1 MTMM Kõrgem matemaatika, eksamiteemad 2014
|
|
- Διδώ Ιόλη Μαυρογένης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1 MTMM Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded II kontrolltöö põhiteemade peale; P3 ( 15p ) - ülesanded ridade peale; L1 ( 20p ) - mõisted ja denitsioonid; L2 ( 15p ) - omadused, laused, lemmad ja teoreemid; L3 ( 10p ) - tõestused. NB! Ülesandeid ei ole palju, kuid loenguosast võib vabalt tulla 15-punktiline ülesanne, s.t. kui seda ei oska, siis võib punktikadu olla suur. P1. I kontrolltöö Praktikumid 1-6. Kompleksarvud (algebraline, geomeetriline, trigonomeetriline, eksponentkuju, n-astme juured). Piirväärtuse arvutamine polünoomide jagatisest, tähtsad piirväärtused (nt. sin(x) x, x 0). Tuletis, elementaarfunktsioonide tuletiste tabel. Liitfunktsiooni tuletis. Tuletise rakendused (joone puutuja leidmine, funktsiooni minimaalse ja maksimaalse väärtuse leidmine). Kiiruste leidmine ja kiiruste tekitamine võrdustesse. Diferentsiaal, funktsiooni muudu ligikudne arvutamine. Funktsiooni I ja II tuletise omadused, kumeruse ja nõgususe piirkonnad, käänupunkt. Näide. Leida kompleksarvu z = 8 kõik kolmanda astme juured. Näide. Leida funktsiooni f tuletis, kui 3 cos 5 (x 2 4x+1)+2π 3 +arcsin(4x). Näide. Leida funktsiooni y = cos(3x) puutujasirge võrrand. Näide. Leida funktsiooni y = tan(x) diferentsiaali väärtus punktis x = π/4 argumendimuudu x = 0.1 korral.
2 P2. II kontrolltöö Praktikumid Pigem tulevad põhiteemad. L'Hospital'i reegel. Näide. Leidke piirväärtus sin(x) x lim x 0 x tan(x). Määramata integraali leidmine (muutuja vahetus, ositi integreerimine). Näide. Integreerige ositi x e 3x dx. Määratud integraali leidmine (muutuja vahetus, absoluutväärtust sisaldavad avaldised, levinud kujundite pindalad). Määratud integraali rakendused (teepikkus, nihe, joone kaare pikkus, töö arvutamine, funktsiooni keskmine väärtus, ruumala). Integraalide rakenduste kohta valemeid ette ei anta (küsimused jäävad siiski II kontrolltöö teemade hulka. Näide. Tehes muutujavahetuse t = cos 2 (x), integreerige π/2 dt dt. t t 2 π/3 Päratud integraalid. Näide. Leida integraalid sin(2x) dx, x x 2 +1 dx, 1 + x dx, sin(x) cos 2 (x) dx. Näide. Leidke joontega y = x ja y = 1 piiratud kõvertrapetsi pindala. Näide. Osake alustab liikumist punktis s(0) = 5 ja liigub kiirusega v(t) = t 2 4. Kui kaugele algpunktist liigub osake esimese 3 sekundi jooksul ja kui pika tee ta läbib (meetrites)? Näide. Joon y = 1 pöörleb ümber x-telje. x Leida tekkinud pöördkeha ruumala, kui x [1, 3].
3 P3. Read Praktikumid Ülesannetesse ei tule raskeid ridu (ei sisalda nt. siinuseid või logaritme), kõige tähtsam on ära tunda, kas arvrida saab võrrelda geomeetrilise või harmoonilise reaga või siis kasutada d'alembert'i, Cauchy, Leibniz'i tunnust. Arvread. Koonduvuse või hajumise uurimine. Astmeread. Koonduvusraadiuse ja koonduvuspiirkonna leidmine. Fourier' read. Kordajate valemeid ei pea kõiki peast teadma, kuid peaks ära tundma, mis on valemites sisalduvad L, T ja ω. Lisaks nt. reaalsete kordajate korral on ette antud ainult a n või b n (teised on loogiliselt tuletatavad). Näide. Leidke astmerea ( 1) n+1 n + 1 (x 5)n 2n n=0 koonduvusraadius ja koonduvuspiirkond. Näide. Leidke astmerea n=0 3 n ( x ) n (n + 1)! 3 1 koonduvusraadius ja koonduvuspiirkond. Näide. Leidke 8-perioodilise laine 0, x [ 4, 0], 1, x (0, 4), Fourier' rida komplekskujul. Millist kasulikku informatsiooni sisaldab kordaja c n? Komplekssed kordajad avalduvad valemitega c n = 1 T T /2 f(x)e inωx dx, n Z. T /2 Näide. Leidke 4-perioodilise laine 2, x [0, 2], 0, x ( 2, 0), Fourier' rida. Millal ja milleks koondub antud rida? a n = 1 L f(x) cos(nωx) dx. L L
4 L1. Mõisted Eelkõige on tähtis mõistete sisu, paljudel juhtudel võidakse küsida denitsiooni. Vormistamisel ei tohi unustada, et denitsioon on täislause, kus mõiste on üheselt ja korrektselt kirjeldatud. 1. loeng. Naturaalarvud, täisarvud, ratsionaalarvud, irratsionaalarvud, reaalarvud, kompleksarvud, kaaskompleksarv ja moodul. Näide. Deneerida irratsionaalarvud. Kas a = 3 on irratsionaalarv? Näide. Deneerida kompleksarvu moodul. Leida z = 3 + 2i moodul. Milline on selle geomeetriline tähendus? 2. loeng. Kompleksarvu trigonomeetriline kuju, kompleksarvu argument, de Moivre'i valem, kompleksarvu n-astme juur. 3. loeng. Kompleksarvu eksponentkuju, Euler'i valem. Näide. Esitada kompleksarvu Euler'i valem. 4. loeng. Funktsiooni mõiste, paaris- ja paaritufunktsioon, üksühene Näide. Deneerida üksühene funktsioon. Kas y = sin(x), x [ π, π] on üksühene? funktsioon, pealekujutus, pöördfunktsioon, põhilised elementaarfunktsioonid, elementaarfunktsioonid. 5. loeng. Piirväärtuse intuitiivne mõiste (märkus 5.1). Näide. Deneerida elementaarfunktsioon. Tuua näide funtksioonist, mis ei ole elementaarfunktsioon. 6. loeng. Hääbuv funktsioon. Ekvivalentsed lõpmata väikesed funktsioonid. Pidev funktsioon. 7. loeng. Tuletise denitsioon, tuletise geomeetriline ja füüsikaline Näide. Mida tähendab, et kaks hääbuvat funktsiooni on piirprotsessis x 1 ekvivalentsed? Tuua näide. tähendus (kiirus). 8. loeng. Kõrgemat järku väike suurus α = o(β), diferentseeruv funktsioon (sobib ka T8.1), funktsiooni diferentsiaali arvutamise valem Näide. Mida tähendab, et funktsioon on diferentseeruv? Tuua näide funktsioonist, mis ei ole diferentseeruv kohal x = 2. (M8.2) ja diferentsiaali graaline esitus. 11. loeng. Taylor'i polünoom ja valem (D ), jääkliige Lagrange'i kujul (valem 11.7). Näide. Milline on funktsiooni e x Taylor'i valemi jääkliige Lagrange'i kujul n = 10 korral? 12. loeng. Algfunktsioon, määramata integraal ja selle seos kiiruse ja teepikkusega. Näide. Deneerida funktsiooni y = f(x) Riemann'i integraal. 14. loeng. Riemann'i integraali denitsioon, kõvertrapets ja selle pindala. Näide. Deneerida kõvertrapets ja selgitada, kuidas arvutatakse selle pindala.
5 15. loeng. Teepikkuse arvutamine. Kõversektor. 16. loeng. Lõpmatute rajadega integraal, integraali defnitsioon katkevast funktsioonist. Päratu integraali koonduvus ja hajuvus. Näide. Kui keha liigub kiirusega v = v(t), siis kuidas te leiate keha poolt läbitud teepikkuse lõigul [0, T ]? 18. loeng. Arvrida ja selle osasumma, arvrea koondumine ja hajumine. 19. loeng. Absoluutselt koonduv rida, tingimisi koonduv rida. Näide. Deneerige päratu integraali b f(x) dx koondumine, kui funktsioon f on a katkev punktis x = b. 21. loeng. Astmerea mõiste, astmerea koonduvusraadius (M21.1 ja D21.3) ja koonduvuspiirkond. Näide. Deneerige astmerea osasumma ja koondumine. 22. loeng. Siinuslaine A sin(ωt + ϕ) amplituud, sagedus ja faasinihe. Trigonomeetriline rida. Sile funktsioon. Näide. Mis vahe on absoluutselt koonduval ja tingimisi koonduval real. Milline on nendest rida n=1 ( 1)n 1 n 1,5? 23. loeng. Kui Fourier' rea valem on ette antud, siis peaks teadma, mis on harmoonik, lainearv, kompleksamplituud. Näide. Deneerige trigonomeetriline rida. Näide. Mida nimetatakse Fourier' rea i= cnein(π/3)x lainearvudeks ja kompleksamplituudideks?
6 L2. Omadused, teoreemid, laused Küsitakse teoreemi, lause või lemma sõnastust (esmatähtis on teada teoreemi sisu, mõnikord on võimalik range sõnastuse asemel ka sisu (hoolikalt) lahti rääkida). Mõnda teoreemi tuleb ära tunda nime järgi (nagu all loetelus). 2. loeng. Kompleksarvude korrutamise ja jagamise geomeetriline tähendus. Näide. Kirjeldage kompleksarvude liitmise, korrutamise ja jagamise geomeetrilist tähendust. Mida teha, et punkt z = 0+1i teiseneks punktiks z = 4(cos(30 ) + i sin(30 ))? Näide. Sõnastada teoreem funktsiooni ekstreemumide leidmiseks. Leida funktsiooni 1 4 x4 2x 2 kõik minimaalsed ja maksimaalsed väärtused. 3. loeng. Algebra põhiteoreem. 5. loeng. Piirväärtus tõkestatud ja hääbuva funktsiooni korrutisest (T5.2), keskmise muutuja omadus (T5.5). Näide. Tooge vähemalt üks skeem funktsiooni f väärtuste f(x) ligikaudseks arvutamiseks. Arvutage ligikaudu f( 1.1), kui e x loeng. Märkus 6.5 pideva funktsiooni muudu kohta, elementaarfunktsioonide pidevus (T6.6). Näide. Sõnastage piirväärtuse keskmise muutuja omadus. 7. loeng. Diferentseeruva funktsiooni pidevus (T7.1). Näide. Sõnastage algebra põhiteoreem. 8. loeng. Funktsiooni ligikaudne arvutamine (näited ), funktsiooni muudu ligikaudne arvutamine (näide 8.5). 10. loeng. Lagrange'i keskväärtusteoreem (T10.4), selle geomeetriline ja füüsikaline sisu. L'Hospital'i reegel (T10.6). Näide. Sõnastage integraalarvutuse keskväärtusteoreem. Leida funktsiooi x 2 3x + 1 keskmine väärtus lõigul [0, 1]. 11. loeng. Teoreem funktsiooni ekstreemumide leidumisest (T11.4). 14. loeng. Newton-Leibniz'i valem (T14.2), integraalarvutuse keskväärtusteoreem (T14.3). Näide. Sõnastage teoreem Neton'i-Leibniz'i valemi kasutamise kohta. Leidke määratud 1 integraal f(x) dx, kui 1 2, x [ 1, 0], 1, x (0, 1]. 15. loeng. Kõversektori pindala (L15.1). 16. loeng. Matemaatilise analüüsi I fundamentaalteoreem (T16.1). Näide. Sõnastage Lagrange'i keskväärtusteoreem. Milline on selle füüsikaline sisu? 18. loeng. Geomeetrilise ja harmoonilise rea koondumise tingimused (L18.1 ja L18.2). Positiivse rea integraalne tunnus (L18.4). 19. loeng. Leibniz'i tunnus vahelduvate märkidega rea kohta (L19.1), d'alembert'i tunnus (L19.2), Cauchy tunnus (L19.3). Näide. Kui leida funktsiooni 2, x [ 1, 0], 1, x (0, 1]. Fourier' rida S(x), siis milline on selle rea koondumine Dirichlet' teoreemi järgi (Fourier' rida ennast ei ole vaja leida)? 22. loeng. Dirichlet' teoreem (T22.1).
7 L3. Tõestused sin(x) 6. loeng. Piirväärtuse lim = 1 tõestus. x 0 x 7. loeng. Lähtudes tuletise denitsioonist, peaks oskama näidata Näide. Lähtudes tuletise denitsioonist, näidata, et (ax 2 + bx + c) = 2ax + b. lihtsamaid elementaarfunktsioonide tuletisi. 10. loeng. Tõestused, kasutades Lagrange'i keskväärtusteoreemi (näited ). Näide. Lähtudes tuletise denitsioonist, näidata, et (1/x) = 1/x loeng. Lihtsamal juhul Taylor'i rea leidmine ja jääkliikme hindamine (Näide 11.1, 11.2). 14. loeng. Lähtudes Riemann'i integraali denitsioonist, tõestada, et b C dx = C (b a), kus C on mingi reaalarv. a 18. loeng. Positiivse rea integraalse tunnuse tõestus (lause 18.4). Näide. Tõestada, et sin(x) x, x 0. Näide. Tõestada, et b 5 a 5 5 b 4 (b a), kui b > a, b 1. Näide. Lähtudes Riemann'i integraali 1 denitsioonist, näidata, et 5 dx = Näide. Sõnastada ja tõestada positiivse rea integraalne tunnus. Kasutades integraalset tunnust, uurida rea 2 n=1 (n+1) 2 koonduvust.
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
YMM3740 Matemaatilne analüüs II
YMM3740 Matemaatilne analüüs II Gert Tamberg Matemaatikainstituut Tallinna Tehnikaülikool gert.tamberg@ttu.ee http://www.ttu.ee/gert-tamberg G. Tamberg (TTÜ) YMM3740 Matemaatilne analüüs II 1 / 29 Sisu
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele
MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele TALLINNA TEHNIKAÜLIKOOL Matemaatikainstituut MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele Tallinn 24 3 MATEMAATILINE ANALÜÜS II
Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35
Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
4.1 Funktsiooni lähendamine. Taylori polünoom.
Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester
Matemaatiline analüüs IV praktikumiülesannete kogu 4. a. kevadsemester . Alamhulgad ruumis R m. Koonduvad jadad. Tõestage, et ruumis R a) iga kera s.o. ring) U r A) sisaldab ruutu keskpunktiga A = a,b),
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Ainevaldkond Matemaatika gümnaasiumi ainekava
Ainevaldkond Matemaatika gümnaasiumi ainekava 1. Ainevaldkonna õppeainete kohustuslikud kursused Lai matemaatika koosneb 14 kursusest: 10 klass: 1. Avaldised ja arvuhulgad 2. Võrrandid ja võrrandisüsteemid
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester
Matemaatiline analüüs II praktikumiülesannete kogu 5. a. kevadsemester . Kahe ja kolme muutuja funktsiooni määramispiirkond, selle raja, kinnisus ja lahtisus. Olgu X ja Y hulgad. Kujutus e. funktsioon
Kitsas matemaatika-3 tundi nädalas
Kitsas matemaatika-3 tundi nädalas Õpitulemused I kursus-arvuhulgad. Avaldised. Võrrand, võrratus. 1) eristab ratsionaal-, irratsionaal- ja reaalarve; 2) eristab võrdust, samasust, võrrandit ja võrratust;
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
6 Mitme muutuja funktsioonid
6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5
1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
Mathematica kasutamine
mathematica_lyhi_help.nb 1 Mathematica kasutamine 1. Sissejuhatus Programmi Mathematica avanemisel pole programmi tuum - Kernel - vaikimisi käivitatud. Kernel on programmi see osa, mis tegelikult teostab
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
; y ) vektori lõpppunkt, siis
III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf
Skalaar, vektor, tensor
Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Deformatsioon ja olekuvõrrandid
Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Sisukord. 4 Tõenäosuse piirteoreemid 36
Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...
Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega
Ainevaldkond Matemaatika
Ainevaldkond Matemaatika 1 Matemaatikapädevus Matemaatika õpetamise eesmärk gümnaasiumis on matemaatikapädevuse kujundamine, see tähendab suutlikkust tunda matemaatiliste mõistete ja seoste süsteemsust;
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
Diskreetne matemaatika 2016/2017. õ. a. Professor Peeter Puusemp
Diskreetne matemaatika 2016/2017. õ. a. Professor Peeter Puusemp http://www.staff.ttu.ee/ puusemp/ Sellel kodulehe aadressil asub alajaotuse Diskreetne matemaatika all elektrooniline õpik ja ülesannete
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32
Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni
Deformeeruva keskkonna dünaamika
Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla
1.2. Ainevaldkonna õppeainete kohustuslikud kursused ja valikkursused
Vabariigi Valitsuse 06.01.2011. a määruse nr 2 Gümnaasiumi riiklik õppekava lisa 3 1. Ainevaldkond Matemaatika 1.1. Matemaatikapädevus Matemaatikapädevus tähendab matemaatiliste mõistete ja seoste süsteemset
4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32
Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise
Staatika ja kinemaatika
Staatika ja kinemaatika MHD0071 I. Staatika Leo eder Mehhatroonikainstituut Mehaanikateaduskond allinna ehnikaülikool 2016 Sisukord I Staatika 1. Sissejuhatus. 2. Newtoni seadused. 3. Jõud. 4. ehted vektoritega.
Skalaar, vektor, tensor
Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,
Ivar Tammeraid itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend
TTÜ Mtemtikinstituut http://www.stff.ttu.ee/ mth/ Ivr Tmmerid http://www.stff.ttu.ee/ itmmerid/ MATEMAATILINE ANALÜÜS I Elektrooniline õppevhend Tllinn, Trükitud versioon: Ivr Tmmerid, Mtemtiline nlüüs
IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel
IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel Allar Veelmaa, Loo Keskkool Gümnaasiumi riiklik õppekava 1 (edaspidi GRÕK) järgi võib õpilane valida kitsa ja laia matemaatikakursuse
Sirgete varraste vääne
1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3
Ivar Tammeraid itammeraid/ MATEMAATILINE ANALÜÜS I. Elektrooniline õppevahend
TTÜ Mtemtikinstituut http://www.stff.ttu.ee/ mth/ Ivr Tmmerid http://www.stff.ttu.ee/ itmmerid/ MATEMAATILINE ANALÜÜS I Elektrooniline õppevhend Tllinn, Trükitud versioon: Ivr Tmmerid, Mtemtiline nlüüs
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
AINE ÕPPE- JA KASVATUSEESMÄRGID ÜLDPÄDEVUSED
Matemaatika Gümnaasium 10.-12. klass Kursusi: 14 (lisaks kordamine) Tunde kursuses: 35 Rakendumine: 1. september 2016 Koostamise alus: Gümnaasiumi riiklik õppekava, lisa 3; Koeru Keskkooli õppekava AINE
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid
TARTU ÜLIKOOL Teaduskool Võnkumised ja lained Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes
7.7 Hii-ruut test 7.7. HII-RUUT TEST 85
7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine
TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:
Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist
Loeng 2 Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist P2 - tuleb P1 lahendus T P~Q = { x P(x)~Q(x) = t} = = {x P(x)
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
Pinge. 2.1 Jõud ja pinged
Peatükk 2 Pinge 1 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.
Lambda-arvutus. λ-termide süntaks. Näiteid λ-termidest. Sulgudest hoidumine. E ::= V muutuja (E 1 E 2 ) aplikatsioon (λv.
Lambda-arvutus λ-termide süntaks Näiteid λ-termidest Sulgudest hoidumine Lambda-arvutus E ::= V muutuja (E 1 E 2 ) aplikatsioon (λv. E) abstraktsioon (λx. x) (((λx. (λf. (f x))) y)(λz. z)) (λx. y) (λx.
2.1. Jõud ja pinged 2-2
1 Peatükk 2 Pinge 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.
Formaalsete keelte teooria. Mati Pentus
Formaalsete keelte teooria Mati Pentus http://lpcs.math.msu.su/~pentus/ftp/fkt/ 2009 13. november 2009. a. Formaalsete keelte teooria 2 Peatükk 1. Keeled ja grammatikad Definitsioon 1.1. Naturaalarvudeks
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel
Algebraliste võrrandite lahenduvus radikaalides Magistritöö Raido Paas Juhendaja: Mart Abel Tartu 2013 Sisukord Sissejuhatus Ajalooline sissejuhatus iii v 1 Rühmateooria elemente 1 1.1 Substitutsioonide
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
Excel Statistilised funktsioonid
Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi
NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse
TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov
LOFY Füüsika looduslikus ja tehiskeskkonnas I (3 EAP)
LOFY.01.087 Füüsika looduslikus ja tehiskeskkonnas I (3 EAP) Sissejuhatus... 1 1. Füüsika kui loodusteadus... 2 1.1. Loodus... 2 1.2. Füüsika... 3 1.3. Teaduse meetod... 4 2. Universumiõpetus... 7 3. Liikumine
Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse. Ahto Buldas
Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse Ahto Buldas 22. september 2003 2 Sisukord Saateks v 1 Entroopia ja infohulk 1 1.1 Sissejuhatus............................ 1 1.2 Kombinatoorne
= 5 + t + 0,1 t 2, x 2
SAATEKS Käesoleva vihikuga lõpeb esimene samm teel füüsikastandardini. Tehtule tagasi vaadates tahaksime jagada oma mõtteid füüsikaõpetajatega, kes seni ilmunud seitsmes vihikus sisalduva õpilasteni viivad.
3. IMPULSS, TÖÖ, ENERGIA
KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse
Lexical-Functional Grammar
Lexical-Functional Grammar Süntaksiteooriad ja -mudelid 2005/06 Kaili Müürisep 6. aprill 2006 1 Contents 1 Ülevaade formalismist 1 1.1 Informatsiooni esitus LFG-s..................... 1 1.2 a-struktuur..............................
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [6.loeng] 1 Tehiskaaslaste liikumine (1) Kui Maa pinna lähedal, kõrgusel kus atmosfäär on piisavalt hõre,
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine
PEATÜKK 5 LUMEKOORMUS KATUSEL 5.1 Koormuse iseloom (1) P Projekt peab arvestama asjaolu, et lumi võib katustele sadestuda paljude erinevate mudelite kohaselt. (2) Erinevate mudelite rakendumise põhjuseks
Avaliku võtmega krüptograafia
Avaliku võtmega krüptograafia Ahto Buldas Motiivid Salajase võtme vahetus on tülikas! Kas ei oleks võimalik salajases võtmes kokku leppida üle avaliku kanali? 2 Probleem piiramatu vastasega! Kui vastane
KATEGOORIATEOORIA. Kevad 2010
KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid
Marek Kolk, Tartu Ülikool Viimati muudetud : 6.. Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid Aritmeetilised operaatorid Need leiab paletilt "Calculator" ja ei vaja eraldi kommenteerimist.
5. OPTIMEERIMISÜLESANDED MAJANDUSES
5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega
Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27
Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
(Raud)betoonkonstruktsioonide üldkursus 33
(Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.