3 Populacija i uzorak
|
|
- Θήρα Βούλγαρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 3 Populacija i uzorak 1
2 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2
3 Primjer 3.1. (Primjer 1.2) U nekom gradu u SADu, u glasačke liste upisano je glasača. Ispitivanjem slučajnog uzorka od osoba želimo procijeniti postotak glasača za Demokratsku stranku (DS). Nakon ispitivanja pokazuje se da u uzorku ima 917 glasača za DS. 3
4 Kako biramo osobe u uzorak? jednostavni slučajni uzorak bez ponavljanja jednostavni slučajni uzorak s ponavljanjem Varijabla čija nas razdioba zanima: X = 1 ukoliko je osoba glasač za DS, inače je 0 X je indikator glasača za DS 4
5 Neka je: N = veličina populacije M = (nepoznata) veličina glasača za DS u populaciji p = M N = proporcija glasača za DS u populaciji Želimo procijeniti parametar p iz uzorka duljine n. 5
6 n = 1600 = veličina uzorka Neka su: X 1 = indikator je li 1. osoba na sl. način izabrana u uzorak glasač za DS X 2 = indikator je li 2. osoba na sl. način izabrana u uzorak glasač za DS X n = indikator je li n-ta osb. na sl. način izabrana u uzorak glasač za DS Y := X 1 + X X n = ukupan broj (frekvencija) glasača za DS u slučajnom uzorku 6
7 Slučaj jednostavnog sl. uzorka s ponavljanjem Slučajne su varijable X 1, X 2,..., X n jednako distribuirane Bernoullijeve ( ) 0 1 X i, i = 1, 2,..., n 1 p p nezavisne Y B(n, p) 7
8 Slučaj jednostavnog sl. uzorka bez ponavljanja Slučajne su varijable X 1, X 2,..., X n Bernoullijeve (jednako distribuirane?) zavisne su. Y hipergeometrijska (N, M, n) 8
9 U oba slučaja je procjenitelj parametra p statistika Vrijedi: ˆp = Y n ˆp = = 57.3% Ako je Y B(n, p), tada: p(1 p) E[ˆp] = p, Var[ˆp] =. n Ako je Y hipergeometrijska (M, N, n), tada: E[ˆp] = p, Var[ˆp] = p(1 p) n 1 N n 1 N 1. 9
10 Zadatak 1. Dokažite izraze za matematičko očekivanje i varijancu hipergeometrijske razdiobe, te za pripadni procjenitelj parametra proporcije. 10
11 Teorem 3.1. Neka je (X N ) niz hipergeometrijskih s.v. s parametrima (N, M N, n). Ako je n konstantno i lim N M N N = p, tada lim P(X N = k) = ( n N k ) p k q n k, k {0, 1,..., n}. Interpretacija: P(X = k) ( n) p k q n k, k {0, 1,..., n}, k za velike N i M i p = M/N. 11
12 Zadatak 2. Dokažite teorem
13 Primjer 3.2. Moguće je da je novčić nesimetričan. Želimo procijeniti vjerojatnost da će pasti pismo. Uzimamo uzorak duljine n na sljedeći način. Označimo sa X 1 ishod 1. bacanja novčića, sa X 2 ishod 2. bacanja, itd., sa X n ishod n-tog bacanja. Sva bacanja su bila neovisna od drugih i izvedena pod istim uvjetima. X 1, X 2,..., X n su n.j.d. s.v. 13
14 Bitna razlika izmedu primjera 3.1 i 3.2: U primjeru 3.1 populacija je bila konačna, a u primjeru 3.2 beskonačna. U danom kontekstu, ukoliko je populacija konačna i velika, slučajni uzorci s i bez ponavljanja su po distribuciji približno jednaki (Teorem 3.1!). 14
15 Definicija. Slučajni uzorak duljine n za X je niz od n nezavisnih, jednako distribuiranih slučajnih varijabli X 1, X 2,..., X n kojima je distribucija jednaka (populacijskoj) razdiobi varijable X. Realizaciju slučajnog uzorka (= opažene vrijednosti x i od X i, i = 1,..., n) zovemo uzorkom. 15
16 3.2 Parametar i statistika Neka je X statistička varijabla čiju populacijsku distribuciju izučavamo, te neka je X 1, X 2,..., X n slučajni uzorak za X iz te populacije. 16
17 Parametrom razdiobe od X nazivamo onu vrijednost (broj, vektor, graf,...) koja je funkcija populacijske razdiobe od X. Statistika je funkcija slučajnog uzorka. 17
18 Statistike su slučajne varijable. Njihova razdioba se zove uzoračka razdioba. Primjer 3.3. Uzoračka razdioba statistike Y iz primjera 3.1 je binomna ako se radi o jednostavnom sl. uzorku s ponavljanjem, a ako je uzorak bez ponavljanja, onda je uzoračka razdioba te iste statistike hipergeometrijska. 18
19 Primjer 3.4. Neka X ima normalnu populacijsku razdiobu N(µ, σ 2 ), te neka je X 1, X 2,... X n pripadni slučajni uzorak. Aritmetička sredina X := 1 n (X 1 + X X n ) je statistika. Njena uzoračka razdioba je X N ( µ, σ2 n ). 19
20 3.3 Empirijska funkcija distribucije Neka je F funkcija distribucije populacijske razdiobe varijable X. Slučajni uzorak za X: X 1, X 2,..., X n Empirijska funkcija distribucije (e.f.d.) je slučajna funkcija: ˆF n ( )(ω) : R R, ω Ω t.d. je ˆF n (x) := 1 n n i=1 1 {Xi x} = #{i : X i x}, x R. n 20
21 Svojstva e.f.d.: 1. Za svaki fiksni x R je n ˆF n (x) B(n, F (x)) E[ ˆF n (x)] = F (x), Var[ ˆF n (x)] = 1 F (x)(1 F (x)). n 21
22 2. Za svaki fiksni ω Ω je x ˆF n (x)(ω) funkcija distribucije neke diskretne razdiobe. Neka je x (1) x (2) x (n) jedna uredena realizacija slučajnog uzorka. Graf... ˆF n (x) = #{i : x (i) x}. n 22
23 x (2) x (1) x (3) x (4) 23
24 3. Iz prethodnog grafa slijedi: sup ˆF n (x) F (x) = x R = max max{ F (x 1 i n (i) ) i 1 n, F (x (i) ) i n }. Teorem 3.2 (Glivenko-Cantelli) P (Dokaz.) ( lim n sup ˆF n (x) F (x) = 0 x R ) = 1 24
25 U dokazu se koristi: Borelov jaki zakon velikih brojeva Ako je X n B(n, p), n N, niz binomnih s.v., tada P ( lim n X n n = p ) = 1. 25
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
Διαβάστε περισσότεραVJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.
Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,
Διαβάστε περισσότεραVJEROJATNOST popravni kolokvij veljače 2017.
Zadatak 1. (20 bodova) (a) (4 boda) Precizno definirajte pojam σ-algebre događaja na nepraznom skupu Ω. (b) (6 bodova) Neka je (Ω, F, P) vjerojatnosni prostor i A, B F događaji. Pomoću aksioma vjerojatnosti
Διαβάστε περισσότεραSlučajne varijable Materijali za nastavu iz Statistike
Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje
Διαβάστε περισσότερα(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1
χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ
Διαβάστε περισσότεραPISMENI ISPIT IZ STATISTIKE
1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila
Διαβάστε περισσότεραSadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI
Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........
Διαβάστε περισσότεραSlučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa
Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότερα5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Διαβάστε περισσότεραVerovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Διαβάστε περισσότεραVJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016.
Broj zadataka: 5 Vrijeme rješavanja: 0 min Ukupan broj bodova: 50 Zadatak.. kolokvij - 0. lipnja 0. (a Ako su X i Y diskretne slučajne varijable, dokažite da vrijedi formula E [X + Y ] = E [X] + E [Y ].
Διαβάστε περισσότερα2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραVjerojatnost i matematička statistika
Vjerojatnost i matematička statistika Ante Mimica Poslijediplomski specijalistički studij aktuarske matematike 29. siječnja 2016. Sadržaj kolegija 1. Opisna analiza podataka 2. Slučajne varijable 3. Funkcije
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραSlučajni vektor. Poglavlje 3
Poglavlje 3 Slučajni vektor Ukoliko u jednom istraživanju za dani slučajni pokus pratimo nekoliko različitih slučajnih varijabli, moguće veze među njima nećemo dokučiti ako ih proučavamo samo svaku za
Διαβάστε περισσότεραSlučajni procesi Prvi kolokvij travnja 2015.
Zadatak Prvi kolokvij - 20. travnja 205. (a) (3 boda) Neka je (Ω,F,P) vjerojatnosni prostor, neka je G σ-podalgebra od F te neka je X slučajna varijabla na (Ω,F,P) takva da je X 0 g.s. s konačnim očekivanjem.
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότερα4 Testiranje statističkih hipoteza
4 Testiranje statističkih hipoteza 1 4.1. Statistička hipoteza Promatramo statističko obilježje X. Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X. Kažemo da je statistička
Διαβάστε περισσότεραUvod u vjerojatnost i matematičku statistiku
Uvod u vjerojatnost i matematičku statistiku - vježbe - Danijel Krizmanić 28. rujna 2007. Sadržaj Osnove vjerojatnosti 2 2 Kombinatorika i vjerojatnost 5 3 Uvjetna vjerojatnost. Nezavisnost 9 4 Geometrijske
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραSadrˇzaj Sadrˇzaj 12 TEORIJA PROCJENA
Sadrˇzaj Sadrˇzaj 2 TEORIJA PROCJENA 3 2. TOČKASTE PROCJENE......................... 5 2.2 REGRESIJSKA ANALIZA........................ 2.3 ML-PROCJENITELJI tko želi zati više................. 5 2.4 Poovimo.................................
Διαβάστε περισσότεραDiskretan slučajni vektor
Sveučilište J J Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Mia Ćurić Diskretan slučajni vektor Završni rad Osijek, 206 Sveučilište J J Strossmayera u Osijeku
Διαβάστε περισσότεραAko između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je
Višekomponentne slučajne varijable Srednje vrijednosti i momenti Definicija srednje vrijednosti Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti,
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραTestiranje statističkih hipoteza Materijali za nastavu iz Statistike
Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότερα(BIO)STATISTIKA. seminari. smjer: Prehrambena tehnologija i Biotehnologija. pripremila: dr.sc. Iva Franjić
(BIO)STATISTIKA seminari smjer: Prehrambena tehnologija i Biotehnologija pripremila: dr.sc. Iva Franjić Sadržaj DESKRIPTIVNA STATISTIKA 4. Grafički prikaz podataka..................... 4. Srednje vrijednosti
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραParametarski zadane neprekidne distribucije
Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Kristijan Šućur Parametarski zadane neprekidne distribucije Završni rad Osijek, 217. Sveučilište
Διαβάστε περισσότεραProcjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2.
4 Procjea parametara Neka je X slučaja varijabla čiju distribuciju proučavamo. Defiicija: Slučaji uzorak duljie za X je iz od ezavisih i jedako distribuiraih slučajih varijabli X 1, X,..., X koje imaju
Διαβάστε περισσότεραOptimalnost u procjeni Nepristran procjenitelj minimalne varijance Cramer-Rao donja granica - ekasnost Konzistentnost. Vjeºbe - Statistika II.
Vjeºbe - Statistika II. dio Optimalnost u procjeni Procjenitelja ima puno, pa treba imati kriterije za usporedbu izmežu njih. Radi jednostavnosti promatramo samo jednodimenzionalne parametre θ Θ R Funkcija
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότεραVEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013.
VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. 1. Novqi se baca tri puta. (a) Zapisati skup svih mogu ih ishoda. (b) Oznaqimo sa A k događaj da je u k-tom bacanju palo pismo, k {1, 2, 3}. Koriste
Διαβάστε περισσότεραSTATISTIKA S M E I M N I AR R 7 : METODE UZORKA
Fakultet za menadžment u turizmu i ugotiteljtvu, Opatija Sveučilišni preddiplomki tudij Polovna ekonomija u turizmu i ugotiteljtvu Noitelj kolegija: Prof. dr. c. Suzana Marković Aitentica: Jelena Komšić
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότεραStatističko zaključivanje jedna varijabla
Poglavlje 5 Statističko zaključivanje jedna varijabla 5.1 Procjena distribucije, očekivanja i varijance U prethodnim poglavljima naučili smo da se veličine promatrane na jedinkama obuhvaćenim nekim istraživanjem
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότερα9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
Διαβάστε περισσότεραOsnovni pojmovi iz kombinatorike, vjerojatnosti i statistike I. Kombinatorika
Osnovni pojmovi iz kombinatorike, vjerojatnosti i statistike I. Kombinatorika Teorem o uzastopnom prebrojavanju (TUP) Ako x 1 možemo birati na n 1 načina, ako x 2 možemo birati na n 2 načina,..... ako
Διαβάστε περισσότεραKONTINUIRANE SLUČAJNE VARIJABLE
KONTINUIRANE SLUČAJNE VARIJABLE Kontinuirana slučajna varijabla može poprimiti neprebrojivo (beskonačno mnogo vrijednosti. KONTINUIRANE SLUČAJNE VARIJABLE UVOD Razlike diskretnih i kontinuiranih slučajnih
Διαβάστε περισσότεραMonte Carlo metode Bojan Basrak, PMF MO Zagreb. Financijski praktikum 29. veljače 2016.
Monte Carlo metode Bojan Basrak, PMF MO Zagreb Financijski praktikum 29. veljače 2016. 1 Monte Carlo metode 2 Primjene modeliranje složenih sustava upravljanje portfeljima u financijama i osiguranju procjena
Διαβάστε περισσότεραJednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
Διαβάστε περισσότεραOsnove teorije uzoraka
Oove teorije uzoraka Oove teorije uzoraka UZORAK: lučaji, reprezetativi dio oovog kupa populacije Uzorci: 1.uzorak:,, 1 1.uzorak:,, i.uzorak:,, i i Razdioba aritmetičke redie uzorka f ( ) f ( ) razdioba
Διαβάστε περισσότεραU teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima.
Sažetak vjerojatnost Skup ishoda U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Jednostavne događaje u nekom pokusu zvat
Διαβάστε περισσότεραKlasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Διαβάστε περισσότερα(BIO)STATISTIKA. skripta. studij: Prehrambena tehnologija i Biotehnologija. doc. dr. sc. Iva Franjić 2012.
(BIO)STATISTIKA skripta studij: Prehrambena tehnologija i Biotehnologija doc. dr. sc. Iva Franjić 2012. 2 Sadržaj 1 DESKRIPTIVNA STATISTIKA 5 1.1 Grafički prikaz podataka.................. 6 1.2 Srednje
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραZadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραBILJEŠKE ZA PREDAVANJA (za internu uporabu)
1. Statistika - Nazivlje... 2 2. Statistika podjela statističkih analiza... 2 3. Objekti, varijable, mjerne skale... 3 4. Ekstremne i nedostajuće vrijednosti podaci... 4 5. Ciljevi statističke analize...
Διαβάστε περισσότερα2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Διαβάστε περισσότεραStatistika. primjeri i zadaci. Ante Mimica, Marina Ninčević. 30. kolovoza 2010.
Statistika primjeri i zadaci Ante Mimica, Marina Ninčević 3. kolovoza. Sadržaj Opisna statistika 5. Zadaci za vježbu................................ 4 Neprekidne slučajne varijable 47. Normalna distribucija..............................
Διαβάστε περισσότερα2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI
2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI 2. ALGEBRA DOGAĐAJA 2.. Intuitivna definicija Slučajan pokus (eksperiment) jest takav pokus čiji ishodi nisu jednoznačno određeni skupom uvjeta pokusa. Sa Ω označavamo
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραStatističke metode. doc. dr Dijana Karuović
Statističke metode doc. dr Dijana Karuović STATISTIČKE METODE Danas jedan od glavnih metoda naučnog saznanja Najvažnije statističke metode koje se upotrebljavaju: Metod uzorka Metod srednjih vrednosti
Διαβάστε περισσότεραSadrˇzaj. Sadrˇzaj MATEMATIČKA STATISTIKA DESKRIPTIVNA STATISTIKA Ponovimo... 15
Sadrˇzaj Sadrˇzaj 1 11 MATEMATIČKA STATISTIKA 3 11.1 DESKRIPTIVNA STATISTIKA..................... 5 11. Poovimo................................. 15 1 Radi materijal Poglavlje 11 MATEMATIČKA STATISTIKA
Διαβάστε περισσότεραSADR\AJ. Predgovor. POGLAVLJE 2 Grafičko opisivanje podataka Klasifikacija varijabli 10 Kvalitativne ili numeričke 10 Mjerne skale 11
KRATAK SADR\AJ Poglavlje 1 Čemu proučavati statistiku? 1 Poglavlje 2 Grafičko opisivanje podataka 9 Poglavlje 3 Numeričko opisivanje podataka 46 Poglavlje 4 Vjerojatnost 78 Poglavlje 5 Diskretne slučajne
Διαβάστε περισσότεραMetode procjene parametara
Sveu ili²te J. J. Strossmayera u Osijeku Odjel za matematiku Mario Erdeg Metode procjene parametara Diplomski rad Osijek, 2016. Sveu ili²te J. J. Strossmayera u Osijeku Odjel za matematiku Mario Erdeg
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραDijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Διαβάστε περισσότεραSTATISTIKA. KONCEPTI : POPULACIJA i UZORAK. Primjer: svi glasači, samo neki glasači
STATISTIKA KONCEPTI : POPULACIJA i UZORAK Primjer: svi glasači, samo neki glasači populacija uključuje sve podatke, a uzorak samo dio, slučajno izabranih kako procjeniti reprezentativni element? MJERE
Διαβάστε περισσότεραSTATISTIKA I OSNOVE FIZIKALNIH MJERENJA
STATISTIKA I OSNOVE FIZIKALNIH MJERENJA ŽELJKO SKOKO PREDAVANJA: ČETVRTAK, 12-14 h, F25 VJEŽBE: ČETVRTAK, 14-15 h, F25 MIRKO BAĆANI KONZULTACIJE: PETAK, 11-12.30 h ili prema dogovoru e-mail: zskoko@phy.hr
Διαβάστε περισσότεραCauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Διαβάστε περισσότερα6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Διαβάστε περισσότεραNeka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραDRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότερα1 Osnovni pojmovi Tipovi varijabli Skale mjerenja... 3
Sadržaj Predgovor iii 1 Osnovni pojmovi 1 1.1 Tipovi varijabli............................ 2 1.2 Skale mjerenja............................ 3 2 Organizacija i prikazivanje podataka 5 2.1 Sirovi podatci.............................
Διαβάστε περισσότερα5. lekcija. Kontinuirane slučajne varijable.
5. lekcija. Kontinuirane slučajne varijable. Diskretne slučajne varijable povezane su s prebrojavanjem u nekom pokusu. One primaju konačan skup vrijednosti (ili možda beskonačan, ali je tada nužno prebrojiv
Διαβάστε περισσότεραKarakteristične funkcije
Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Matea Spajić Karakteristične funkcije Završni rad Osijek, 2015. Sveučilište J. J. Strossmayera u
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότεραEdukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A. Skripta. Pripremio: Branko Nikolić. Zagreb 2015./2016.
Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A Skripta Pripremio: Branko Nikolić Zagreb 05./06. LITERATURA: Obvezna:. Petz B., Kolesarić, V., Ivanec, D. (0): Petzova statistika.
Διαβάστε περισσότεραUvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET SVEUČILIŠTE U RIJECI. Specijalistički diplomski stručni studij građevinarstva NORMALNA RAZDIOBA.
GRAĐEVINSKI FAKULTET SVEUČILIŠTE U RIJECI Specijalistički diplomski stručni studij građevinarstva NORMALNA RAZDIOBA Seminarski rad KOLEGIJ: Odabrana poglavlja inženjerske matematike AKADEMSKA GODINA: 2016/2017
Διαβάστε περισσότεραIzbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραPopulacija Ciljna/uzoračka populacija
Populacija i uzorak Sadržaj predavanja Šta je populacija, šta je uzorak a šta uzorkovanje? Statističko zaključivanje Klasifikacija uzoraka: sa i bez verovatnoće, sa i bez zamenjivanja Uzoračke raspodele
Διαβάστε περισσότερα10. domaća zadaća. 3. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od odredite:
Napomena: U svim zadacima treba koristiti tablicu standardne normalne razdiobe. 1. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od 10 5 odredite: a) P(X 1.16), b) P(X 0.59);
Διαβάστε περισσότεραZadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Διαβάστε περισσότεραNeka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:
2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i
Διαβάστε περισσότερα16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum
16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni
Διαβάστε περισσότερα