|
|
- Ἄλκανδρος Μιχαηλίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΝΑΛΥΤΙΚΟΣ ΣΧΟΛΙΑΣΜΟΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΘΕΜΑ Α Α1. Αποτελεί βασικό θεώρημα από το 2ο Κεφάλαιο, απόδειξη με χρήση του Θ.Μ.Τ. του Διαφορικού λογισμού (άμεση αναφορά στο σχολικό βιβλίο). Α2. α. Ζητείται να χαρακτηριστεί πρόταση Αληθής ή Ψευδής (ανάλογα ερωτήματα έχουμε στις ερωτήσεις κατανόησης όλων των κεφαλαίων (περίπτωση Ι) με την ίδια διατύπωση. β. Ζητείται να αιτιολογηθεί πρόταση (ανάλογα ερωτήματα έχουμε στις ερωτήσεις κατανόησης όλων των κεφαλαίων (περίπτωση Ι) με την ίδια διατύπωση. Δηλαδή αν η πρόταση είναι αληθής, να αποδειχθεί και αν η πρόταση είναι Ψευδής, να δοθεί αντιπαράδειγμα (αυτό είναι το συνηθέστερο εργαλείο για να χαρακτηρίσουμε μία πρόταση ως Ψευδή). Για την περίπτωση άλλης αιτιολόγησης γράφω παρακάτω στον σχολιασμό. Α3. Ορισμός Βασικής έννοιας (από το 1ο Κεφάλαιο). Α4. Σωστό-Λάθος α) Βασική ιδιότητα ορίων (1ο Κεφάλαιο-άμεση αναφορά στο σχολικό βιβλίο). β) Βασική ιδιότητα της σύνθεσης (1ο Κεφάλαιο άμεσα αναφορά στο σχολικό βιβλίο). γ) Χαρακτηριστική σχέση μεταξύ παραγώγου, ακροτάτων και ριζών της f (2ο Κεφάλαιο έμμεση αναφορά στο σχολικό βιβλίο). δ) Βασικό όριο (1ο Κεφάλαιο, άμεση αναφορά στο σχολικό βιβλίο). δ) Βασική ιδιότητα συνεχών συναρτήσεων (1ο Κεφάλαιο, άμεση αναφορά στο σχολικό βιβλίο). Κατανομή Κεφαλαίων-Μονάδων 1ο Κεφάλαιο: 4 ερωτήσεις 2ο Κεφάλαιο: 1 ερώτηση: 3ο Κεφάλαιο: Καμία ερώτηση
2 Επομένως, το 1ο θέμα περιέχει ερωτήσεις θεωρίας από τα Κεφάλαια 1ο και 2ο με κατανομή μονάδων στις 12/25 από το 1ο κεφάλαιο (δηλαδή ποσοστό περίπου 50% και στις 13/25 από το 2ο κεφάλαιο (δηλαδή ποσοστό περίπου 50%) και άρα ισοκατανομή των μονάδων στα 2 πρώτα κεφάλαια. Και οι 25 μονάδες είναι αναφορές στο σχολικό βιβλίο. Παρατήρηση-. Στην περίπτωση του αντιπαραδείγματος στο ερώτημα Α2β γνωστές συναρτήσεις (που δεν απαιτούν απόδειξη) είναι όσα παραδείγματα υπάρχουν στο σχολικό βιβλίο και είναι εντός εξεταστέας ύλης, δηλαδή η συνάρτηση f ( x) x ή οποιαδήποτε συνάρτηση της εφαρμογής της σελίδας 218 (παλαιά έκδοση). Οι συναρτήσεις f ( x) f ( x) x και x είναι στο σχολικό βιβλίο αλλά εκτός εξεταστέας ύλης (σελ. 215). Επίσης, στη σελίδα 261 (παλαιά έκδοση). δίνεται κλαδική συνάρτηση f ( x) 3 x, x 1 η x 2, x 1 2 οποία είναι συνεχής στο σημείο x0 1 αλλά δεν είναι παραγωγίσιμη στο σημείο αυτό. Τέλος, στον ορισμό της παραγώγου (σελ. 214) ακολουθεί το παράδειγμα της δεύτερης κλαδικής συνάρτησης 3 x, x 1 f ( x) η οποία δεν είναι παραγωγίσιμη στο 0 (είναι 5 x, x 1 αποδεδειγμένο) αλλά είναι συνεχής (πρέπει να αποδειχθεί). Στην "άλλη αιτιολόγηση" δεν μπορεί να συμπεριληφθεί γραφική παράσταση συνάρτησης χωρίς να δοθεί ο τύπος της συνάρτησης, αφού στο σχολικό βιβλίο δεν γίνεται λόγος για την έννοια των γωνιακών σημείων. Να θυμίσουμε ότι η υποπαράγραφος "κατακόρυφη εφαπτομένη" στη σελίδα 215 (παλαιά έκδοση) δεν συμπεριλαμβάνεται στην διδακτέα-εξεταστέα ύλη του μαθήματος για το τρέχον σχολικό έτος Μπορεί να δοθεί ο τύπος και η γραφική παράσταση της συνάρτησης όπου θα αιτιολογείται η συνέχεια και η μη παραγωγισιμότητα με την εποπτική χρήση των ορισμών (δύσκολο σημείο-«ημιεφαπτομένες»). Η «άλλη αιτιολόγηση" με χρήση των ορισμών δεν μπορεί να γίνει με την "εικασία" ότι το όριο του ορισμού της παραγώγου σε κάποιες περιπτώσεις υπάρχει και άλλοτε δεν υπάρχει, αφού υπάρχει η συνθήκη της συνέχειας της f στο σημείο xo (δηλαδή υπάρχει δέσμευση-προϋπόθεση) και δεν μπορεί να χαρακτηριστεί «επαρκής επιστημονική τεκμηρίωση». Ωστόσο θα μπορούσε να τύχει αναλογικής μοριοδότησης.. Επομένως, μπορεί να δοθεί (αντί) -παράδειγμα και αντί την απόδειξη της συνέχειας σε ένα σημείο και της μη παραγωγισιμότητας στο ίδιο σημείο να δοθεί γραφική παράσταση με γνωστό τον τύπο της συνάρτησης.
3 Τέλος, να σημειώσουμε ότι το ερώτημα Δ1 των συγκεκριμένων θεμάτων αποτελεί ένα αντί-παράδειγμα συνεχούς συνάρτησης στο x0 0 και μη παραγωγίσιμης στο x0 0 (αφού αποδειχθεί). ΘΕΜΑ Β Β1. Aντίστοιχες ασκήσεις 10,11 ομάδας Α στη σελίδα 146 και 7,8 στη σελίδα 148 του σχολικού βιβλίου (Παλαιά έκδοση). Επίσης η συνάρτηση f(x)=lnx είναι αυτή της εφαρμογής της σελίδας 143 (με ζητούμενο την σύνθεση) και η g(x) αυτή της σελίδας σελίδας 143 (Παλαιά έκδοση). καθώς και της άσκησης 8 της σελίδας (όπου μπορεί να μετατραπεί ως ζητούμενο και η σύνθεσή τους). Β2.Αντίστοιχες ασκήσεις αποτελούν όλες οι περιπτώσεις που η f είναι "1-1" (και άρα έχουν αντίστροφη συνάρτηση) της άσκησης 2 της ομάδας Α στη σελίδα 156 και η εφαρμογή στη σελίδα 155 του σχολικού βιβλίου (Παλαιά έκδοση). Επίσης πρόκειται ουσιαστικά για την αντίστροφη της άσκησης 2 ερώτημα vii (Παλαιά έκδοση)., όπου η ζητούμενη αντίστροφη είναι αυτή που δίνεται (χωρίς -1 στον αριθμητή). Β3. Στην πραγματικότητα αν μελετήσουμε ως προς τη μονοτονία, ακρότατα, καμπή όλες τις περιπτώσεις των υποερωτημάτων της άσκησης 2 της σελίδας 156 συμπεριλαμβάνεται και η περίπτωσή μας. Άλλωστε θα μπορούσε να αποδειχθεί το «1-1» με τη βοήθεια της μονοτονίας. (Η διδασκαλία δηλαδή πρέπει να ανατρέχει και πίσω με νέες γνώσεις). Β4. Ανάλογες ασκήσεις-εφαρμογές η εφαρμογή 1 στη σελίδα 283 του σχολικού βιβλίου (ασύμπτωτες) και η εφαρμογή 2 στη σελίδα 284 του σχολικού βιβλίου (Παλαιά έκδοση).. Για τη γραφική παράσταση όλες οι ασκήσεις στη σελίδα 290 καθώς και η άσκηση 6 ι) στη σελίδα 292 του σχολικού βιβλίου (μελέτη μονοτονίας, ακροτάτων, κυρτότητας και σημείων καμπής).επίσης σχετική για τα ερωτήματα Β3 και Β4 αποτελεί η εφαρμογή 2 στη σελίδα 289 (παλαιά έκδοση). Το θέμα είναι λογικό, δεν περιέχει τεχνάσματα και εξετάζει βασικές γνώσεις και έννοιες της ανάλυσης. Είναι χρονοβόρο με αρκετές πράξεις, ίσως περισσότερο από ότι του αντιστοιχεί ως Β θέμα.
4 Αποτελεί σαφώς θέμα που αντιστοιχεί στο πλαίσιο διδασκαλίας του μαθήματος και στις ασκήσεις που υπάρχουν στο σχολικό βιβλίο. Κατανομή μονάδων 1 ο Κεφάλαιο: Β1+Β2=11 2 ο Κεφάλαιο: Β3+Β4=14 ΘΕΜΑ Γ Γ1. Ασκήσεις με εφαπτομένες (7, 8, 9, 10 και 11 της ομάδας Α και 1, 2, 3, 4, 10 και 11 της Β ομάδας στη σελίδα 239 του σχολικού βιβλίου σε συνδυασμό με τη μοναδικότητα των ριζών μιας εξίσωσης (ασκήσεις 5, 6 της ομάδας Α και στη σελίδα 256 και 5, 6 της ομάδας Β στη σελίδα 257 του σχολικού βιβλίου). Σχολιαμός Το θέμα χαρακτηρίζεται απαιτητικό. Γ2. Παρόμοιο με την εφαρμογή του σχολικού βιβλίου σελίδα 227. Επίσης παρόμοιο με την άσκηση 8 του σχολικού βιβλίου σελίδα 351 (Παλαιά έκδοση). Το ερώτημα να σχεδιάσετε, ήταν βοηθητικό (αφού αφορά βασικές συναρτήσεις) άρα δεν μιλάμε για γραφική παράσταση (ας σκεφτούμε, τι θα γινόταν, αν δεν το έδινε). Το θέμα χαρακτηρίζεται λογικό. Γ3. Αποτελεί συνδυαστικό θέμα της εύρεσης ορίου σε συνδυασμό με την κυρτότητα. Μπορούσε όμως να βρεθεί και χωρίς κυρτότητα. Το θέμα χαρακτηρίζεται απαιτητικό όμως στα πλαίσια διδασκαλίας του μαθήματος. Γ4. Η πληθώρα των τρόπων αντιμετώπισης καθώς και η οδηγία που περιλαμβάνεται στις οδηγίες διδασκαλίας και διαχείρισης της ύλης για το τρέχον σχολικό έτος που αφορά στην ολοκλήρωση ανισώσεων είναι όπλα για την επιτυχή λύση του ζητήματος. Επίσης η πληθώρα των τρόπων αντιμετώπισης του συγκεκριμένου ζητήματος αυτονομούσε το ερώτημα από
5 ταυπόλοιπα ερωτήματα. Σχετικά όσα ζητούνται στην άσκηση 10 της σελίδας 352. Το θέμα χαρακτηρίζεται λογικό για τη θέση του ως υποερώτημα στο Γ θέμα. Κατανομή μονάδων: Από όλα τα κεφάλαια ΘΕΜΑ Δ Δ1. Ο πρώτος κλάδος είναι ακριβώς ίδιος με την συνάρτηση της άσκησης 9 ii) του σχολικού βιβλίου, σελίδα 240. Η εξέταση της συνέχειας και της παραγωγισιμότητας σε δίκλαδη συνάρτηση είναι συνήθης διαδικασία (ασκήσεις από το σχολικό βιβλίο ). Η συνέχεια και η παραγωγισιμότητα της δοθείσας συνάρτησης στο 0 είναι σχετικά απλή. Ωστόσο η τεχνική δυσκολία στις πράξεις δημιουργεί επιπλέον απαιτήσεις. Το θέμα χαρακτηρίζεται απαιτητικό Δ2. Δεν απαιτούσε τη λύση ανίσωσης ημχ+συνχ><0 υποχρεωτικά αλλά (κυρίως) την εύρεση του προσήμου της παραγώγου δηλαδή της συνάρτησης ημχ+συνχ. Η επίλυση της εξίσωσης ημχ+συνχ=0 είναι η άσκηση 9 ιv) του βιβλίου στη σελίδα 199. Η συγκεκριμένη εξίσωση-ανίσωση αντιστοιχεί στο σχόλιο της παραγράφου 1.8. και στο παράδειγμα της σελίδας 193 του σχολικού βιβλίου (παλαιά έκδοση).επίσης το ίδιο περίπου πρόσημο και εξίσωση παρουσιάζεται στην εφαρμογή 1 της σελίδας του σχολικού βιβλίου παλαιά έκδοση (Θεώρημα Bolzano). Το θέμα χαρακτηρίζεται λογικό για τη θέση του στο Δ θέμα. Δ3. Ερώτημα εύρεσης εμβαδού (κλασικό) μεταξύ των γραφημάτων δύο συναρτήσεων με έλεγχο του προσήμου της ολοκληρωτέας συνάρτησης. Είναι, θεωρητικά, η περίπτωση της σελίδας 345 σε συνδυασμό με το παράδειγμα της σελίδας 346 (παλαιά έκδοση). Ασκήσεις με ανάλογα ερωτήματα είναι οι ασκήσεις των σελίδων 350 και 351 του σχολικού βιβλίου (με τη γενικότερη
6 έννοια εύρεσης εμβαδού με έλεγχο προσήμου). Το ερώτημα της εύρεσης του εμβαδού επαναλαμβάνεται, για να εφαρμοστεί η παραγοντική ολοκλήρωση. Το θέμα χαρακτηρίζεται λογικό για τη θέση του στο Δ θέμα. Δ4. Δεν υπάρχει αντίστοιχο-ανάλογο ερώτημα στο σχολικό βιβλίο. Απαιτεί τεχνική ικανότητα. Θέμα του διαχωρίζει τον πραγματικά άριστο να μαθητή να φτάσει (αν προλάβει) στο 20.Πρέπει να υπάρχει πάντα ένα ερώτημα με τέτοια χαρακτηριστικά ως απόληξη του 4 ου θέματος. Το θέμα χαρακτηρίζεται απαιτητικό. Κατανομή μονάδων: Από όλα τα κεφάλαια Παρατηρήσεις-Σχόλια 1.Τα θέματα ως προς την αρχή της πληρότητας της εξεταστέας ύλης. Η εξεταστέα ύλη για το σχολικό έτος αποτελείται από 20 (8+10+2) «τυπικές» ενότητες (με εξαιρέσεις σε ορισμένες υποπαραγράφους) ενότητες κατανεμημένες σε 3 κεφάλαια. Τα θέματα που τέθηκαν στις φετινές Πανελλαδικές Εξετάσεις καλύπτουν «τυπικά», σε διαφορετικό βαθμό κατά περίπτωση, άμεσα-έμμεσα τις 19 (ως παράγραφος μόνο η 2.4 δεν εξετάστηκε «ρυθμός μεταβολής»). Λέμε «τυπικά» διότι τμήματα των παραπάνω ενοτήτων (όπως το Θ.Μ.Τ. του διαφορικού Λογισμού, Θεώρημα του Rolle (To Θεώρημα Bolzano εξετάστηκε «έμμεσα» στο ερώτημα Δ2. Δεν εξετάστηκαν τα λεγόμενα «υπαρξιακά θεωρήματα» αν και το ένα (Θ.Μ.Τ.) εξετάστηκε στην θεωρία, όπως μπορεί και να εξεταστούν σε άλλη περίοδο (Δεν είναι πάντα εύκολο αλλά κυρίως δεν είναι πάντα απαραίτητο να εξετάζονται κάθε έτος τα ίδια). Για πολλά χρόνια εξετάζονταν μονότονα τα Θεωρήματα ύπαρξης σε σημείο που να αναπτυχθεί μαι «ειδική μεθοδολογία» αντιμεώσπισης τέτοιων ζητημάτων (ενίοτε ευφάνταστων) χωρίς την ουσιαστική κατανόησή των εννοιών. Επομένως καλύπτεται ποσοστό 80% (με συνολικές αναφορές) της εξεταστέας ύλης όπως αυτή ορίστηκε από την φετινή εγκύκλιο. Προφανώς το ευκταίο είναι να καλύπτεται ολόκληρη η εξεταστέα ύλη χωρίς αυτό να είναι απαραίτητος παράγοντος για την αξιόπιστη και έγκυρη αξιολόγηση του μαθήματος (αυτό σε άλλες χώρες επιτυγχάνεται με άλλο «τ υπο εξέτασης» αλλά εδώ μιλάμε για θέματα ανάπτυξης και μόνο). 2.Τα θέματα ως προς την κάλυψη των διδακτικών στόχων. Οι διδακτικοί στόχοι επί της ουσίας περιγράφονται και αναλύονται στις οδηγίες διδασκαλίας και διαχείρισης της διδακτέας ύλης όπως αυτή προσδιορίζεται από το Ι.Ε.Π. καθώς και στα Α.Π.Σ. του μαθήματος.επομένως αν τα θέματα τούτα υποστηρίζουν το μεγαλύτερο μέρος μέρος των στόχων, τότε είναι στο πλαίσιο του «ορθολοσισμού». Επίσης πρέπει να
7 αποτυπώνουν τις οδηγίες ώς προς τον τρόπο της διδασκαλίας (δηλαδή την ύλη,παραδείγματα, εφαρμογές,ασκήσεις και σχόλια του Σχολικού Βιβλίου με επεκτάσεις).η άποψή μου είναι ότι υποστηρίζουν τους στόχους που τίθενται στην περιγραφή των οδηγιών και του Α.Π.Σ.. 3. Τα θέματα ως προς την διαχείριση του διαθέσιμου χρόνου. Από τον μετέπειτα έλεγχο διαπιστώνεται ότι ο διαθέσιμος χρόνος των 3 ωρών είναι οριακά ανεπαρκής (αναθεωρώ την αρχική μου τοποθέτηση για οριακά επαρκής) για την διαπραγμάτευση όλων των θεμάτων και τον συνολικό αριθμό υποερωτημάτων. 5. Τα θέματα ως προς τις αναφορές σε σχολική ύλη άλλων τάξεων. Η εξέταση στα μαθηματικά της Γ Λυκείου προϋποθέτει τη βασική γνώση και των λοιπών τάξεων του Λυκείου και του Γυμνασίου. Αυτό ισχύει παντού διαφορετικά δεν νοηματοδοτείται η αυτόνομη εξέταση αφού κανένα θέμα δεν μπορεί να υποστηριχθεί. Θεωρώ ότι υπήρξαν περιττά ερωτήματα με επαναλαμβανόμενες διαδικασίας αλλά αυτό δεν ακυρώνει την ουσιαστική εξέταση στην ουσία της. Δεν μπορεί να εγκαλείται ο θεματοδότης γιατί μέρος της διαδικασίας απαιτούσε βασική γνώση προηγούμενης τάξης. Αυτό μπορεί να γίνει πάντοτε.σε κάνενα μέρος του κόσμου αυτό δεν θα αποτελούσε σχόλιο *σε πολλές χώρες της Δ. Ευρώπης η εξεταστέα ύλη είναι 3 τουλάχιστον διαδοχικών τάξεων). 4. Ψηφιακό βοήθημα του ΥΠ.Π.Ε.Θ. Το ψηφιακό βοήθημα του ΥΠ.Π.Ε.Θ. είναι συμπληρωματικό διδακτικό υλικό (αναφέρεται εξάλου στην εισαγωγική σελίδα) το οποίο σκοπό έχει να «ασκήσει» τους μαθητές σε θέματα κατανόησης της θεωρίας καθώς και να ασκήσει το μαθητή σε διαδικασίες και μεοδολογική αντιμετώπιση ορισμένων βασικών ζητημάτων.το υλικό αυτό έχει κάποια λάθη, παραλείψεις και δεν είναι ακόμα έτοιμο να αποτελέσει βασικό διδακτικό υλικό.ωστόσο η προσπάθεια που γίνεται είναι σημαντική (και νομίζω ότι πρέπει να συνεχίσει). Υφιστάμενο πλαίσιο (ΠΔ 46/2016) 1. Η βαθμολογική κλίμακα, με βάση την οποία υπολογίζονται οι βαθμοί επίδοσης των μαθητών σε όλα τα μαθήματα, είναι 0 20 και λεκτικώς προσδιορίζεται με τους χαρακτηρισμούς: Κακώς 0 5 Ανεπαρκώς 5,1 9,4 Σχεδόν καλώς 9,5 13 Καλώς 13,1 16 Λίαν καλώς 16,1 18 Άριστα 18, Επιλογή, δομή, και διάρθρωση των θεμάτων
8 Η εξέταση στα Μαθηματικά και Στοιχεία Στατιστικής ως μάθημα Γενικής Παιδείας και στα Μαθηματικά της Ομάδας Προσανατολισμού Θετικών Σπουδών και της Ομάδας Προσανατολισμού Σπουδών Οικονομίας & Πληροφορικής στη Γ τάξη Ημερησίου Γενικού Λυκείου και στη Δ τάξη Εσπερινού Γενικού Λυκείου γίνεται ως εξής: Στους μαθητές δίνονται τέσσερα (4) θέματα από την εξεταστέα ύλη, τα οποία μπορούν να αναλύονται σε υποερωτήματα, με τα οποία ελέγχεται η δυνατότητα αναπαραγωγής γνωστικών στοιχείων, η γνώση εννοιών και ορολογίας και η ικανότητα εκτέλεσης γνωστών αλγορίθμων, η ικανότητα του μαθητή να αναλύει, να συνθέτει και να επεξεργάζεται δημιουργικά ένα δεδομένο υλικό, καθώς και η ικανότητα επιλογής και εφαρμογής κατάλληλης μεθόδου. Tα τέσσερα θέματα που δίνονται στους μαθητές διαρθρώνονται ως εξής: α) Το πρώτο θέμα αποτελείται από ερωτήματα θεωρίας που αφορούν έννοιες, ορισμούς, λήμματα, προτάσεις, θεωρήματα και πορίσματα. Με το θέμα αυτό ελέγχεται η κατανόηση των βασικών εννοιών, των σπουδαιότερων συμπερασμάτων, καθώς και η σημασία τους στην οργάνωση μιας λογικής δομής. β) Tο δεύτερο και το τρίτο θέμα αποτελείται το καθέ να από μία άσκηση που απαιτεί από το μαθητή ικανότητα συνδυασμού και σύνθεσης εννοιών αποδεικτικών ή υπολογιστικών διαδικασιών. Η κάθε άσκηση μπορεί να αναλύεται σε επιμέρους ερωτήματα. γ) Tο τέταρτο θέμα αποτελείται από μία άσκηση ή ένα πρόβλημα που η λύση του απαιτεί από το μαθητή ικανότητες συνδυασμού και σύνθεσης προηγούμενων γνώσεων, αλλά και την ανάληψη πρωτοβουλιών στη διαδικασία επίλυσής του. Tο θέμα αυτό μπορεί να αναλύεται σε επιμέρους ερωτήματα, τα οποία βοηθούν το μαθητή στη λύση. Η βαθμολογία κατανέμεται ανά είκοσι πέντε (25) μονάδες στο καθένα από τα τέσσερα θέματα. 3. Τρόπος εξέτασης των πανελλαδικά εξεταζόμενων μαθημάτων (Y.A. Τα θέματα των πανελλαδικά εξεταζόμενων μαθημάτων λαμβάνονται από την ύλη που ορίζεται ως εξεταστέα για κάθε μάθημα κατά το έτος που γίνονται οι εξετάσεις. Οι ερωτήσεις είναι ανάλογες με εκείνες που υπάρχουν στα σχολικά εγχειρίδια και στις οδηγίες του Ινστιτούτου Εκπαιδευτικής
9 Πολιτικής (Ι.Ε.Π.), διατρέχουν όσο το δυνατόν μεγαλύτερη έκταση της εξεταστέας ύλης, ελέγχουν ευρύ φάσμα διδακτικών στόχων και είναι κλιμακούμενου βαθμού δυσκολίας. Οι υποψήφιοι απαντούν υποχρεωτικά σε όλα τα θέματα. Σε περίπτωση κατά την οποία ένα θέμα αναλύεται σε υποερωτήματα, η βαθμολογία που προβλέπεται για αυτό κατανέμεται ισότιμα στα επιμέρους ερωτήματα, εκτός αν κατά την ανακοίνωση των θεμάτων καθορίζεται διαφορετικός βαθμός για κάθε ένα από αυτά. 4. Θα πρέπει να λάβουμε σοβαρά υπόψη μας ότι με τον Ν. 4327/2015 (ΦΕΚ 50) διαχωρίστηκαν οι απολυτήριες εξετάσεις της Γ τάξης του Ημερησίου Γενικού Λυκείου από τις Πανελλαδικές Εξετάσεις (πριν το 2015 τυπικά, αλλά εν μέρει και ουσιαστικά,οι εξετάσεις ήταν απολυτήριες παρότι οι μαθητές είχαν το δικαίωμα να εξεταστούν μόνο ενδοσχολικά) για την εισαγωγή μαθητών στην Τριτοβάθμια Εκπαίδευση. Αυτό, εκτός των άλλων, αποτελεί "αποδέσμευση" από την παιδαγωγική και ηθική «υποχρέωση» της επιλογής θεμάτων που να "αναταποκρίνονται" στην λήψη απολυτηρίου από το Γενικό Λύκειο και τα θέματα αφορούν αποκλειστικά και μόνο της εισαγωγή υποψηφίων (με απολυτήριο του Γενικού Λυκείου) στην Τριτοβάθμια Εκπαίδευση.. Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών
Ρόδος, 26/04/2017. Αρ. Πρωτ.: 58 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν.
Ρόδος, 26/04/2017 Αρ. Πρωτ.: 58 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100
Διαβάστε περισσότεραΑ1. Οι γραπτές προαγωγικές, απολυτήριες και πτυχιακές εξετάσεις διενεργούνται με την ευθύνη του Διευθυντή και των διδασκόντων σε κάθε ΕΠΑ.Λ.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100 ΡΟΔΟΣ Τηλ. 2241364848 ΣΧΟΛΙΚΟΣ
Διαβάστε περισσότεραΑ1. Οι γραπτές προαγωγικές, απολυτήριες και πτυχιακές εξετάσεις διενεργούνται με την ευθύνη του Διευθυντή και των διδασκόντων σε κάθε ΕΠΑ.Λ.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100 ΡΟΔΟΣ Τηλ. 2241364848 ΣΧΟΛΙΚΟΣ
Διαβάστε περισσότεραΘέμα: «Χαιρετισμός Σχολικής Συμβούλου Μαθηματικών» Αγαπητοί συνάδελφοι,
Πολύγυρος, 11/05/2016 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΧΑΛΚΙΔΙΚΗΣ Ταχ. Διεύθυνση
Διαβάστε περισσότεραΘέμα: «Προαγωγικές και απολυτήριες εξετάσεις στα Μαθηματικά»
Πολύγυρος, 27/04/2017 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΧΑΛΚΙΔΙΚΗΣ Ταχ. Διεύθυνση
Διαβάστε περισσότεραΘέμα: «Προαγωγικές και απολυτήριες εξετάσεις στα Μαθηματικά»
Πολύγυρος, 10/05/2018 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΧΑΛΚΙΔΙΚΗΣ Ταχ. Διεύθυνση
Διαβάστε περισσότεραΓια την εξέταση των Αρχαίων Ελληνικών ως μαθήματος Προσανατολισμού, ισχύουν τα εξής:
Τρόπος εξέτασης των πανελλαδικά εξεταζόμενων μαθημάτων Τα θέματα των πανελλαδικά εξεταζόμενων μαθημάτων λαμβάνονται από την ύλη που ορίζεται ως εξεταστέα για κάθε μάθημα κατά το έτος που γίνονται οι εξετάσεις.
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ
1 ΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ Νομοθεσία. Παρατηρήσεις για τα θέματα των προαγωγικών και απολυτήριων εξετάσεων Γυμνασίων και Λυκείων, περιόδου Μαΐου- Ιουνίου 2008. Προτάσεις.
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ. Ρόδος, 07/05/2018. Αρ. Πρωτ.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100 ΡΟΔΟΣ Τηλ. 2241364848 ΣΧΟΛΙΚΟΣ
Διαβάστε περισσότεραΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ
ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΓΕΝΙΚΑ Βασικός στόχος είναι η ανατροφοδότηση της εκπαιδευτικής διαδικασίας και ο εντοπισμός των μαθησιακών ελλείψεων με σκοπό τη βελτίωση της παρεχόμενης σχολικής εκπαίδευσης. Ειδικότερα
Διαβάστε περισσότεραΛύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011
ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:
Διαβάστε περισσότερα,1-9,4 9, , , ,1 20
1 «ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ: ΠΑΡΑΤΗΡΗΣΕΙΣ-ΠΡΟΤΑΣΕΙΣ» ΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΓΥΜΝΑΣΙΟ Οι Προαγωγικές και Απολυτήριες Εξετάσεις στο
Διαβάστε περισσότεραΛύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα
Διαβάστε περισσότερα(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση
Διαβάστε περισσότεραΑπό το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β
Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2011. σελ. 15 σελ. 16 σελ. 17 έως 21 σελ. 23 σελ. 24 Όλα ορισμός έντονα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Α. Θεωρία (Θεώρημα σελίδα 5 σχολικού βιβλίου) Α. Α) ΨΕΥΔΗΣ Β) Θα δώσουμε ένα αντιπαράδειγμα Έστω η συνάρτηση
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική
Διαβάστε περισσότεραΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ
ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΜΕΡΟΣ Β ΑΠΑΝΤΗΣΕΙΣ-ΥΠΟΔΕΙΞΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΟΥ ΒΙΒΛΙΟΥ ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ η Έκδοση, Ιανουάριος 7 Γιάννης Καραγιάννης
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,
Διαβάστε περισσότεραΙωάννινα: 25 Απριλίου 2017 ANAKOINOΠΟΙΗΣΗ ΣΤΟ ΟΡΘΟ ΩΣ ΠΡΟΣ ΤΙΣ ΣΧΟΛΙΚΕΣ ΜΟΝΑΔΕΣ ΚΟΙΝΟΠΟΙΗΣΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ------ ΠΕΡ/KH Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΗΠΕΙΡΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛ.ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ ----- Ταχ. Δ/νση: Λουκή Ακρίτα
Διαβάστε περισσότεραΔιαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Αα) Ορισμός σχολικού βιβλίου σελ 5 Έστω Α ένα υποσύνολο
Διαβάστε περισσότεραΘέμα «Η διδασκαλία και η αξιολόγηση των Μαθηματικών στις Πανελλαδικές Εξετάσεις νέοι δρόμοι και αλλαγή φιλοσοφίας»
Ημερίδα για Μαθηματικά Σάββατο 28/01/2017 Εκπαιδευτήρια "Ροδίων Παιδεία" Θέμα «Η διδασκαλία και η αξιολόγηση των Μαθηματικών στις Πανελλαδικές Εξετάσεις νέοι δρόμοι και αλλαγή φιλοσοφίας» «Μια αποτύπωση
Διαβάστε περισσότεραΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ
Διαβάστε περισσότεραΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ
Νίκος Ζανταρίδης (Φροντιστήριο Πυραμίδα) ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ένα γενικό θέμα Ανάλυσης Χρήσιμες Προτάσεις Ασκήσεις για λύση Μικρό βοήθημα για τον υποψήφιο μαθητή της Γ Λυκείου λίγο πριν τις εξετάσεις Απρίλιος
Διαβάστε περισσότεραΛύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016
Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΣΤΟ ο ΠΡΟΣΟΜΟΙΩΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 9 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 5/4/9 ΘΕΜΑ Α Α. Θεωρία-Ορισμός,σχολικού
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ ΣΥΝΤΟΝΙΣΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ, 2 Ο ΠΕ.ΚΕ.Σ. ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 08-09/ 0-06-09 ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ ΣΥΝΤΟΝΙΣΤΗΣ
Διαβάστε περισσότεραΛύσεις θεμάτων πανελληνίων εξετάσεων Γ Λυκείου Κατεύθυνσης Δευτέρα, 27 Μαΐου 2013
Λύσεις θεμάτων πανελληνίων εξετάσεων 13 Στο μάθημα: «Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης» ΗΜΕΡΗΣΙΑ ΓΕ.Λ. Γ Λυκείου Κατεύθυνσης Δευτέρα, 7 Μαΐου 13 Θέμα Α: Α1. Θεωρία, σελ.33-335 Σχολικό Βιβλίο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Μαΐου 09 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω f μια συνεχής συνάρτηση σ ένα διάστημα [., ] Αν G είναι μια παράγουσα
Διαβάστε περισσότεραf ( x) f ( x ) για κάθε x A
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f() ως προς το στο σημείο 0 ;
Διαβάστε περισσότεραΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ
ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ
Διαβάστε περισσότεραΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α A Έστω μια
Διαβάστε περισσότεραΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.
ΙΟΥΝΙΟΥ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία -απόδειξη θεωρήματος στη σελίδα 6 (μόνο το iii) στο σχολικό βιβλίο.
Διαβάστε περισσότεραΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης
ΝΙΚΟΣ ΤΑΣΟΣ Mα θ η μ α τ ι κ ά Γ Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς στον Αλέξη, το Σπύρο, τον Ηλία και το Λούη, στην παντοτινή φιλία Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α Απόδειξη θεωρήματος σελ 99 σχολικού βιβλίου
Διαβάστε περισσότεραΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ () ΘΕΜΑ Α A. Να αποδείξετε ότι,
Διαβάστε περισσότεραe-mail@p-theodoropoulos.gr
Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις στα Μαθηµατικά Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος, ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Για τον υπολογισµό του βαθµού της
Διαβάστε περισσότεραΕρωτήσεις-Απαντήσεις Θεωρίας
1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ
Διαβάστε περισσότερα2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ
ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 9 ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΕΠΑ.Λ. ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 9 ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΕΠΑ.Λ. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. α. Στην τιμή i αντιστοιχίζεται η (απόλυτη) συχνότητα ν i, δηλαδή ο φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΝΕΟ
Διαβάστε περισσότεραΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ A. Έστω μια συνάρτηση
Διαβάστε περισσότεραΑ2. α. Ψ β. Σχολικό βιβλίο σελ. 134 ΣΧΟΛΙΟ): Πχ. για την
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 7 ΑΠΡΙΛΙΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α. Σχολικό βιβλίο (έκδοση 8) σελ. 7 Α. α. Ψ β. Σχολικό
Διαβάστε περισσότεραΘΕΜΑ: «Οδηγίες για τον τρόπο αξιολόγησης µαθηµάτων του Γενικού Λυκείου για το σχολικό έτος »
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΤΜΗΜΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 3 Ιανουαρίου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΘΕΜΑΤΑ Α1 Αν μια συνάρτηση f είναι παραγωγίσιμη στο σημείο x 0, να αποδείξετε ότι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...
Διαβάστε περισσότεραΙωάννινα: 18 Μαΐου 2015 Αριθμ. Πρωτ: 274
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ------ ΠΕΡ/KH Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΗΠΕΙΡΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛ.ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ ----- Ταχ. Δ/νση: Λουκή
Διαβάστε περισσότεραΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Διαβάστε περισσότεραΦίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια, φίλε μαθητή, Το βιβλίο αυτό, όπως και το πρώτο τεύχος, είναι εναρμονισμένο με την πρόσφατα καθορισμένη ύλη και απευθύνεται στους μαθητές της Γ Λυκείου που έχουν επιλέξει τον προσανατολισμό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
9 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A Να αποδείξετε ότι, αν μια συνάρτηση είναι παραγωγίσιμη σε ένα σημείο 0,
Διαβάστε περισσότεραΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) A. Έστω μια συνάρτηση
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C
Διαβάστε περισσότεραΕξεταστέα ύλη μαθηματικών Α Λυκείου 2017
Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Α Λυκείου Γεωμετρία Κεφάλαιο 3 3.1 Είδη και στοιχεία τριγώνων 3.2 1 ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2 ο Κριτήριο ισότητας
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο
Διαβάστε περισσότεραΓ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών
Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων
Διαβάστε περισσότεραΛύσεις θεμάτων επαναληπτικών πανελληνίων εξετάσεων. Γ Λυκείου Γενικής Παιδείας. Δευτέρα, 10 Ιουνίου 2013 ΕΣΠΕΡΙΝΑ
Λύσεις θεμάτων επαναληπτικών πανελληνίων εξετάσεων Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γ Λυκείου Γενικής Παιδείας Δευτέρα, Ιουνίου ΕΣΠΕΡΙΝΑ Θέμα Α Α. Θεωρία, σελ. Σχολικό Βιβλίο (απόδειξη)
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o
Διαβάστε περισσότεραΚεφάλαιο 4: Διαφορικός Λογισμός
ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Θεωρία σχολ βιβλίου σελ 99 Α α ψευδής β g Α Θεωρία
Διαβάστε περισσότεραστο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 208 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Μαθηματικών http://www.othisi.gr Δευτέρα, 11 Ιουνίου 018 Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ A1. Να αποδείξετε ότι, αν μια
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Τετάρτη 9 Απριλίου 7 ιάρκεια Εξέτασης: 3 ώρες
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f
Διαβάστε περισσότεραΕξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Εξετάσεις Ιουνίου 8 Μαθηματικά Προσανατολισμού Γ Λυκείου (Θετικών Σπουδών και Σπουδών Οικονομίας-Πληροφορικής) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 777 59 ΑΡΤΑΚΗΣ - Κ ΤΟΥΜΠΑ THΛ: 99
Διαβάστε περισσότεραΛύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 2015
Λύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 5 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ (ΚΑΙ ΕΠΑ.Λ. ΟΜΑΔΑ Β ) ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ
Διαβάστε περισσότεραΠανελλαδικές εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 27 Μαΐου 2013
Πανελλαδικές εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 7 Μαΐου 13 ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελ. 33-335 Α. Σχολικό βιβλίο, σελ. 6 Α3. Σχολικό βιβλίο,
Διαβάστε περισσότεραΔιαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους
ΨΗΦΙΑΚΌ ΒΟΗΘΗΜΑ ΥΠΠΕΘ Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους 7-8 Με τις λύσεις τους o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 7: ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ
Διαβάστε περισσότεραΑ3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια.
ΑΠΑΝΤΗΣΕΙΣ ΠΡΟΣΟΜΟΙΗΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. 76 Α. α. Ψ β. Σχολικό
Διαβάστε περισσότεραΣυγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
Διαβάστε περισσότερα, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και
Διαβάστε περισσότερα) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2
Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 7 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ 9.6.7 ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f ()
Διαβάστε περισσότεραf κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και
13η Επαναληπτική Δίνεται η συνάρτηση, δύο φορές παραγωγίσιμη στο [1,] [,1], επιπλέον για την ισχύουν 8 lim στο [1,] Να αποδείξετε ότι ε1 ε Υπάρχουν, με, ώστε στο οποίο η η, έχει σημείο καμπής ε3 Υπάρχει
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ() ΘΕΜΑ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
Διαβάστε περισσότεραγια κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) & ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α Έστω
Διαβάστε περισσότεραΤομέας Mαθηματικών "ρούλα μακρή"
Τομέας Mαθηματικών "ρούλα μακρή" ΑΠΑΝΤΗΣΕΙΣ Πρότυπου Εκπαιδευτικού Οργανισμού ρούλα μακρή ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις
Διαβάστε περισσότεραΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Ορισμός στο σχολικό βιβλίο σελίδα 15. β. i) Μια συνάρτηση
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 11 Μαΐου 19 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω f μια
Διαβάστε περισσότεραΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Δευτέρα Ιουνίου 8 Λύσεις των θεμάτων Έκδοση η (/6/8, 4:) Οι απαντήσεις και οι λύσεις
Διαβάστε περισσότερα5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A
5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα στο οποίο όμως η f είναι συνεχής Αν η f διατηρεί πρόσημο στο α,,β ότι το
Διαβάστε περισσότερα4.3 Δραστηριότητα: Θεώρημα Fermat
4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών
Διαβάστε περισσότερα4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου
4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 8-9 Θέμα A A Αν οι συναρτήσεις,g είναι παραγωγίσιμες στο, να αποδείξετε ότι η συνάρτηση και ισχύει: g g παραγωγίσιμη στο μονάδες
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σελίδα από Φάνης Μαργαρώνης Φροντιστήρια Ρούλα Μακρή Τομέας μαθηματικών ΘΕΜΑ
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Μαΐου 9 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Απόδειξη σχολικού
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ & ΤΕΧΝΟΛΟΓΙΚΉΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Ε Ν Δ Ε
Διαβάστε περισσότερα