézobrazenie f: R n R n sanazývatransformácioupriestoru R n,akjeinvertibilné. Tvrdenie0.2.Zobrazenie f: R n R m,(x,...,x n ) (x,..., x m)jeafinné,akexistujútaké konštanty c ij R,žeprevšetkybodyplatí x = c x + +c n x n + c 0 x 2= c 2 x + +c 2n x n + c x m = c mx + +c mn x n + c m0. Pre m=njetakétozobrazenietransformáciou,akdeterminant c ij n i,j= 0..TransformácievR 2 Podľa predchádzajúceho sa každá afinná transformácia dá popísať rovnicami x = c x+ c 2 y+ c 0 y kde = c 2 x+c 22 y+ c 20, c c 2 c 2 c Reálnečísla c ij jednoznačnepopisujútútoafinnútransformáciu. Posunutieovektor(t x, t y )jeafinnátransformácia,možnojupopísaťlineárnymirovnicami x = x+t x y = y+ t y. Škálovanie(v smere súradnicových osí) je popísané rovnicami Ideoškálovaniesostredom(0,0). x = s x x y = s y y, pričom s x, s y 0. Príklad.. Ak by sme chceli popísať transformáciu škálovania so stredom(a, b), ktorý nie je počiatkom súradnicovej sústavy, je možné túto transformáciu získať zložením troch známych: () T ( a, b) posunutieovektor( a, b),ktorýmstredškálovaniaposuniemedozačiatku súradníc, (2) S sx,s y škálovaniespožadovanýmiškálovacímifaktormi s x, s y, (3) T (a,b) posunutienaspäť. Výsledkomjetedatransformácia T (a,b) S sx,s y T ( a, b).jejrovnicesadajúzískaťpostupným dosadzovaním transformovaných súradníc do jednotlivých rovníc, ale pre potreby implementácie je vhodné prepísať rovnice týchto zobrazení pomocou matíc.

2 2 Užitočným sa ukazuje používanie rozšírených súradníc. Bod so súradnicami(a, b) resp. vektor so súradnicami(u, v) budeme reprezentovať 3 maticou a b resp. Potomposunutieovektor(t x, t y )sasazapíše y = 0 t x 0 t y 0 0 škálovanie zas vyzerá nasledovne y = s x s y u v 0 Každá z týchto transformácii je teda jednoznačne popísaná svojou maticou s rozmermi 3 3. Ak vpredchádzajúcompríkladeoznačímematicuposunutiao( a, b)ako M,maticuškálovania ako M 2 amaticuposunutiao(a, b)ako M 3,mámenasledovnýzápis: y =T (a,b) S sx,s y T ( a, b) ( = T (a,b) (S sx,s y (M,. )=T (a,b) (S sx,s y (T ( a, b) ( ))=T (a,b) (M 2 M )=M 3 M 2 M )))= Takževýslednátransformáciaškálovaniasostredom(a, b)jetiežpopísaná3 3maticou,asíce maticou M 3 M 2 M.Vidíme,žeskladaniezobrazenízodpovedánásobeniumatíc. Ďaľšou dôležitou afinnou transformáciou roviny je otočenie okolo bodu(0, 0). Pre odvodenie rovnícsipripomeniemepolárnesúradnicebodu.každýbod Xv R 2 jereprezentovanýdvoma číslami raϕ,kde r 0vyjadrujevzdialenosťboduodzačiatkusúradníc Oaϕ 0,2π)je orientovanýuhol,ktorýzvierapolpriamka OX s kladným smerom x-osi. Medzi kartézskymi a polárnymi súradnicami máme vzťah x=rcosϕ y=rsinϕ. Po otočení o uhol α budú polárne súradnice transformovaného bodu r, ϕ+ α. Teda pre kartézske y r ϕ x Obr.. Kartézske a polárne súradnice bodu súradnice máme x = rcos(ϕ+α)=rcosϕcos α rsin ϕsin α=xcosα ysin α y = rsin(ϕ+α)=rcosϕsin α+rsinϕcosα=xsin α+ycosα.

3 3 Takže dostávame nasledovný maticový zápis otočenia okolo(0, 0) o uhol α: cosα sinα 0 y = sin α cosα 0 x y. 0 0 Spomedzi špeciálnych afinných transformácií si ešte spomeňme zrkadlenie a skosenie. Zrkadlenie je len alternatívne meno pre osovú súmernosť: zrkadlenie podľa osi x je popísané maticou a podobne zrkadlenie podľa osi y maticou Pri každom zrkadlení je potrebné si uvedomiť, že ide o transfomáciu, ktorá mení orientáciu roviny. Keď hovoríme o orientácii roviny, máme na mysli orientáciu objektov v rovine a tiež orientáciu súradnicovej sústavy. Hovoríme, že sústava súradníc je kladne orientovaná, ak kladná y-poloos je otočením kladnej x-poloosi o pravý uhol proti smeru pohybu hodinových ručičiek, v opačnom prípade je súradnicová sústava orientovaná záporne. Ak pripúšťame, že súradnicové osi na seba nemusia byť kolmé, je súradnicová sústava kladne orientovaná, ak je kladná y-poloos otočením x-ovej o uhol v intervale(0, π) proti smeru hodinových ručičiek. Orientáciu ďalej spájame aj s mnohouholníkmi. Vravíme napríklad, že trojuholník ABC je kladne orientovaný, ak jeho vrcholy sú vymenované proti smeru hodinových ručičiek. Podobne orientujeme ostatné mnohouholníky bez samopriesekov. Taktiež hrá orientácia rolu pri meraní a určovaní uhlov. Napríklad pri otáčaní o daný uhol otáčame vždy v smere sústavy súradníc, čiže pri kladnej orientácii je to proti smeru hodinových ručičiek. Tým, že nejaká transformácia mení orientáciu, máme na mysli, že obrazom kladne orientovanej sústavy súradníc je záporne orientovaná súradnicová sústava a naopak. Po prevedení transformácie zvyčajne zavádzame novú súradnicovú sústavu, ktorá má pôvodnú(spravidla kladnú) orientáciu.novésúradnicebodu(x, y )súsúradnicevzhľadomnatútonovúsústavu.avšak treba mať na pamäti, že orientácia objektov v rovine(napr. trojuholníkov) sa zmenila. Nakoniec skosenie v smere x je transformácia, ktorá zachováva y-súradnicu bodu, a x-súradnica sa modifikuje lineárne v závislosti od vzdialenosti od x-osi. Zodpovedajúca matica je s x Podobne máme skosenie v smere osi y popísané maticou 0 0 s y Vo všeobecnosti, každá afinná transformácia roviny sa dá zapísať pomocou 3 3 matice, ktorá má 6 stupňov voľnosti: y = c c 2 c 0 c 2 c 22 c 20 x () y 0 0 Táto matica je regulárna, keďže jej ľavá horná 2 2 podmatica je regulárna. Opačná transformácia jepotompopísanámaticouinverznouk3 3maticivrovnici().

4 O = O E 2 4 Tvrdenie.2.Afinnátransformácia R 2 jeurčenáobrazmitrochnekolineárnychbodov. Teda ak chceme nájsť maticu nešpecifickej afinnej transformácie(čiže nejde o jednoduchú kombináciu posunutí, rotácií a podobne), môžme postupovať aj tak, že si zvolíme tri nekolineárne bodyapopíšemeichobrazy.potomjeužmožnédopočítaťvšetkypotrebnékonštanty c ij. Príklad.3. Nájdime rovnice afinnej transformácie, ktorá domček na obrázku zobrazí na jeho tieň. E 2 = (0,) E = E = (,0) Obr. 2. Afinná transformácia Riešenie.Body OaE nechávatransformáciapevné,bod E 2 sazobrazína E 2sosúradnicami (0.8, 0.5).Bod Oajehoobraznámdávajúlineárnepodmienkynakonštanty c ij : 0 0 = c c 2 c 0 c 2 c 22 c atedadostávame c 0 = c 20 =0.Podobnesido()dosadímesúradnicebodu E ajehoobrazu E azistíme,že c =ac 2 =0.Napokonzosúradnícbodu E 2 ajehoobrazu E 3 máme,že c 2 =0.8ac 22 = 0.5.Výslednámaticahľadanéhozobrazeniaje Dôležitoupodmaticoumaticev()jeľaváhorná2 2podmatica ( ) c c A= 2. c 2 c 22 Zdefinícieužmáme,žedetA 0.Pretútomaticuďalejplatí Tvrdenie.4. Afinná transformácia() mení orientáciu roviny práve vtedy, keď det A < 0. Tvrdenie.5. Afinná transformácia() je euklidovská(zachováva vzdialenosti) práve vtedy, keď AA T = I 2. 2.TransformácievR 3 Podobneakovrovinemámeafinnútransformáciu R 3 popísanúlineárnymirovnicami x c c 2 c 3 c 0 x y z = c 2 c 22 c 23 c 20 y c 3 c 32 c 33 c 30 z, kde c c 2 c 3 (2) c 2 c 22 c 23 c c 32 c Tvrdenie2..Afinnátransformácia R 3 jeúplneurčenáobrazmištyrochnekoplanárnychbodov.

5 Keďsiznovu3 3podmaticu(c ij ) 3 i,j=označímeako A,môžmepopísaťpodobnévlastnosti ako pri transformáciách roviny: Tvrdenie 2.2. Afinná transformácia(2) je euklidovská(zachováva vzdialenosti) práve vtedy, keď AA T = I 3. Tvrdenie 2.3. Afinná transformácia(2) mení orientáciu priestoru práve vtedy, keď det A < 0. Pre nás kladne orientovaný priestor(kladne orientovaná súradnicová sústava) je určený pravidlom pravej ruky: prsty(okrem palca) naznačujú smer otočenia od x-osi k y-osi a palec potom ukazuje smer osi z. Hovoríme tiež o pravotočivej orientácii. V opačnom prípade hovoríme o ľavotočivej alebo zápornej orientácii. Posunutie a škálovanie v priestore je popísané analogickým spôsobom ako v rovine a nemalo by spôsobovať žiadne ťažkosti. Základné zrkadlenia máme v priestore tri, vždy podľa jednej zo súradnicových rovín a tiež by nemalo byť problematické napísať maticu žiadneho z nich. Afinných transformácií skosenia máme v priestore 6 základných druhov. Pri každom si určíme, ktorá zo súradnicových rovín bude pevná vzhľadom na transformáciu, a tiež v smere ktorej osi sa bude skosenie prevádzať. Napíklad, skosenie v smere y-osi s pevnou yz-rovinou je popísané maticou s Pod otáčaním v priestore sa myslí otáčanie okolo zvolenej osi. Navyše os rotácie chápeme ako orientovanú priamku. Vtedy v pravotočivej súradnicovej sústave určíme smer otáčania zase podľa pravidla pravej ruky: nech palec ukazuje orientáciu osi rotácie, potom ostatné prsty naznačujú smer rotácie. Šeciálne v prípade rotácií okolo súradnicových osí si toto pravidlo môžme interpretovať nasledovne: pri rotácii okolo z-osi sa otáča v smere od x-osi ku y, pri rotácii okolo x-osisaotáčavsmereod y-osiku zanapokonprirotáciiokolo y-osisaotáčavsmereod z-osi ku x. Uveďmesiterazrovniceotáčaniaokoloosi zouhol α.aksaobmedzímeibana xy-rovinu prípadne ktorúkoľvek inú rovinu s ňou rovnobežnú, ide vlastne o otáčanie v rovine okolo počiatku (0, 0). Teda máme rovnice x y z = cosα sin α 0 0 sinα cosα Otáčanieokolozvyšnýchdvochosíosídostanemecyklickouzámenousúradníc x y z x. Napríklad matica rotácie okolo osi x je cosα sinα 0 0 sin α cosα Skúsme teraz nájsť maticu rotácie okolo lubovoľnej osi, ktorá nech zatiaľ prechádza začiatkom súradníc. Podobne ako pri transformáciách roviny sa pokúsime previesť úlohu na známy prípad. Skúsime najprv aplikovať na scénu známe otočenia tak, aby os rotácie splynula s niektorou z osí. Keďže podľa predpokladu os rotácie prechádza bodom(0, 0, 0), je os jednoznačne určená ďaľšímsvojímbodom X=(x, y, z).nechtentobod(presnejšiepolohovývektortohotobodu) určujeajorientáciuosi.nájdemesinajprvsférickésúradnice r, ϕ, ψbodu X.Mámevzťahmedzi x y z 5

6 6 z ϕ r X x ψ y sférickými a kartézskymi súradicami: Obr. 3. Sférické súradnice bodu x = rsin ϕcosψ y = rsin ϕsin ψ z = rcosϕ. Potom otáčanie okolo osi OX o uhol α môžme zložiť napríklad z nasledovných transformácií: ()otočenieouhol ψokoloosi z(osrotáciesadostanedoroviny xy), (2)otočenieouhol ϕokoloosi y(osrotáciesplyniesosou z), (3)otočenieouhol αokoloosi z, (4)otočenieouhol ϕokoloosi y, (5)otočenieouhol ψokoloosi z, Nakoniec, nech osou rotácie je ľubovoľná orientovaná priamka. Túto úlohu zase zredukujeme na postupnosť už známych transformácií tak, že posunieme os rotácie, aby prechádzala počiatkom súradníc. Nech P je bod ležiaci na osi otáčania. Potrebné transformácie sú ()posunutieoo P, (2)otočenieouhol αokoloosi,ktoráprechádzabodom O=(0,0,0), (3)posunutieoP O. KAGDM FMFI UK Bratislava address: jana.pilnikova@fmph.uniba.sk

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Súradnicová sústava (karteziánska)

Súradnicová sústava (karteziánska) Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

G. Monoszová, Analytická geometria 2 - Kapitola III

G. Monoszová, Analytická geometria 2 - Kapitola III text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

8. TRANSFORMÁCIA SÚRADNÍC

8. TRANSFORMÁCIA SÚRADNÍC 8. TRANSFORMÁCIA SÚRADNÍC V geodetickej pra je častou úlohou zmeniť súradnice bodov bez toho aby sa zmenila ich poloha na zemskom povrchu. Zmenu súradníc označujeme pojmom transformácia. Transformácia

Διαβάστε περισσότερα

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a ) Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Dostredivá sila. Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila

Dostredivá sila. Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila Dostredivá sila Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila kde r je polomer krivosti trajektórie. Keby nepôsobila dostredivá sila, častica

Διαβάστε περισσότερα

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc

Διαβάστε περισσότερα

Matematika 2. Lineárna algebra. (ver )

Matematika 2. Lineárna algebra. (ver ) Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok

Διαβάστε περισσότερα

Zhodné zobrazenia (izometria)

Zhodné zobrazenia (izometria) Zobrazenie A, B R R (zobrazenie v rovine) usporiadaná dvojica bodov dva body v danom poradí (záleží na poradí) zápis: [a; b] alebo (a; b) karteziánsky (kartézsky) súčin množín množina všetkých usporiadaných

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

DESKRIPTÍVNA GEOMETRIA

DESKRIPTÍVNA GEOMETRIA EKRIÍN GEERI meódy zobrzovni priesorových úvrov do roviny (premieni) mericé polohové vzťhy priesorových úvrov riešené v rovine bsh predmeu G Zobrzovcie meódy: olohové mericé úlohy: ongeov projeci Rezy

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

Quaternióny Pomocný učebný text (len pre interné použitie)

Quaternióny Pomocný učebný text (len pre interné použitie) Spracoval: Štefan Maďar Editor: Branislav Sobota Pomocný učebný text (len pre interné použitie) 998-0 Obsah. ÚVOD.... SÚRADNICOVÝ SYSTÉM.... SMER ROTÁCIE....3 EULEROVE UHLY.... GEOMETRICKÉ TRANSFORMÁCIE....

Διαβάστε περισσότερα

, ktorú nazveme afinnou súradnicovou sústavou. Pomocou tejto trojice priradíme každému bodu X roviny E 2 jeho polohový vektor

, ktorú nazveme afinnou súradnicovou sústavou. Pomocou tejto trojice priradíme každému bodu X roviny E 2 jeho polohový vektor GEMETRICKÉ TRANSFRMÁCIE a TRIEDY SÚRADNICE BDU Základným útvarom gomtri j bod a prto j dôlžité opísať tnto gomtrický útvar pomocou čísl Najskôr sa budm aobrať rovinnou gomtriou a tda budm hovoriť o rovinnj

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky Dua lne c ı sla Bakala rska pra ca S tudijny odbor: Matematika Vedu ci bakala rskej pra ce: RNDr. Pavel Chalmoviansky, PhD.

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Goniometrické funkcie

Goniometrické funkcie Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej

Διαβάστε περισσότερα

ZBIERKA ÚLOH Z GEOMETRIE - ZOBRAZENIA

ZBIERKA ÚLOH Z GEOMETRIE - ZOBRAZENIA ZBIERKA ÚLOH Z GEOMETRIE - ZOBRAZENIA 1. Afinné zobrazenia Definícia. Zobrazenie F z afinného priestoru A n do A m, ktoré zobrazuje každú trojicu nekolineárnych bodov do jedného bodu alebo do trojice bodov,

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Smernicový tvar rovnice priamky

Smernicový tvar rovnice priamky VoAg1-T List 1 Smernicový tvar rovnice priamk RNDr.Viera Vodičková U: Medzi prevratné objav analtickej geometrie patrí to, že s priamkou nenarábame ako s geometrickým objektom, ale popisujeme ju rovnicou.

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie. Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny

Διαβάστε περισσότερα

Pri stredovom premietaní je dôležitý stred premietania S : bod, z ktorého premietame do priemetne ε a stred S neleží v priemetni ε

Pri stredovom premietaní je dôležitý stred premietania S : bod, z ktorého premietame do priemetne ε a stred S neleží v priemetni ε PEMIETANIE Proce vialiácie útvarov U trojromerného prietor v dvojromernej rovine ( výkre, monitor počítača, tlačiareň ) a íka potpnoťo operácií. K obraovani útvarov vyžívame premietanie tredové rovnobežné

Διαβάστε περισσότερα

Úvod do lineárnej algebry

Úvod do lineárnej algebry Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.

Διαβάστε περισσότερα

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2 Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

3 Kinematika hmotného bodu

3 Kinematika hmotného bodu 29 3 Kinematika hmotného bodu Pohyb vo všeobecnosti zahŕňa všetky zmeny a procesy, ktoré prebiehajú vo vesmíre. Je neoddeliteľnou vlastnosťou hmoty. Časť fyziky, ktorá sa zaoberá popisom pohybu telies,

Διαβάστε περισσότερα

Ústav aplikovanej mechaniky a mechatroniky, SjF STU Bratislava;

Ústav aplikovanej mechaniky a mechatroniky, SjF STU Bratislava; Ústav aplikovanej mechaniky a mechatroniky, SjF SU Bratislava; wwwatcsjfstubask echnická mechanika 0 3 BEK, 0 0 BDS pre bakalárov, zimný sem docingfrantišek Palčák, PhD, ÚAMM 000 7 Cvičenie: Dynamika všeobecného

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

2 Základy vektorového počtu

2 Základy vektorového počtu 21 2 Základy vektorového počtu Fyzikálne veličíny sa dajú rozdeliť do dvoch skupín. Prvú skupinu fyzikálnych veličín tvoria tie, pre ktorých jednoznačné určenie postačí poznať veľkosť danej fyzikálnej

Διαβάστε περισσότερα

KATALÓG KRUHOVÉ POTRUBIE

KATALÓG KRUHOVÉ POTRUBIE H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave,

doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave, -550 Technická mechanika I 9. rednáška Kinematika bodu, translačný, rotačný a všeobecný pohyb telesa Ciele v kinematike. remiestňovanie súradnicovej sústavy po priestorovej krivke. riamočiary pohyb bodu.

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Vektorové a skalárne polia

Vektorové a skalárne polia Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Východ a západ Slnka

Východ a západ Slnka Východ a západ Slnka Daniel Reitzner februára 27 Je všeobecne známe, že v našich zemepisných šírkach dĺžka dňa závisí od ročného obdobia Treba však o čosi viac pozornosti na to, aby si človek všimol, že

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Riešenie sústavy lineárnych rovníc. Priame metódy.

Riešenie sústavy lineárnych rovníc. Priame metódy. Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16 Obsah 1 Základy 2 Systémy

Διαβάστε περισσότερα

Matematický model robota s diferenciálnym kolesovým podvozkom

Matematický model robota s diferenciálnym kolesovým podvozkom Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom

Διαβάστε περισσότερα

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky PageRank algoritmus Bakalárska práca Študijný program: Informatika Študijný odbor: 9.2.1 Informatika Školiace pracovisko: Katedra

Διαβάστε περισσότερα

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n

Διαβάστε περισσότερα

Spriahnute oscilatory

Spriahnute oscilatory Spriahnute oscilatory Juraj Tekel 1 Tema spriahnutych oscilatorov je na strednej skole vacsinou vynechana. Je vsak velmi zaujimava a velmi dolezita. Ide o situaciu, ked sa sustava sklada z viacerych telies,

Διαβάστε περισσότερα

Výpočet. grafický návrh

Výpočet. grafický návrh Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado

Διαβάστε περισσότερα

SK skmo.sk. 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B

SK skmo.sk. 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B SK MATEMATICKÁOLYMPIÁDA skmo.sk 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B 1. Každému vrcholu pravidelného 66-uholníka priradíme jedno z čísel 1 alebo 1. Ku každej

Διαβάστε περισσότερα

ZOBRAZOVACIE METÓDY 2. I Mongeovo zobrazenie

ZOBRAZOVACIE METÓDY 2. I Mongeovo zobrazenie ZOBRAZOVACIE METÓDY 2 (prvý ročník, letný semester; prednáška 2 hod., cvičenie 2 hod. / týž.; 6 kreditov, 40 / 60) Program druhého semestra (Zobrazovacie metódy 2): I Mongeovo zobrazenie; II Perspektívna

Διαβάστε περισσότερα

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc MATEMATIKA I Doc. RNDr. Michal Šabo, CSc 2 Obsah Predhovor 5 2 VYBRANÉ STATE Z ALGEBRY 2. Úvod................................... 2.2 Reálne n-rozmerné vektory...................... 2.3 Matice..................................

Διαβάστε περισσότερα

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA Martin Samuelčík BRATISLAVA 2004 UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Διαβάστε περισσότερα

Obyčajné diferenciálne rovnice

Obyčajné diferenciálne rovnice (ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú

Διαβάστε περισσότερα

Diferenciálne rovnice

Diferenciálne rovnice Diferenciálne rovnice Juraj Tekel Katedra teoretickej fyziky a didaktiky fyziky FMFI UK Mlynska Dolina 842 48 Bratislava juraj(a)tekel(b)gmail(c)com http://fks.sk/~juro/phys_teaching.html Aktualizované

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke

Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke 23.5.26 Príklad č. Riešte sústavu Bx = r (B r) 2 3 4 2 3 4 6 8 8 2 (B r) = 6 9 2 6 3 9 2 3 4 2 3 2

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

Stereometria Základné stereometrické pojmy Základné pojmy: Základné vzťahy: (incidencie) Veta 1: Def: Veta 2:

Stereometria Základné stereometrické pojmy Základné pojmy: Základné vzťahy: (incidencie) Veta 1: Def: Veta 2: Stereometria 1. K úlohe č.1 v príklade vidíte sklenenú kocku, na ktorej je natiahnutý drôt. Vedľa vidíte 3 pohľady na túto kocku zhora, spredu a z pravého boku. Pre ďalšie kocky nakreslite takéto 3 pohľady.

Διαβάστε περισσότερα

ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol

ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα