VJEROJATNOST popravni kolokvij veljače 2017.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "VJEROJATNOST popravni kolokvij veljače 2017."

Transcript

1 Zadatak 1. (20 bodova) (a) (4 boda) Precizno definirajte pojam σ-algebre događaja na nepraznom skupu Ω. (b) (6 bodova) Neka je (Ω, F, P) vjerojatnosni prostor i A, B F događaji. Pomoću aksioma vjerojatnosti dokažite da je P(A B) = P(A) + P(B) P(A B). (c) (4 boda) Neka je (Ω, F, P) vjerojatnosni prostor i A, B F događaji takvi da je P(A B) = 0.8, P(A B) = 0.2 i P(B c ) = 0.6. Izračunajte P(A) i P(B). (d) (6 bodova) Neka je (Ω, F, P) vjerojatnosni prostor i (A n ) n 1 niz događaja iz F takvih da je P(A n ) 2 n za sve n 1. Izračunajte ( ) P A k. Sve svoje tvrdnje obrazložite. n=1 k=n Rješenje: (a) σ-algebra događaja na nepraznom skupu Ω je familija F podskupova od Ω koja zadovoljava sljedeća tri svojstva: (i) Ω F; (ii) Ako je A F, tada je i A c F; (iii) Ako je A n F za svaki n N, tada je i n=1a n F. (b) Iz aksioma vjerojatnosti slijedi da je P konačno aditivna (ne treba dokazati, ali treba jasno navesti rezultat). Budući da je konačna aditivnost od P daje A B = A (B \ A), A (B \ A) =, B = (A B) (B \ A), (A B) (B \ A) =, P(A B) = P(A) + P(B \ A), P(B) = P(A B) + P(B \ A). Iz druge jednakosti imamo P (B \ A) = P(B) P(A B), što uvrštavanjem u prvu daje traženu formulu.

2 (c) Vrijedi: P(B) = 1 P(B c ) = = 0.4. Iz formule u (b) čitamo da je P(A) = P(A B) P(B) + P(A B) = = 0.6. (d) Stavimo B n = k=n A k. Zbog σ-subaditivnosti vjerojatnosti P je P(B n ) P(A k ) k=n 2 k = 2 n+1. Niz događaja (B n ) n 1 je nerastući, pa po neprekidnosti vjerojatnosti na nerastuće nizove događaja imamo ( ) 0 P A k = P( n=1b n ) = lim P(B n ) lim 2 n+1 = 0. n n n=1 k=n Slijedi da je tražena vjerojatnost jednaka 0. k=n

3 Zadatak 2. (a) (4 boda) Precizno iskažite formulu potpune vjerojatnosti. (b) (6 bodova) Neka je (Ω, F, P) vjerojatnosni prostor te neka je B F takav da je P(B) > 0. Funkcija P B : F [0, 1] definirana je sa P B (A) = P(A B). Dokažite da je P B vjerojatnost na (Ω, F). (c) (5 bodova) Neka je (Ω, F, P) vjerojatnosni prostor te neka su A, B F takvi da je P(A B) = 0, P(A B) = p za neki p [0, 1]. Odredite P(A) i P(B). Odredite, ako postoji, vrijednost p tako da su A i B nezavisni. (d) (5 bodova) Student odlazi na razgovor za praksu, ali u žurbi nasumce oblači cipele (jednu lijevu, jednu desnu), a posjeduje 4 različita para. Ako dođe na razgovor u rasparenim cipelama, vjerojatnost da dobije praksu je 0.5. Ako je obukao uparene cipele, ta vjerojatnost je 0.8. (d1) Odredite vjerojatnost da je student obukao uparene cipele. (d2) Ako znate da je student dobio praksu, odredite vjerojatnost da je obukao rasparene cipele. (a) Neka su H 1, H 2,... H n F takvi da je H i H j = za i j, n i=1h i = Ω te P(H i ) > 0 n za sve i. Tada za svaki A F vrijedi P(A) = P(A H i )P(H i ). (b) Trebamo dokazati tri svojstva iz definicije vjerojatnosti. (i) P B (A) = P(A B) = (ii) P B (Ω) = P(Ω B) = P(A B) P(B) P(Ω B) P(B) i=1 0 vrijedi za sve A F jer je P vjerojatnost. = P(B) P(B) = 1. (iii) Neka je (A n ) n N niz u parovima disjunktnih događaja iz F. Tada su i događaji A n B, n N međusobno disjunktni pa vrijedi: P B ( i=1a n ) = P (( i=1a n ) B) = 1 P(B) P(B) P ( i=1(a n B)) = 1 P(A n B) P(A n B) = = P B (A n ). P(B) P(B) i=1 i=1 i=1

4 (c) P(A B) = P(A \ B) + P(B \ A) = 0 P(A \ B) = P(B \ A) = 0. P(A B) = P(A B) P(A B) = p. P(A) = P(A B) + P(A \ B) = p, P(B) = P(A B) + P(B \ A) = p. Ako su A i B nezavisni, vrijedi P(A)P(B) = P(A B), odnosno p 2 = p, što vrijedi samo za p = 0 ili p = 1. (d) (d1) Ako parove cipela označimo brojevima 1 4, možemo zapisati: H 1 = {cipele su uparene} = {(x, y) : x, y {1, 2, 3, 4}, x = y}, H 2 = {cipele su rasparene} = {(x, y) : x, y {1, 2, 3, 4}, x y}. Tada je tražena vjerojatnost P(H 1 ) = = 1 4. (d2) Označimo A = {student je dobio praksu}. Uz oznake kao prije, imamo P(H 2 ) = 3 4, P(A H 1 ) = 0.8, P(A H 2 ) = 0.5 i vrijedi P(H 2 A) = 1 P(A H 2 )P(H 2 ) P(A H 1 )P(H 1 ) + P(A H 2 )P(H 2 ) = = =

5 Zadatak 3. (a) (5 bodova) Neka je X Poissonova diskretna slučajna varijabla s parametrom λ > 0. Precizno izvedite formulu za matematičko očekivanje slučajne varijable X. (b) (5 bodova) Neka je X slučajna varijabla s geometrijskom[ razdiobom ] s parametrom 1 p (0, 1), tj. P(X = k) = (1 p) k 1 p, k N. Odredite E. X (c) (4 boda) Neka je X apsolutno neprekidna slučajna varijabla s funkcijom gustoće f. Precizno definirajte matematičko očekivanje slučajne varijable X. (d) (6 bodova) Košarkaš gađa slobodna bacanja s uspješnošću od 80%, a sva bacanja su međusobno nezavisna. Koliko najmanje puta treba gađati koš na treningu da bi s vjerojatnošću od barem 0.95 pogodio koš barem 100 puta? Rješenje: λ λk (a) X P (λ) P(X = k) = e k!, k N {0}. E X = kp(x = k) = k=0 λ λk ke k! = λe λ (b) Označimo q = 1 p. Integriranjem reda Sada imamo: E [ ] 1 = X 1 k qk 1 p = p q k=0 λ k 1 (k 1)! = λe λ k=0 q k = 1 1 q slijedi λ k k! = λe λ e λ = λ. q k k q k k = p p ln p ln(1 q) = q 1 p. (c) Neka je X apsolutno neprekidna slučajna varijabla s funkcijom gustoće f. Ako vrijedi x f(x)dx <, tada X ima matematičko očekivanje dano sa E X = xf(x)dx. = ln(1 q).

6 (d) Označimo s X broj uspješno pogođenih bacanja iz n pokušaja. Tada je X B(n, 0.8). Korištenjem centralnog graničnog teorema, tražimo najmanji n takav da vrijedi: ( ) ( ) X 0.8n n n 0.95 P(X 100) = 1 P 1 Φ n n n ( ) n Dakle, tražimo najmanji n takav da je Φ n n Iz tablice izjednačavamo odnosno 0.8n 0.66 n n Rješavanjem kvadratne jednadžbe slijedi n 11.6 odnosno n 135.

7 Zadatak 4. (20 bodova) (a) (4 boda) Neka su X i Y diskretne slučajne varijable. Definirajte kovarijancu od X i Y. (b) (4 boda) Neka su X i Y diskretne slučajne varijable. Precizno iskažite Cauchy-Schwartzovu nejednakost. (c) (12 bodova) Neka je (X, Y ) diskretan slučajan vektor s distribucijom zadanom na sljedeći način: { c(2x + y), (x, y) {0, 1, 2} {0, 1, 2}; P(X = x, Y = y) = 0, inače. (c1) Izračunajte vrijednost konstante c i odredite tablicu razdiobe slučajnog vektora (X, Y ). (c2) Jesu li X i Y nezavisne slučajne varijable? Obrazložite. (c3) Izračunajte P(X 1, Y < 2). Rješenje: (a) Neka su X i Y diskretne slučajne varijable td. postoje EX 2 < i EY 2 <. Kovarijanca od X i Y definira se kao Cov(X, Y ) := E[(X EX)(Y EY )]. (b) Neka su X i Y diskretne slučajne varijable. Ako je EX 2 < i EY 2 <, tada vrijedi (E(XY )) 2 (EX 2 )(EY 2 ). (c) (c1) Distribucija slučajnog vektora (X, Y ) dana je tablicom X\Y f X 0 0 c 2c 3c 1 2c 3c 4c 9c 2 4c 5c 6c 15c f Y 6c 9c 12c 1 iz čega sljedi da je 6c + 9c + 12c = 1 c = Dakle, tablica razdiobe slučajnog vektora (X, Y ) je

8 (c2) Nisu nezavisne jer npr. X\Y f X f Y P(X = 0, Y = 0) = = P(X = 0) P(Y = 0). (c3) P(X 1, Y < 2) = P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 2, Y = 0)+ + P(X = 2, Y = 1) = =

9 Zadatak 5. (20 bodova) (a) (4 boda) Neka je (X n ) n 1 niz slučajnih varijabli na vjerojatnosnom prostoru (ΩF, P). Definirajte konvergenciju po vjerojatnosti niza slučajnih varijabli (X n ) n 1 prema slučajnoj varijabli X. (b) (4 boda) Iskažite slabi zakon velikih brojeva. (c) (6 bodova) Dokažite slabi zakon velikih brojeva. (d) (6 bodova) Broj dnevnih telefonskih poziva službi korisnika je slučajna varijabla s očekivanjem 150 i varijancom 35. Pokažite da je vjerojatnost da će broj poziva u jednom danu biti između 141 i 159 (uključivo) veća ili jednaka 13/20. (Uputa: Čebiševljeva nejednakost) Rješenje: (a) Niz slučajnih varijabli (X n ) n 1 konvergira po vjerojatnosti slučajnoj varijabli X ako za svaki ɛ > 0 vrijedi lim n P( X n X > ɛ) = 0. (b) Neka je (X n ) n 0 niz nezavisnih slučajnih varijabli sa zajedničkim očekivanjem µ i zajedničkom varijancom σ 2. Tada je (P) lim n X X n n = µ. (c) Neka je ɛ > 0 proizvoljan. Budući da je E (X 1 + +X n ) = nµ i Var(X 1 + +X n ) = nσ 2 (nezavisnost), po Čebiševljevoj nejednakosti vrijedi ( ) X X n P µ n > ɛ 1 ( ) ɛ Var X1 + + X n = n 2 n ɛ 2 n = 1 2 nɛ 2 što teži prema 0 kad n. (d) Neka X označava slučajan broj poziva. Po Čebiševljevoj nejednakosti je Zato je P( X ) = P( X E X 10) Var(X) 10 2 = = P(141 X 159) = 1 P( X ) =

Slučajni procesi Prvi kolokvij travnja 2015.

Slučajni procesi Prvi kolokvij travnja 2015. Zadatak Prvi kolokvij - 20. travnja 205. (a) (3 boda) Neka je (Ω,F,P) vjerojatnosni prostor, neka je G σ-podalgebra od F te neka je X slučajna varijabla na (Ω,F,P) takva da je X 0 g.s. s konačnim očekivanjem.

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016.

VJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016. Broj zadataka: 5 Vrijeme rješavanja: 0 min Ukupan broj bodova: 50 Zadatak.. kolokvij - 0. lipnja 0. (a Ako su X i Y diskretne slučajne varijable, dokažite da vrijedi formula E [X + Y ] = E [X] + E [Y ].

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

VJEROJATNOST 1. kolokvij studenog 2013.

VJEROJATNOST 1. kolokvij studenog 2013. Zadatak 1 (10 bodova (a (5 bodova Iskažite i dokažite teorem o strukturi vjerojatnosti na partitivnom skupu prebrojivog skupa. Zašto u slučaju prebrojivog skupa možemo promatrati samo vjerojatnosti definirane

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Slučajne varijable Materijali za nastavu iz Statistike

Slučajne varijable Materijali za nastavu iz Statistike Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Diskretan slučajni vektor

Diskretan slučajni vektor Sveučilište J J Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Mia Ćurić Diskretan slučajni vektor Završni rad Osijek, 206 Sveučilište J J Strossmayera u Osijeku

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

MARKOVLJEVI LANCI popravni kolokvij veljače (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MARKOVLJEVI LANCI popravni kolokvij veljače (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) MARKOVLJEVI LANCI popravni kolokvij - 2. veljače 204. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!). (a) Neka je X (X n : n 0) Markovljev lanac sa skupom stanja S i matricom prijelaza

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

10. domaća zadaća. 3. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od odredite:

10. domaća zadaća. 3. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od odredite: Napomena: U svim zadacima treba koristiti tablicu standardne normalne razdiobe. 1. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od 10 5 odredite: a) P(X 1.16), b) P(X 0.59);

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Uvod u vjerojatnost i matematičku statistiku

Uvod u vjerojatnost i matematičku statistiku Uvod u vjerojatnost i matematičku statistiku - vježbe - Danijel Krizmanić 28. rujna 2007. Sadržaj Osnove vjerojatnosti 2 2 Kombinatorika i vjerojatnost 5 3 Uvjetna vjerojatnost. Nezavisnost 9 4 Geometrijske

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

MJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) MJERA I INTEGRAL 1. kolokvij 29. travnja 2016. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je I kolekcija svih ograničenih jednodimenzionalnih intervala

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI

2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI 2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI 2. ALGEBRA DOGAĐAJA 2.. Intuitivna definicija Slučajan pokus (eksperiment) jest takav pokus čiji ishodi nisu jednoznačno određeni skupom uvjeta pokusa. Sa Ω označavamo

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Slučajni vektor. Poglavlje 3

Slučajni vektor. Poglavlje 3 Poglavlje 3 Slučajni vektor Ukoliko u jednom istraživanju za dani slučajni pokus pratimo nekoliko različitih slučajnih varijabli, moguće veze među njima nećemo dokučiti ako ih proučavamo samo svaku za

Διαβάστε περισσότερα

Parametarski zadane neprekidne distribucije

Parametarski zadane neprekidne distribucije Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Kristijan Šućur Parametarski zadane neprekidne distribucije Završni rad Osijek, 217. Sveučilište

Διαβάστε περισσότερα

Zadaća iz kolegija Metrički prostori 2013./2014.

Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća nosi 5 bodova. Sve tvrdnje u zadacima obrazložiti! Renato Babojelić 31 Lea Božić 13 Ana Bulić 7 Jelena Crnjac 5 Bernarda Dragin 19 Gabriela Grdić

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

PISMENI ISPIT IZ STATISTIKE

PISMENI ISPIT IZ STATISTIKE 1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila

Διαβάστε περισσότερα

MARKOVLJEVI LANCI 1. kolokvij studenog (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MARKOVLJEVI LANCI 1. kolokvij studenog (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) MARKOVLJEVI LANCI 1. kolokvij - 25. studenog 2015. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. Neka je (X n ) n 0 Markovljev lanac sa skupom stanja S i prijelaznom matricom P

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Centralni granični teorem i zakoni velikih brojeva

Centralni granični teorem i zakoni velikih brojeva Poglavlje 8 Cetrali graiči teorem i zakoi velikih brojeva 8.1 Cetrali graiči teorem Lema 8.1 Za 1/ x 1 vrijedi Dokaz: Stavimo log1 + x x x. fx := log1 + x x, x [ 1/, 1]. Očito f0 = 0. Nadalje, po teoremu

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

Karakteristične funkcije

Karakteristične funkcije Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Matea Spajić Karakteristične funkcije Završni rad Osijek, 2015. Sveučilište J. J. Strossmayera u

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je

Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti, tada je Višekomponentne slučajne varijable Srednje vrijednosti i momenti Definicija srednje vrijednosti Ako između tri slučajne varijable postoji veza ζ = f (ξ, η) i ako su poznate sve relevantne gustoće vjerojatnosti,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα