Populacija Ciljna/uzoračka populacija
|
|
- Περικλῆς Γεννάδιος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Populacija i uzorak
2 Sadržaj predavanja Šta je populacija, šta je uzorak a šta uzorkovanje? Statističko zaključivanje Klasifikacija uzoraka: sa i bez verovatnoće, sa i bez zamenjivanja Uzoračke raspodele verovatnoća Uzoračka raspodela aritmetičkih sredina uzoraka, Centralna granična teorema Uzoračka raspodela proporcija uzoraka Uzoračka raspodela varijansi uzoraka
3 Šta je populacija? Populacija skup svih istovrsnih elemenata (jedinica posmatranja: ljudi, objekata, dogadjaja) koji imaju neku zajedničku karakteristiku od interesa Ciljna/uzoračka populacija Ciljna populacija: skup elemenata za koji želimo da generalizujemo zaključak. Uzoračka populacija: populacija koja je dostupna i koja predstavlja ciljnu populaciju (blisko koliko je to moguće), i iz koje potiče uzorak.
4 Šta je uzorak? UZORAČKA POPULACIJA UZORAK Uzorak podskup osnovnog skupa (izabran na neki način) CILJNA POPULACIJA Cilj i primena u statistici: ispitivanje određene osobine i generalizacija zaključka na populaciju
5 Šta je uzorkovanje? Uzorkovanje Proces odabira reprezentativnog dela cele populacije. Sastavni deo istraživačke metodologije. Element, jedinica posmatranja Osnovna jedinica o kojoj se informacije sakupljaju. Reprezentativnost Reprezentativan uzorak poseduje karakteristike slične onima u populaciji. Preduslovi reprezentativnosti: 1. Način izbora statističkih jedinica u uzorak mora biti nezavisan od vrednosti posmatranog obeležja. 2. Verovatnoća statističkih jedinica da uđu u uzorak mora biti unapred poznata. Pristrasan uzorak izabran na takav način da su neke jedinice iz uzoračke populacije imale veću verovatnoću da uđu u uzorak.
6 Tehnike uzorkovanja Sa verovatnoćom (slučajni) Bez verovatnoće (neslučajni)
7 Slučajni/ Neslučajni uzorak Slučajni uzorak Slučajna selekcija jedinica. Svaka jedinica u populaciji ima poznatu (jednaku i nezavisnu) verovatnoću (šansu) da uđe u uzorak. Neslučajni uzorak Nije slučajna selekcija jedinica. Nije poznata verovatnoća jedinica posmatranja u osnovnom skupu da budu izabrane za uzorak.
8 Prost slučajni uzorak 1. Jedinice posmatranja imaju podjednaku verovatnoću da uđu u uzorak. 2. Uključuje definisanje populacije i identifikaciju uzoračkog okvira. 3. Vremenski je zahtevno. 4. Moze biti i nemoguće dobiti kompletnu listu uzoračke populacije. 5. Izbor jedinica iz uzoračkog okvira može se uraditi uz pomoć kompjuterski generisanog procesa odabiranja ili tablice slučajnih brojeva. Uzorkovanje sa zamenom nakon što je element izabran, zamenjuje se i slučajno se odabira drugi element. Ovo može dovesti do toga da isti element bude izabran više puta. Češće se primenjuje uzorkovanje bez zamene. Obezbeđuje da, na svakom koraku, svaki element koji je preostao u populaciji ima istu verovatnoću da će biti izabran.
9 Zaključci o populaciji se mogu doneti...
10 ...odabirom reprezentativnog uzorka iz populacije
11 Sistematski uzorak Jedinice posmatranja se biraju sa liste uzoračke populacije izborom svake K-te jedinice. K korak izbora (uzorački interval), zavisi od veličine liste I željene veličine uzorka. K = N / n, gde je N veličina uzoračke populacije, a n veličina uzorka Nakon što je prva jedinica odabrana (slučajni početak) automatski se biraju ostale. Može dati korisne informacije ako kod jedinica u uzoračkoj populaciji postoji uređenost po intenzitetu posmatrane karakteristike. Nije pogodan ako postoje ciklične varijacije posmatrane karakteristike.
12 Stratifikovani uzorak Primenjuje se kod heterogenih populacija u odnosu na neku varijablu npr. starosna grupa, pol, geografska lokacija (stratifikujuća varijabla). Populacija se deli na stratume iz kojih se bira slučajni uzorak. Osigurava da je svaka subpopulacija odgovarajuće zastupljena u uzorku.
13 podela populacije na klastere (grupe) zatim se na slučajan način biraju klasteri koji ulaze u uzorak (tako da se na slučajan način biraju grupe - klasteri, a ne individue) koristan kada je populacija velika ili geofraski široko rasprostranjena Klaster uzorak
14 Uzorkovanje bez verovatnoće Karakteristike uzorkovanja Elementi uzorka su odabrani na bazi sopstvene procene istraživača. Rezultati sprovođenja ovih tehnika su pristrasni. Nedostaje objektivnost u odabiru uzoraka. Uzorci nisu pouzdani. Ove tehnike su pogodne i ekonomične za korišćenje. Generalizacija zaključaka Valjanost generalizacije zaključaka sa neslučajnih uzoraka na osnovni skup ostaje nepoznata.
15 Tipovi uzoraka bez verovatnoće Prigodni uzorak Izbor lako dostupnih jedinica posmatranja. Kvota uzorak Podela populacije na kategorije, npr. po polu, i neslučajan odabir ispitanika iz tih kategorija prema unapred utvrđenom broju (kvota). Namerni uzorak Istraživač bira one jedinice posmatranja za koje smatra da reprezentuju osnovni skup. Koristan za pilot studije.
16 Proces uzorkovanja Definisati Populaciju Odrediti uzorački okvir Izabrati način uzorkovanja Uzorci sa verovatnoćom Uzorci bez verovatnoće Odrediti veličinu uzorka Pristupiti realizaciji
17 Parametri, statistike tj. parametri populacije i uzoračke statistike Parametri populacije su nepoznati i nepristupačni za merenje. Npr, prosečna visina muškaraca u Srbiji (18+) je nepoznata i nemerljiva Zbog toga računamo uzoračku statistiku koja se odnosi na parametar od interesa, i donosimo zaključak. 1. Parametar statistička mera date varijable u populaciji 2. Uzoračka statistika statistička mera date varijable u uzorku Statistička mera Aritmetička sredina Parametri populacije Uzoračke statistike x Varijansa 2 sd 2 Standardna devijacija sd Proporcija p
18 Uzoračke raspodele verovatnoća Uzoračka raspodela verovatnoća je raspodela verovatnoća neke statistike. Uzoračka raspodela verovatnoća dobija se na osnovu raspodele svih mogućih vrednosti iste statistike kreiranih u svim mogućim slučajnim uzorcima iste veličine koji su izabrani na isti način iz iste populacije.
19 Uzoračke raspodele verovatnoća Uzoračka raspodela uzoračkih aritmetičkih sredina Uzoračka raspodela uzoračkih proporcija Uzoračka raspodela uzoračkih varijansi Uzoračka raspodela aritmetičkih sredina, proporcija, varijansi svih uzoraka iste veličine izabranih na isti način iz iste populacije.
20 Kreiranje uzoračke raspodele Podaci o populaciji Veličina populacije N=4 Slučajna promenljiva, X, je starost osobe Vrednosti X su: 18, 20, 22, 24 (godina) A B C D
21 Kreiranje uzoračke raspodele Parametri, zbirne mere, populacione raspodele: (nastavak) μ 1 N i X i σ 1 i ( X i N μ)
22 Kreiranje uzoračke raspodele Formirajmo sve moguće uzorke veličine n = 2 1 va 2 ga Opservacija Ops ,18 18,20 18,22 18,24 16 uzoračkih aritmetičkih sredina (nastavak) 20 20,18 20,20 20,22 20, ,18 22,20 22,22 22, ,18 24,20 24,22 24,24 16 mogućih uzoraka (uzorkovanje sa vraćanjem) 1ca 2ga Opservacija Ops
23 Kreiranje uzoračke raspodele (nastavak) Uzoračka raspodela svih uzoračkih aritmetičkih sredina 16 uzoračkih aritmetičkih sredina 1va 2ga Opservacija Ops P(X) _ Raspodela uzoračkih aritmetičkih sredina _ X
24 Kreiranje uzoračke raspodele Zbirne mere uzoračke raspodele: (nastavak) E(X) 1 N X i μ σ X 1 N (X i μ) 2 (18-21) 2 (19-21) 16 2 (24-21)
25 Poređenje populacije sa uzoračkom raspodelom p(x) Populacija N = 4 μ σ Uzoračka raspodela aritmetičkih sredina; n = 2 p(x) μ X _ σx A B C D X _ X
26 21 = 21 x 1,58 = 2,236 x n s X = SE n = 2,236 2 = 2,236 1, 41 =1,58 STANDARDNA GREŠKA (ARITMETIČKE SREDINE) (standardna devijacija uzoračke raspodele svih mogućih aritmetičkih sredina kreiranih u uzorcima koji su na isti način i iste veličine slučajno izabrani iz iste populacije)
27 Uopštavamo Ako je populacija normalno raspodeljena Normalna populaciona raspodela Normalna uzoračka raspodela sa istom aritmetičkom sredinom μ x μ x x
28 Uopštavamo centralna granična teorema Ako populacija nije normalno raspodeljena a uzorak je dovoljne veličine - n 30 (centralna granična teorema) Populaciona raspodela Uzoračka raspodela (postaje normalna sa porastom n) Manja veličina uzorka μ Veća veličina uzorka x μ x x
29 Centralna granična teorema Kada je veličina uzorka dovoljno velika n Uzoračka raspodela postaje normalna bez obzira kakva je raspodela populacije. x
30 Uopštavamo - Studentova t-raspodela Ako populaciona varijansa nije poznata u prethodno navedenim situacijama t = x - m sd / n sd 2 = 1 n -1 N å i=1 ( x i - x) 2 Mali uzorci a populacija je normalno raspodeljena (ili bar simetrično) William Gosset, 1908 g., pseudonim Student tipična kada je populaciona varijansa nepoznata pa se ocenjuje na osnovu uzoračkih podataka
31 Studentova t - raspodela Normalna raspodela t raspodela, n=2, df=1 t raspodela, n=10, df=9 t raspodela, n=30, df=29
32 Jedan uzorak ili mnogi? Da li uvek imamo sve moguće uzorke iste veličine izabrane na isti način iz iste populacije? NE, imamo po pravilu samo JEDAN uzorak i jasno nam je da će izračunata statistika verovatno biti različita da smo izabrali neki drugi uzorak. U tom jednom uzorku uvek smo sigurni da je SE (standardna greška) mera odstupanja/variranja aritmetičke sredine tog uzorka od aritmetičke sredine populacije. Dakle, ne trebaju nam svi mogući uzorci, dovoljan je samo jedan da bi donosili zaključke o populaciji iz koje taj uzorak potiče.
33 Uzoračka raspodela proporcija p je populaciona proporcija a p je uzoračka proporcija Raspodela svih mogućih uzoračkih proporcija ima binomnu raspodelu koja može da se aproksimira normalnom (CGT) kada je: np(1 p) > 9 (ili: np 5 i n(1-p) 5) p = x n m p = p s p 2 = p(1- p ) n
34 Uzoračka raspodela varijansi Uzoračka varijansa je: Uzoračka raspodela varijansi (s 2 ima aritmetičku sredinu σ 2 Ako je populaciona distribucija normalna tada je Ako je populaciona distribucija normalna tada promenljiva s 2 1 n 1 n i 1 m s 2 =s 2 (x s s 2 2 = 2s 4 n -1 i x) 2 ima 2 distribuciju sa n 1 stepena slobode (n-1)s 2 σ 2
35 p( 2 ) 2 (hi-kvadrat) raspodela uzoračka raspodela varijanse n=9 n=29 n=
36 Inferencijalna statistika statistika zaključivanja Zaključujemo o parametrima populacije (na osnovu uzoračkih statistika, a sada znamo kako se one raspodeljuju i koliko jedan uzorak odstupa od populacije iz koje potiče). Kakav tip zaključaka donosimo?
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Metod uzorka i karakteristike nekih planova
Metod uzorka i karakteristike nekih planova Metod uzorka nalazi primenu u mnogim oblastima ljudske aktivnosti. Metod uzorka se sastoji u ispitivanju jednog dela statističke mase (skupa, populacije) u cilju
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
3 Populacija i uzorak
3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.
Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim).
Str. 53;76; Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Str
Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010
Neparametarski testovi za dva nezavisna uzorka Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi Hipoteze o raspodeli obeležja se nazivaju neparametarske hipoteze, a odgovarajući testovi
Testiranje statistiqkih hipoteza
Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Uvod u neparametarske testove
Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
STATISTIKA S M E I M N I AR R 7 : METODE UZORKA
Fakultet za menadžment u turizmu i ugotiteljtvu, Opatija Sveučilišni preddiplomki tudij Polovna ekonomija u turizmu i ugotiteljtvu Noitelj kolegija: Prof. dr. c. Suzana Marković Aitentica: Jelena Komšić
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za
Osnovne teorije odlučivanja Uvod Teorija odlučivanja je analitički i sistematski pristup proučavanju procesa donošenja odluka Bez obzira o čemu donosimo odluku imamo 6 koraka za donošenje dobre odluke:
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi.
Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi. U SPSS-u su obradjeni: t test razlike između aritmetičke sredine osnovnog skupa i uzorka t test razlike
Statističke metode. doc. dr Dijana Karuović
Statističke metode doc. dr Dijana Karuović STATISTIČKE METODE Danas jedan od glavnih metoda naučnog saznanja Najvažnije statističke metode koje se upotrebljavaju: Metod uzorka Metod srednjih vrednosti
Oblasti izučavanja. VIII.1. Osnovni principi izvlačenja uzoraka. VIII. Izvlačenje uzoraka IZVLAČENJE UZORAKA 04/12/2014
Oblasti izučavanja IZVLAČENJE UZORAKA 1. Priroda i obuhvat marketinških istraživanja 2. Izvori podataka u marketinškim istraživanjima 3. Faze istraživačkog procesa 4. Eksploratorna istraživanja 5. Deskriptivna
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Populacija je skup na koji želimo da vršimo generalizaciju članovima populacije
Uzorkovanje Osnovni pojmovi Populacija univerzum osnovni skup statistička masa Populacija je skup na koji želimo da vršimo generalizaciju Pojedince, stvari ili događaje koji čine taj skup nazivamo članovima
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
7. glava STATISTIČKO OCENJIVANJE CILJEVI POGLAVLJA. Nakon čitanja ovoga poglavlja bićete u stanju da:
STATISTIČKO OCENJIVANJE CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete smisao statističkog ocenjivanja 2. shvatite razliku između tačkastih i intervalnih ocena 3. konstruišete
Jednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Statističko zaključivanje - testiranje hipoteza. Katedra za medicinsku statistiku i informatiku
Statističko zaključivanje - testiranje hipoteza Statističko zaključivanje Ideja moderne statistike je da na osnovu uzorka (dobijenog uzorkovanjem iz osnovnog skupa) donosimo zaključke o populaciji (statističko
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1
χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ
Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu
Biblioteka: ACADEMIA Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu MATEMATIČKA STATISTIKA SA PRIMENAMA
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
MATEMATIČKA STATISTIKA
Metoda Monte-Karlo Numerička metoda rešavanja matematičkih problema pomoću modeliranja slučajnih promenljivih i statističkog ocenjivanja karakteristika tih promenljivih. Primenljiva je na sve matematičke
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena.
Testiraje parametarskih hipoteza Pretpostavka (hipoteza) o parametru raspodele se zove parametarska hipoteza. Postupak jeog potvrđivaja ili odbacivaja a osovu podataka iz uzorka je parametarski test. t
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Populacija vs. uzorak - Opisivanje, ocenjivanje i testiranje. Jelena Marinković, maj 2012.
Populacija vs. uzorak - Opisivanje, ocenjivanje i testiranje Jelena Marinković, maj 01. Statistika p Nauka o generisanju informacija i znanja kroz prikupljanje, analizu i interpretaciju podataka koji su
Uvod u neparametarske testove
Str. 644;1;148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Hi-kvadrat testovi χ Str. 646;1;149 Koristi se za upoređivanje dve serije frekvencija. Vrste
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
PISMENI ISPIT IZ STATISTIKE
1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
POSTAVLJANJE I TESTIRANJE HIPOTEZA
POSTAVLJANJE I TESTIRANJE HIPOTEZA Hipoteza je precizno formulisana verbalna tvrdnja, pretpostavka o karakteristici jednog skupa ili o odnosu vrednosti posmatrane karakteristike u više skupova. U statističkim
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Binomna, Poissonova i normalna raspodela
Binomna, Poissonova i normalna raspodela Dejana Stanisavljević januar, 2012. godine Identifikacija empirijske raspodele učestalosti Teorijske raspodele verovatnoća opisuju očekivano variranje ishoda nekog
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija
18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi
Izbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
TESTIRANJE ZNAČAJNOSTI RAZLIKE
//0 TESTIRANJE ZNAČAJNOSTI RAZLIKE Z-TEST I T-TEST Beograd, 0 Ass. dr Zora Bukumirić Z-TEST I T-TEST z-testom i Studetovim t-testom testiramo razliku: jede aritmetičke sredie i pretpostavljee vredosti
TEORIJA I PRAKSA DOBIJANJA UZORAKA NA OSNOVU RASPOLOŽIVIH PODATAKA
UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET TEORIJA I PRAKSA DOBIJANJA UZORAKA NA OSNOVU RASPOLOŽIVIH PODATAKA MASTER RAD SUZANA PRICA MENTOR: PROF. DR VESNA JEVREMOVIĆ BEOGRAD, 2014. AUTOR SE ZAHVALJUJE
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Str. 454;139;91.
Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Test rešavanje zadataka
Univerzitet u Beogradu Matematički fakultet Seminarski rad iz Verovatnoće i statistike Test rešavanje zadataka Tačkaste ocene parametra raspodele student: Martin Hofer profesor: Vesna Jevremović broj indeksa:
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar