1. Uvod v satelitske komunikacije Nosilne ploščadi za radijske naprave.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Uvod v satelitske komunikacije Nosilne ploščadi za radijske naprave."

Transcript

1 . Uvod v satelitske komunikaije Področje satelitskih komunikaij je danes staro 5 let in se je začelo z izstrelitvijo prvega mednarodnega telefonskega satelita Telstar v letu 96. Ta satelit je imel kapaiteto telefonskih zvez, ki so se lahko uporabljale za mednarodne telefonske klie preko Atlantika. Uporaba je bila zaradi hitre obhodne frekvene v primerjavi z vrtenjem Zemlje omejena na nekaj polurnih časovnih obdobji preko enega dneva. Sledila so obdobja razvoja v elektroniki, računalništvu, analognem in digitalnem radijskem prenosu ter signalnem proesiranju, načrtovanju usmerjenih anten, sončnih eli, raket in seveda naklonjenosti satelitski tehnologiji, ki so vzpostavila temelje široki paleti modernih satelitskih storitev, ki niso omejene le na telekomunikaije, kot je bilo sprva mišljeno. Leta 9 je bil položen prvi transatlantski optični kabel in čeprav se danes skorajda vsa telekomunikaijski promet prenaša preko optičnih podmorskih kablov, se v vesolju okrog Zemlje nahaja že nekaj tisoč umetnih satelitov. Samo v geostaionarni tirnii jih je preko, od tega 365 delujočih, kar pomeni, da je v povprečju vsako kotno stopinjo nad ekvatorjem nameščen po en delujoč satelit. Knjiga Satelitske komunikaije je sestavljena iz dveh delo. V prvega delu se posveča osnovam tehnike satelitskih orbit, kar pripomore k razumevanju razlik med orbitami, njihovim oblikam in pripadajočim razdaljam do Zemlje. Prvi del je namreč namenjen vprašanjem: v kakšno tirnio lahko postavimo umetni satelit, kako ga do tja pripeljemo, kakšni so pogoji delovanja radijskih naprav v vesolju in kaj lahko tam z njimi počnemo. V drugem delu se obravnavajo satelitske komunikaijske zveze in njim pripadajoče načrtovanje, izvedbe, delovanje in uporaba tako v zemeljski postaji kot na samem satelitu. Osnovni element v satelitski komunikaijski zvezi je antena, zato so nadalje najprej predstavljene osnovne lastnosti anten, ki vplivajo na načrtovanje zveze. Načrtovanje komunikaijskega sistema mora vsebovati vpliv šuma na komunikaijske lastnosti. Satelitski sistemi so občutljivi na šum, ker je sprejeti signal že po naravi zelo majhen. V naslednjem poglavju so identifiirani glavni izvori šuma in ovrednoten je njihov skupni vpliv na sistemske lastnosti. Zadnje poglavje pripelje skupaj vse omejitve in razvije način za načrtovanje satelitske komunikaijske zveze... Nosilne ploščadi za radijske naprave Domet radijske zveze največkrat ni omejen z močjo oddajnika, pač pa z dodatnim slabljenjem ovir na poti radijskih valov. Domet lahko zato uravnavamo z izbiro položaja enega ali obeh udeleženev v radijski zvezi. V zemeljskih razmerah je za domet radijske zveze najpomembnejša višina antene nad okolio. Praktične možnosti vgradnje radijske antene so prikazane na sliki. Višina antene v rokah uporabnika oziroma vgrajene na vozilo znaša komaj poldrugi meter. Za večje višine potrebujemo antenski stolp, običajno do 3 m, gornja praktična meja je verjetno m. Na naravne vzpetine lahko postavimo radijske antene na nekaj tisoč metrov nad okolio. Primerni hribi in gore seveda niso vedno na razpolago in niso vedno na tistem mestu, kjer bi to želeli za radijske zveze. Za večje višine postavimo radijski oddajnik in sprejemnik z anteno na primerno zračno plovilo. Tehnične rešitve zrakoplovov so sier znane, niso pa preproste, niti poeni. Balon izkorišča statični vzgon v ozračju, zato je višina omejena na približno 3 km. Statični vzgon ne potrebuje izvora energije, pač pa potrebuje preej energije vzdrževanje položaja balona v vetru. Balon je povrhu zelo nežna naprava, občutljiva na vetrove, tanke stene pa uničuje ultravijolično sevanje Sona. Iz vseh navedenih razlogov se balon ni uveljavil kot nosilna ploščad za radijske naprave. Bolj uporabna rešitev za radijsko ploščad je letalo, ki izkorišča dinamični vzgon kril. Dinamični vzgon potrebuje izvor energije, zaloga goriva na letalu zadošča za približno ur delovanja. Višinska meja za letalo je prav tako okoli 3 km. Letalo je na veter manj občutljivo od balona, lahko vzleta in pristaja ob skoraj vsakem vremenu ter se zoperstavi vetrovom na delovni višini. Na višinah, večjih od 3 km, je zaenkrat edino znano prevozno sredstvo raketa. Raketa je energetsko zelo neučinkovita, eloten potisk raketnega motorja potrebujemo za lebdenje oziroma 3-krat več kot pri letalu. Nad 3 km raketni motor potrebuje poleg goriva še oksidator, kar spet pomeni -kratno povečanje mase. Raketa lahko sier doseže velike višine, čas lebdenja naprave z raketnim motorjem pa je omejen na minut ali manj. Prav zaradi silno kratkega časa delovanja je raketa v večini primerov predraga kot nosilna ploščad za radijske naprave.

2 Slika : Nosilne ploščadi za radijske naprave. Radijske zveze na zelo velike razdalje omogočajo tudi nekateri naravni pojavi. Na nizkih frekvenah pod 3 MHz lahko izkoriščamo odboj in lom radijskih valov od ionosfere na višini približno 3 km. Radijsko zvezo lahko vzpostavimo tudi preko odboja od Lune, ki kroži okoli Zemlje na višini približno 3 km. Zmogljivost vseh teh vrst radijskih zvez je zelo omejena in niso vedno na razpolago. Zemlja je v prvem približku krogla s polmerom 637 km, ki jo objema tanek ovoj ozračja. Ozračje se z višino hitro redči, zato statični ali dinamični vzgon omogočata letenje do višine komaj 3 km. Na višini 3 km je zemeljsko ozračje že tako redko, da je trenje z zemeljskim ozračjem zelo majhno. Fizika tam omogoča še drugačne rešitve letenja, ki ne zahtevajo stalnega vira energije za zadrževanje položaja. Na velikih višinah nad 3 km je trenje z umetnim satelitom s hitrostjo okoli k dovolj majhno. Vpliv zemeljskega ozračja na tirnie vesoljskih plovil postane povsem zanemarljiv na višinah nad km. Umetne satelite z radijskimi postajami nima smisla pošiljati predaleč v vesolje. Povečano slabljenje radijske zveze lahko sier nadomestimo z bolj usmerjenimi antenami na vesoljskem plovilu, zakasnitve potovanja elektromagnetnega valovanja skozi prostor pa ne moremo nadomestiti. Praktična meja je zato okoli 5. km nad površino Zemlje. Poleg tega postane tirnia vesoljskega plovila na višinah nad 5. km zelo kompliirana zaradi težnosti drugih nebesnih teles, predvsem Sona in Lune. Uporabne tirnie za telekomunikaijske in tudi večino ostalih umetnih satelitov se nahajajo na višinah med 5 km in 5. km nad Zemeljsko površino, kot prikazuje slika. V tem področju višin je vsaj v prvem približku trenje z zemeljskim ozračjem zanemarljivo majhno. Majhen je tudi vpliv težnosti drugih nebesnih teles. MEO LEO GEO Slika : Delitev tirni glede na višino nad Zemeljsko površino.

3 Nizka Zemljina tirnia (angl. Low Earth Orbit LEO) se nahaja od km do. km. Ima od vseh možnih tirni najmanjše zakasnitve signala ~ ms in najmanjše izgube, kar je prednost za komunikaijske aplikaije. Ena glavnih slabosti LEO komunikaijskih satelitov je omejeno obdobje razpoložljivosti na nebu, ker preleti nebo nad uporabnikom v približno minutah. Za doseganje želene pokritosti s komunikaijskimi storitvami in stalne razpoložljivosti se največkrat uporabljajo omrežja z več sateliti v LEO tirnii. Sateliti namenjeni opazovanju Zemlje, kot so sateliti na daljinsko zaznavo ali vremenski sateliti, zelo pogosto uporabljajo LEO tirnie, saj lahko iz majhne višine posnamejo zelo podrobne fotografije zemeljske površine. Tudi strošek izstrelitve je za LEO satelite manjši kot v primerjavi z drugimi sateliti. Slabost LEO tirni je vpliv Zemljine nepravilne oblike na samo tirnio. Srednja Zemljina tirnia (angl. Medium Earth Orbit MEO) se nahaja od. km do 36. km med LEO in geostaionarnimi tirniami. Zakasnitev signala s teh tirni znaša približno ms. MEO tirnie uporabljajo navigaijski sateliti (GPS, GLONASS, GALILEO), meteorološki sateliti, sateliti za daljinsko zaznavanje. Ena perioda satelita na MEO tirnii traja od do 4 ur. Geosinhrona ali geostaionarna ekvatorialna tirnia (angl. Geosynhronous Equatorial Orbit GEO) se nahaja na oddaljenosti 36 km (35.76 km) od Zemlje. GEO tirnia je daleč najbolj priljubljena tirnia in se uporablja za komunikaijske satelite. Za globalno pokritost potrebujemo ali 3 satelite. Z njimi lahko pokrijemo elotno površino Zemlje z izjemo obeh polov. Satelit v geostaionarni ekvatorialni tirnii se nahaja neposredno nad ekvatorjem. Na tej razdalji se satelit giblje z enako krožno hitrostjo kot je hitrost vrtenja Zemlje. Zaradi tega je poziija satelita fiksna glede na Zemljo. Velika večina današnjih komunikaijskih satelitov obratuje v geostaionarni tirnii, vključno s tistimi, ki prenašajo TV signale v naše domove. Največja slabost te tirnie je razmeroma visoka zakasnitev signala (6 ms) in iz tega razloga ni primerna za prenos govornih signalov. Visoko eliptična tirnia (angl. High Elliptial orbit HEO) se nahaja od 36. km navzgor 5. km, kar doprinese zakasnitev signala vod ms do 6 ms. HEO je edina tirnia, kjer se sateliti gibljejo po elipsi in ne po krogu (je eliptična tirnia), z maksimalno višino (apogej) podobno kot pri geostaionarnih tirniah in minimalno višino (perigej), podobno kot pri LEO tirniah. Po drugem Keplerjevem zakonu, se satelit največ časa zadržuje v območju blizu apogeja, ko je najbolj oddaljen od Zemlje. Takrat se satelit giblje najpočasnejše v tirnii... Vrste storitev na satelitskih zvezah Danes je mogoče uporabljati satelitsko tehnologijo za najrazličnejše komunikaijske namene. Storitve, ki so osnovane na satelitskih zvezah, je mogoče razvrstiti v sedem osnovnih skupin. Fiksna satelitska zveza, kjer je vzpostavljena komunikaijska zveza med dvema fiksnima zemeljskima postajama, kot prikazuje slika 3. Ena od prvih uporab tovrstne storitve je bila mednarodna telefonija, ki so jo kasneje prevzele optične komunikaije na osnovi optičnega vlakna, predvsem zaradi velikih zmogljivosti in majhnih zakasnitev, kot prikazujeta spodnja primera. Glavna omejitev pri govornih komunikaijah je zahteva za potek v realnem času, kjer zakasnitev ne sme biti daljša od 5 ms. To omejitev poznamo tudi pri VoIP, kjer sta po priporočilu G.4 zgornji dopustni meji vrednosti skupne zakasnitve 5 in 4 ms. Iz spodnjih dveh primerov vidimo, da zveza preko geostaionarnega satelita vnaša prevelike zakasnitve. h Slika 3: Fiksna satelitska zveza, ki omogoča komunikaijo med dvema skrajnima točkama na zemeljski površini. 3

4 Primer: Izračunaj čas, ki ga potrebuje svetlobni signal, da po optičnem vlaknu z lomnim količnikom n,5 prepotuje polovičen obseg Zemlje. Svetlobno valovanje potuje po praznem prostoru s hitrostjo 3. Polmer Zemlje znaša 637 km. n π R t n,5 3 Z π R Z n π 637 km,5, s s Primer: Izračunaj čas, ki ga potrebuje radijski signal, da prepotuje od ene do druge, kolikor je mogoče razmaknjene, zemeljske postaje preko geostaionarnega satelita. Radijsko valovanje potuje po praznem prostoru s hitrostjo 3. Geostaionarni satelit se nahaja na tirnii, ki je 36 km nad površino Zemlje. t ( h + R ) z R z 495 km, s 3 3,5 s Mobilna satelitska zveza, ki se deli na letalsko, pomorsko in zemeljsko, kot prikazuje slika 4. Načrtovana je tako, da lahko s pomočjo mobilne antene preko satelita vzpostavimo zvezo z drugo mobilno enoto ali fiksno zemeljsko postajo. Pri letalski in pomorski zvezi so sprejemne enote mobilne, kar zahteva sledenje položaja satelita s pomočjo premičnih ali fazno sklopljenih antenskih skupin. Pri zemeljski zvezi se lahko zemeljske enote uporabljajo za poročanje (na primer TV/radio iz športnih dogodkov, nerazvitih območij ali v času izrednih razmer ter vojne), kar zahteva premični satelitski krožnik. Seveda je mogoče pri zemeljski zvezi izvesti tudi zasebno zvezo med dvema mobilnima enotama, če se uporabljajo sateliti v nizkih tirniah. Ta del zvez je preej zasenčila mobilna telefonija, ki uporablja na Zemlji postavljene bazne postaje. Slika 4: Mobilna satelitska zveza. Satelitsko razpršeno oddajanje (angl. Brodasting) se uporablja predvsem za razdeljevanje radijskih in televizijskih signalov. Kot prikazuje slika 5, se signal iz zemeljske postaje pošlje na satelit, ki pokriva določeno področje Zemlje, kjer se nahajajo satelitski sprejemniki. Stroški razpršenega satelitskega prenosa so neodvisni od števila zemeljskih terminalov, ki sprejemajo prenos. 4

5 »uplinkdownlink«zemeljska oddajna postaja Slika 5: Zveza s satelitskim razpršenim oddajanjem na določeno geografsko področje. Radijski navigaijski satelitski sistem je enosmerna zveza, ki omogoča premikajočemu se uporabniku (slika 6) na kopnem, morju ali zraku poznavanje geografskega položaja, kar mu služi za navigaijske namene. Primeri so ameriški GPS (angl. Global Positioning System), ruski GLONASS ali evropski Galileo. Radijski določevalni (determination) satelitski sistem je dvosmerna različia navigaijskega sistema, kjer satelit zahteva poznavanje lokaij mobilnih uporabnikov, ki jih posreduje obema mobilnima enotama ter zemeljski nadzorni postaji. Primer takega sistema sta WAAS pri GPS in Iridium. zemeljska oddajna postaja s poznano lokaijo Slika 6: Določanje položaja s pomočjo satelitske navigaije (modro označeni signali) in sporočanje popravkov preko geostaionarnega satelita (rdeče označeni signali). Medsatelitske zveze se uporabljajo za komunikaijo med sateliti v različnih orbitah. Pri tem se uporabljajo radijske ali svetlobne zveze. Primer radijske medsatelitske zveze najdemo pri satelitskem sistemu Iridium. Enosmerna satelitska zveza, ki je namenjena prenosu podatkov, ki jih je satelit zajel pri opazovanju Zemlje ali vesolja. V to skupino se štejejo vremenski sateliti, ki se uporabljajo v ivilne, znanstvene ali vojaške namene. 5

STANDARD1 EN EN EN

STANDARD1 EN EN EN PRILOGA RADIJSKE 9,000-20,05 khz naprave kratkega dosega: induktivne aplikacije 315 600 khz naprave kratkega dosega: aktivni medicinski vsadki ultra nizkih moči 4516 khz naprave kratkega dosega: železniške

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

7. Vesoljska radijska tehnika

7. Vesoljska radijska tehnika 7. Vesoljska radijska tehnika stran 7.1 7. Vesoljska radijska tehnika 7.1. Nosilne ploščadi za radijske naprave Doseg radijske zveze največkrat ni omejen z močjo oddajnika, pač pa z dodatnim slabljenjem

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Uradni list. Republike Slovenije VLADA. Št. Cena 1320 SIT ISSN Leto XIV. Ljubljana, petek

Uradni list. Republike Slovenije VLADA. Št. Cena 1320 SIT ISSN Leto XIV. Ljubljana, petek Uradni list Republike Slovenije Internet: http://www.uradni-list.si e-pošta: info@uradni-list.si Št. 107 Ljubljana, petek 1. 10. 2004 Cena 1320 SIT ISSN 1318-0576 Leto XIV VLADA 4500. Uredba o načrtu razporeditve

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

HARMONIZIRA- MOČ/MAGNETNO POLJE OBRATOVAL-

HARMONIZIRA- MOČ/MAGNETNO POLJE OBRATOVAL- RADIJSKE FREKVENCE UPORABA HARMONIZIRA- MOČ/MAGNETNO POLJE OBRATOVAL- NI STANDARD 1 NI CIKLUS PRILOGA ŠIRINA KANALA 9,000 20,05 khz SRD: induktivne aplikacije EN 300 330-2 72 dbμa/m na 10 metrov Ni omejitev

Διαβάστε περισσότερα

1. Osnovne lastnosti radijske zveze

1. Osnovne lastnosti radijske zveze 1. Osnovne lastnosti radijske zveze stran 1.1 1. Osnovne lastnosti radijske zveze 1.1. Radijska zveza v praznem prostoru Radijska zveza je vrsta zveze s pomočjo elektromagnetnega valovanja, kjer se valovanje

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Gradniki TK sistemov

Gradniki TK sistemov Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

S53WW. Meritve anten. RIS 2005 Novo Mesto

S53WW. Meritve anten. RIS 2005 Novo Mesto S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO SAGNACOV POJAV. Alenka Bajec

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO SAGNACOV POJAV. Alenka Bajec UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO SAGNACOV POJAV Alenka Bajec Mentor: prof. dr. Andrej Čadež 29. november 2007 1 NALOGA 1 1 Naloga Opiši Sagnacov pojav. 2 Uvod Sagnacov

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

ELEKTROMAGNETNA SEVANJA VPLIVNA OBMOČJA

ELEKTROMAGNETNA SEVANJA VPLIVNA OBMOČJA ELEKTROMAGNETNA SEVANJA VPLIVNA OBMOČJA Slovarček Z besedo Uredba označujemo Uredbo o elektromagnetnem sevanju v naravnem in življenjskem okolju (Ul. RS 70/1996), ki določa mejne vrednosti za EMS. Uredba

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

PRILOGA II: TEHNIČNE SPECIFIKACIJE

PRILOGA II: TEHNIČNE SPECIFIKACIJE PRILOGA II: TEHNIČNE SPECIFIKACIJE Naziv pogodbe: Dobava opreme za mobilni del nadzornega sistema za projekt Holistic Referenca objave: 4301-0001/2015 SKLOP A: Vozilo z integriranim nadzornim sistemom

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Zaporedna in vzporedna feroresonanca

Zaporedna in vzporedna feroresonanca Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice

GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice Moderna fizika - seminarska naloga GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice Domžale, dne 20. 2. 2004 Marjan Grilj, 3.l. fizika vsš, FMF Vsebina: (1) Osnove: (a) opazovanje (b) določanje oddaljenosti

Διαβάστε περισσότερα

Brezžični neradiativni prenos električne energije. Avtor: Vid Agrež Mentor: prof. Rudolf Podgornik

Brezžični neradiativni prenos električne energije. Avtor: Vid Agrež Mentor: prof. Rudolf Podgornik Brezžični neradiativni prenos električne energije Avtor: Vid Agrež Mentor: prof. Rudolf Podgornik 3. marec 2008 Povzetek Za brezžični prenos električne energije se danes uporabljajo raznovrstne naprave.

Διαβάστε περισσότερα

Svetlobni merilniki odbojnosti

Svetlobni merilniki odbojnosti 13. Seminar Optične Komunikacije Laboratorij za Sevanje in Optiko Fakulteta za Elektrotehniko Ljubljana, 1. - 3. februar 2006 Svetlobni merilniki odbojnosti Matjaž Vidmar Seznam prosojnic: Slika 1 Meritev

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

RADIJSKE KOMUNIKACIJE V GRS

RADIJSKE KOMUNIKACIJE V GRS RADIJSKE KOMUNIKACIJE V GRS DAMJAN GAŠPERIN PODKOMISIJA ZA ZVEZE GRS SLOVENIJE 2 KAZALO VSEBINE UVOD...5 SPLOŠNO O RADIJSKIH KOMUNIKACIJAH... 5 ZGODOVINA... 5 OSNOVNI POJMI O RADIJSKIH KOMUNIKACIJAH...

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

BREZŽIČNI PRENOS ENERGIJE

BREZŽIČNI PRENOS ENERGIJE UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO BREZŽIČNI PRENOS ENERGIJE Boštjan Berkopec Mentor: doc. dr. Primož Ziherl Ljubljana, 3. 5. 009 Povzetek Nikola Tesla je bil prvi,

Διαβάστε περισσότερα

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov 28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda

Διαβάστε περισσότερα

ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA. ANTENE za začetnike. (kako se odločiti za anteno)

ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA. ANTENE za začetnike. (kako se odločiti za anteno) ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA ANTENE za začetnike (kako se odločiti za anteno) Mentor: univ. dipl. Inž. el. Stanko PERPAR Avtor: Peter

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE

PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE TOPLOTNO ENERGETSKI SISTEMI TES d.o.o. GREGORČIČEVA 3 2000 MARIBOR IN PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE Saša Rodošek December 2011, Hotel BETNAVA, Maribor TES d.o.o. Energetika Maribor

Διαβάστε περισσότερα

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

POPIS DEL IN PREDIZMERE

POPIS DEL IN PREDIZMERE POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Zemlja in njeno ozračje

Zemlja in njeno ozračje Zemlja in njeno ozračje Pojavi v ozračju se dogajajo na zelo različnih časovnih in prostorskih skalah Prostorska skala Pojav 1 cm Turbulenca, sunki vetra 1 m 1 km 10 km 100 km 1000 in več km Tornadi Poplave,

Διαβάστε περισσότερα

Zemlja in njeno ozračje

Zemlja in njeno ozračje Zemlja in njeno ozračje Pojavi v ozračju se dogajajo na zelo različnih časovnih in prostorskih skalah Prostorska skala Pojav 1 cm Turbulenca, sunki vetra 1 m 1 km 10 km 100 km 1000 in več km Tornadi Poplave,

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Vpliv troposfere na opazovanja GNSS

Vpliv troposfere na opazovanja GNSS Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Vpliv troposfere na opazovanja GNSS Seminarska naloga Avtor: Toja Požun Maja Lavrič Ljubljana, 07. 01. 2012 KAZALO VSEBINE: 1 UVOD... 1 2 MODEL

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

NOVE GENERACIJE GORILNIKOV IN ZNIŽEVANJE CO 2

NOVE GENERACIJE GORILNIKOV IN ZNIŽEVANJE CO 2 NOVE GENERACIJE GORILNIKOV IN ZNIŽEVANJE CO 2 Martin Klančišar Weishaupt d.o.o., Celje 1. Gorilniki kot naprave za zgorevanje različnih energentov so v svojem razvoju dosegli zavidljivo raven učinkovitosti

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Περιεχόμενα. Πληροφοριακά Συστήματα. Επικοινωνίες και ίκτυα

Περιεχόμενα. Πληροφοριακά Συστήματα. Επικοινωνίες και ίκτυα Πρόλογος... 11 κεφάλαιο 1 Πληροφοριακά Συστήματα 1.1 Η Έννοια του Συστήματος...21 1.2 Ψηφιακή Πληροφορία...24 1.3 Η Έννοια του Πληροφοριακού Συστήματος...24 1.4 Ιστορική Αναδρομή...28 1.5 Αναγκαιότητα

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

Pri tej vaji se bomo seznanili z osnovnimi značilnostmi ultrazvoka in njegove uporabe v medicini.

Pri tej vaji se bomo seznanili z osnovnimi značilnostmi ultrazvoka in njegove uporabe v medicini. 4 Ultrazvok Pri tej vaji se bomo seznanili z osnovnimi značilnostmi ultrazvoka in njegove uporabe v mediini. S človeškim ušesom lahko zaznamo zvok s frekvenami od približno 16 Hz do 20 khz. Zvok, ki ima

Διαβάστε περισσότερα

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI), Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,

Διαβάστε περισσότερα

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4) Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Pripravil: Bruno Lubec, S51M ANTENE. Osnovni pojmi in vrste anten Predavanja za tečaj radioamaterjev, 20 ur

Pripravil: Bruno Lubec, S51M ANTENE. Osnovni pojmi in vrste anten Predavanja za tečaj radioamaterjev, 20 ur Pripravil: Bruno Lubec, S51M ANTENE Osnovni pojmi in vrste anten Predavanja za tečaj radioamaterjev, 20 ur Valovanje 1. Mehansko: zvok, valovanje vode, valovanje nihala. Širi se počasneje od radijskih

Διαβάστε περισσότερα