Testiranje statističkih hipoteza Materijali za nastavu iz Statistike
|
|
- Ιωάννα Καλλιγάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39
2 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu ima promatrano (populacijsko) statističko obilježje X. svaka pretpostavka koja se odnosi na tu razdiobu je (statistička) hipoteza provjera istinitosti te hipoteze je testiranje (statistički test) hipotezu koju testiramo zovemo nulta hipoteza ili nul-hipoteza i obilježavamo s H 0 alternativnu hipotezu obilježavamo s H 1 2 / 39
3 Uvod Vrste statističkih testova: parametarski - testiramo hipotezu koja se odnosi na parametar pretpostavljene razdiobe neparametarski - testiramo hipotezu koja se odnosi na tip pretpostavljene razdiobe Hipoteza je: jednostavna ako jednoznačno odreduje razdiobu statističkog obilježja X složena ako jednoznačno ne odreduje razdiobu statističkog obilježja X 3 / 39
4 Uvod Na temelju uzorka trebamo donijeti odluku o prihvaćanju ili odbacivanju nulte hipoteze. Niti jedan statistički zaključak o populaciji na bazi uzorka nije stopostotno siguran, tako i prihvaćnje neke hipoteze na temelju uzorka ne znači da je ta hipoteza točna. Umjesto hipotezu prihvaćamo ispravnije je reći na osnovi uzorka ne postoji razlog za odbacivanje hipoteze. 4 / 39
5 Uvod Prilikom donošenja odluke o istinitosti hipoteze postoje dvije vrste mogućih pogrešaka : pogreška 1. vrste: odbacili smo nultu hipotezu ako je ona istinita pogreška 2. vrste: prihvatili smo nultu hipotezu ako je ona neistinita. Moguće situacije su prikazane tablicom: prihvaćamo H 0 odbacujemo H 0 H 0 je točna pogreška 1. vrste H 0 je netočna pogreška 2. vrste 5 / 39
6 Uvod Vjerojatnosti tih pogrešaka označavamo s: α = P(pogreška 1. vrste)= P(odbacujemo H 0 H 0 točna) i β = P(pogreška 2. vrste)= P(prihvaćamo H 0 H 0 netočna). Sljedeća tablica prikazuje vjerojatnosti mogućih situacija H 0 je točna H 0 je netočna prihvaćamo H 0 1 α β odbacujemo H 0 α 1 β α je nivo signifikantnosti ili razina značajnosti, a 1-β=P(odbacujemo H 0 H 0 netočna) snaga testa. 6 / 39
7 Uvod Za testiranje hipoteze treba: (1) Definirati H 0 i H 1 ; (2) Definirati test-statistiku na osnovi čijih vrijednosti se donose odluke; (3) Za zadanu razinu značajnosti α odrediti kritično područje - skup svih mogućih vrijednosti test-statistike za koje se odbacuje nulta hipoteza u korist alternativne; (4) Ispitati da li se vrijednost test-statistike izračunate iz uzorka nalazi u kritičnom področju; (5) Zaključiti: Ako je izračunata vrijednost test-statistike u kritičnom podruǰu hipoteza H 0 se odbacuje u korist alternativne hipoteze H 1. U suprotnom se H 0 prihvaća, tj. na osnovi uzorka hipotezu ne možemo odbaciti. 7 / 39
8 Testovi o parametrima normalne razdiobe N (µ, σ 2 ) Neka je θ nepoznati parametar o kojemu ovisi pretpostavljena razdioba. Ako je nulta hipoteza H 0 : θ = θ 0 (U pravilu, za nul-hipoteze se uzimaju jednostavne hipoteze.), tada su moguće alternativne hipoteze : (i) H 1 : θ θ 0, (ii) H 1 : θ > θ 0, (iii) H 1 : θ < θ 0, Nulta hipoteza H 0 : µ = µ 0, σ 2 poznato: Test statistika Alternativna hipoteza Kritično područje H 1 : µ µ 0 C 0 =, z α ] [z α, 2 2 Z = X µ σ n Z N (0, 1) H 1 : µ > µ 0 C 0 = [z α, H 1 : µ < µ 0 C 0 =, z α ] 8 / 39
9 Parametarski testovi Nulta hipoteza H 0 : µ = µ 0, σ 2 nije poznato: Test statistika Alternativna hipoteza Kritično područje H 1 : µ µ 0 C 0 =, t α ] [t α, 2 2 T = X µ S n T t(n 1) H 1 : µ > µ 0 C 0 = [t α, H 1 : µ < µ 0 C 0 =, t α ] 9 / 39
10 Zadaci Zadatak Promatramo obilježje X koje ima normalnu razdiobu N(µ, 100). Na slučajan način odabran je uzorak od 105 elemenata. Uz razinu značajnosti α = 0.01 testirajte hipotezu H 0 : µ 0 = 30 prema hipotezi H 1 : µ 1 = / 39
11 Zadaci Zadatak Prema standardima prosječan broj nedostataka po 1m 2 tkanine ne smije biti veći od 5. Na slučajan način odabrano je 100m 2 tkanine i na njima izbrojan broj nedostataka. Dobiveni su rezultati: broj nedostataka broj m 2 tkanine Ako znamo da broj nedostataka na tkanini ima normalnu razdiobu s varijancom jednakom 4, uz razinu značajnosti α = 0.01 testirajte hipotezu da ova vrsta tkanine zadovoljava uvjete standarda. 11 / 39
12 Zadaci Zadatak Proizvodač tvrdi da je dimenzija serijski radenog proizvoda 35mm. Mjerenjem 20 slučajno odabranih proizvoda dobiveni su rezultati: dimenzija (mm) broj proizvoda Uz razinu značajnosti α = 0.05 testirajte hipotezu H 0 : µ = 35 uz alternativnu hipotezu H 1 : µ 35 (pretpostavljamo da promatrana dimenzija ima normalnu razdiobu te je varijanca nepoznata). 12 / 39
13 Zadaci Zadatak Tvornica tvrdi da je prosječan vijek trajanja proizvoda iz te tvornice 21.5 sati. Na slučajnom uzorku od 6 proizvoda iz te tvornice laboratorijskim mjerenjima vijeka trajanja dobivene su vrijednosti od 19, 18, 22, 20, 16, 25 sati. S razinom značajosti α = 0.05, testirajte da li dobiveni uzorak indicira kraći prosječan vijek trajanja proizvoda. 13 / 39
14 Test o proporciji Bez obzira kakvu razdiobu ima statističko obilježje, sredina X, za dovoljno velike uzorke, ima približno normalnu razdiobu. Promatramo statističko obilježje koje ima binomnu razdiobu : X B(n, p). Koristimo test- statistiku: Z = X p 0 p0 (1 p 0 ) n N (0, 1). Nulta hipoteza Alternativna hipoteza Kritično područje H 1 : p p 0 C 0 =, z α [z α 2 2 H 0 : p = p 0 H 1 : p > p 0 C 0 = [z α, H 1 : p < p 0 C 0 =, z α ] 14 / 39
15 Zadaci Zadatak Proizvodač tvrdi da njegove pošiljke sadrže najviše 5% neispravnih proizvoda. Uzet je slučajni uzorak od 300 komada iz jedne pošiljke i bilo je 16 neispravnih. Da li možemo prihvatiti tvrdnju proizvodača uz razinu značajnosti 0.05? 15 / 39
16 Usporedba očekivanja dviju normalno distribuiranih populacija (t-test) Promatramo statističko obilježje X na dvije različite populacije. Uz to pretpostavimo da u obje populacije promatrano obilježje ima normalnu razdiobu. Ako s X 1 i X 2 označimo obilježje na prvoj, odnosno drugoj populaciji, onda su pretpostavke: X 1 N (µ 1, σ 2 1) i X 2 N (µ 2, σ 2 2). Neka su realizirani uzorci uzeti iz prve, odnosno druge populacije opsega n 1 i n 2 redom. Testiramo hipotezu u odnosu na jednu od alternativnih: H 0 : µ 1 = µ 2 H 1 : µ 1 µ 2, H 1 : µ 1 > µ 2, H 1 : µ 1 < µ / 39
17 Usporedba očekivanja dviju normalno distribuiranih populacija (t-test) Nulta hipoteza H 0 : µ 1 = µ 2, σ 2 1 i σ2 2 poznato: Test statistika Alternativna Kritično područje hipoteza H 1 : µ 1 µ 2 C 0 =, z α 2 Z = X 1 X 2 [z σ 1 2 α + σ2 2 2 n 1 n 2 Z N (0, 1) H 1 : µ 1 > µ 2 C 0 = [z α, H 1 : µ 1 < µ 2 C 0 =, z α ] 17 / 39
18 Usporedba očekivanja dviju normalno distribuiranih populacija (t-test) Nulta hipoteza H 0 : µ 1 = µ 2, σ 2 1 = σ2 2 = σ2 nije poznato: Test statistika: T = X 1 X 2 S 1 n n 2 S 2 = (n 1 1)S 2 1 +(n 2 1)S 2 2 n 1 +n 2 2 T t(n 1 + n 2 2) Alternativna Kritično područje hipoteza H 1 : µ 1 µ 2 C 0 =, t α 1 + n 2 2 2)] [t α 1 + n 2 2 2), H 1 : µ 1 > µ 2 C 0 = [t α (n 1 + n 2 2), H 1 : µ 1 < µ 2 C 0 =, t α (n 1 + n 2 2)] 18 / 39
19 Usporedba varijanci dviju normalno distribuiranih populacija (F-test) Promatramo statističko obilježje X na dvije različite populacije. Uz to pretpostavimo da u obje populacije promatrano obilježje ima normalnu razdiobu. Ako s X 1 i X 2 označimo obilježje na prvoj, odnosno drugoj populaciji, onda su pretpostavke: X 1 N (µ 1, σ 2 1) i X 2 N (µ 2, σ 2 2). Neka su realizirani uzorci uzeti iz prve, odnosno druge populacije opsega n 1 i n 2 redom. Testiramo hipotezu u odnosu na jednu od alternativnih: H 0 : σ 2 1 = σ 2 2 H 1 : σ 2 1 σ 2 2, H 1 : σ 2 1 > σ / 39
20 Usporedba varijanci dviju normalno distribuiranih populacija (F-test) Test statistika je: F = S 2 1 S 2 2 koja ima F (Fisherovu) razdiobu s n 1 1, n 2 1 stupnjeva slobode. Nulta hipoteza H 0 : σ 2 1 = σ2 2 : Alternativna hipoteza Kritično područje H 1 : σ1 2 σ2 2 C 0 = 0, f 1 α (n 1 1, n 2 2 1)] [f α (n 1 1, n 2 2 1), H 1 : σ1 2 > σ2 2 C 0 = [f α (n 1 1, n 2 1), 20 / 39
21 Zadaci Zadatak Pomoću dvije različite metode mjerena je jedna te ista veličina. Rezultati mjerenja dani su u tablici: 1. metoda metoda Može li se uz α = 0.1 zaključiti da obje metode daju istu točnost? 21 / 39
22 Zadaci Zadatak Iz dva četvrta razreda neke škole izabrano je na slučajan način po 10 učenika i izmjerena je njihova masa (masa je normalno distribuirana), a podaci su dani u tablici. Uz razinu značajnosti 0.02 testirajte hipotezu da su varijance jednake 4.a b / 39
23 Zadaci Zadatak Psiholog je testirao dvije grupe učenika. Grupu A od 7 učenika i grupu B od 6 učenika. Broj bodova je: A grupa B grupa Da li se uz razinu značajnosti 0.1 može smatrati da je uspjeh u obje grupe isti? 23 / 39
24 χ 2 -test χ 2 -test jedan od prvih statističkih testova predložio ga je K. Pearson godine, pa je poznat i pod nazivom Pearsonov test neparametarski test pomoću χ 2 -testa testiramo nultu hipotezu da obilježje X ima odredenu (teorijsku) razdiobu protiv alternativne da nema tu razdiobu pomoću χ 2 -testa ispitujemo nezavisnost dva statistička obilježja, kao i homogenost populacija 24 / 39
25 χ 2 -test Za sve navedeno test-statistika je (općenito): H = k (f i f ti ) 2 f ti i=1 gdje su f i eksperimentalne, a f ti teorijske frekvencije. Ako je za neki i očekivana (teorijska) frekvencija f ti < 5 združimo taj razred sa susjednim(a) razredom(ima) tako da novodobiveni razred zadovoljava uvjet da mu je očekivana frekvencija barem / 39
26 χ 2 -test Uz pretpostavku da je H 0 točna hipoteza za velike n (n ) vrijedi H χ 2 (r l 1) gdje χ 2 (r l 1) označava χ 2 razdiobu s (r l 1) stupnjeva slobode čiju vrijednost čitamo iz tablica. r je (konačan) broj razreda u uzorku l broj nepoznatih parametara. 26 / 39
27 χ 2 -test Za zadanu pogrešku prve vrste α, kritično područje odredujemo iz uvjeta Dakle, kritično područje je: P(H > χ 2 (r l 1) H 0 ) = α. C 0 = [χ 2 α(r l 1), Ako s h označimo vrijednost test statistike izračunate iz uzorka, onda nultu hipotezu odbacujemo ako h C 0 tj. h χ 2 α(r l 1). 27 / 39
28 Zadaci Zadatak Proizvodač tvrdi da je 5% njegovih proizvoda prve klase, 92% druge i 3% treće klase. U slučajnom uzorku od 500 proizvoda nadeno je 40 proizvoda prve, 432 druge i 28 treće klase. Uz razinu značajnosti 0.05, testirajte hipotezu da je proizvodač u pravu. Zadatak Iz intervala [0, 1] generirano je 200 slučajnih brojeva koji su razvrstani u 5 podintervala: interval [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1] broj br Da li su frekvencije ravnomjerno rasporedene po intervalima uz razinu značajnosti α = 0.01 i α = 0.05? 28 / 39
29 Zadaci Zadatak Kocka se baca 90 puta. Rezultati su dani u tablici: Broj na kocki Broj pojavljivanja Da li je kocka ispravna uz razinu značajnosti α = 0.05? 29 / 39
30 Zadaci Zadatak U cilju ispitivanja nekog svojstva pamučnih vlakana mjerena je njihova duljina i dobiveni su sljedeći rezultati: duljina (u cm) broj vlakana Testirati hipotezu o normalnoj distribuciji uz razinu značajnosti / 39
31 Zadaci Zadatak Anketirano je 100 radnika neke tvornice o udaljenosti od kuće do posla. S razinom značajnosti 0.05, testirajte hipotezu da se radi o uzorku iz populacije s normalnom distribucijom. udalj [0, 2 [2, 4 [4, 6 [6, 8 [8, 10 [10, 12 [12, 14 br rad / 39
32 Zadaci Zadatak U jednom trgovačkom centru 200 puta je registriran broj kupaca u 10 sekundi. Dobiveni su rezultati: broj kupaca broj mjerenja Testirajte hipotezu da se radi o Poissonovoj razdiobi s vjerojatnošću / 39
33 Zadaci Zadatak Provjerite da li se empirijska razdioba dana tablicom: x i f i podudara s Poissonovom razdiobom, s pouzdanošću 95%. 33 / 39
34 χ 2 - test nezavisnosti dviju varijabli Neka je (X 1, Y 1 ), (X 2, Y 2 ),... (X n, Y n ) slučajni uzorak za dvodimenzionalno diskretno statističko obilježje (X, Y ) i neka je pritom: Skup vrijednosti obilježja X : Skup vrijednosti obilježja Y : Skup vrijednosti obilježja (X, Y ) : R(X ) = {a 1,..., a r }; R(Y ) = {b 1,..., b s }; R[(X, Y )] = {(a i, b j ) : 1 i r, 1 j s}. 34 / 39
35 χ 2 - test nezavisnosti dviju varijabli f ij : frekvencija od (a i, b j ) u uzorku f i : (marginalna) frekvencija od a i u uzorku g j : (marginalna) frekvencija od b j u uzorku Vrijedi: s f i = f ij, r g j = j=1 i=1 Označimo: p ij = P(X = a i, Y = b j ) p i = P(X = a i ) q j = P(X = b j ) f ij 35 / 39
36 χ 2 - test nezavisnosti dviju varijabli Kontingencijska frekvencijska tablica: X Y b 1 b 2... b s Σ a 1 f 11 f f 1s f 1 a 2 f 21 f f 2s f a r f r1 f r2... f rs f r Σ g 1 g 2... g s n 36 / 39
37 χ 2 - test nezavisnosti dviju varijabli Hipoteze su: H 0 : X i Y su nezavisna obilježja i H 1 : X i Y su zavisna obilježja, tj. H 0 : p ij = p i q j za sve i i j, a H 1 : postoje i, j takvi da p ij p i q j Uz pretpostavku da je H 0 točna hipoteza, procjene za p i i q j su: ˆp i = f i n, Očekivane (teorijske) vrijednosti f tij ˆq j = g j n od f ij uz H 0 su: Test-statistika je: f tij = n ˆp i ˆq j = n fi n gj n = f i g j n H = r i=1 j=1 s (f ij f tij ) 2 f tij 37 / 39
38 χ 2 - test nezavisnosti dviju varijabli Ako je H 0 istinita, tada za n : H χ 2 ((r 1) (s 1)), gdje χ 2 ((r 1) (s 1)) označava χ 2 razdiobu s ((r 1) (s 1)) stupnjeva slobode. Za zadanu pogrešku prve vrste α, kritično područje odredujemo iz uvjeta Dakle, kritično područje je: P(H > χ 2 ((r 1) (s 1)) H 0 ) = α. C 0 = [χ 2 α((r 1) (s 1)),, pritome χ 2 α((r 1) (s 1)) čitamo iz tablica. Ako s h označiimo vrijednost test statistike izračunate iz uzorka, onda nultu hipotezu odbacujemo ako h C 0 tj. h χ 2 α((r 1) (s 1)). 38 / 39
39 Zadaci Zadatak U cilju ispitivanja uspješnosti na kolokvijima iz statistike interesira nas da li prolaznost na drugom kolokviju ovisi o prolaznosti na prvom kolokviju! Za slučajno odabranih 120 studenata dobiveni su podaci dani u tablici. Možete li na osnovu ovih podataka zaključiti da uspjeh na drugom kolokviju ovisi o uspjehu na prvom kolokviju, uz razinu značajnosti 0.01? Kolokvij Položili Pali / 39
(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1
χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ
PISMENI ISPIT IZ STATISTIKE
1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila
4 Testiranje statističkih hipoteza
4 Testiranje statističkih hipoteza 1 4.1. Statistička hipoteza Promatramo statističko obilježje X. Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X. Kažemo da je statistička
Testiranje statistiqkih hipoteza
Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene
3 Populacija i uzorak
3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Slučajne varijable Materijali za nastavu iz Statistike
Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
VJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016.
Broj zadataka: 5 Vrijeme rješavanja: 0 min Ukupan broj bodova: 50 Zadatak.. kolokvij - 0. lipnja 0. (a Ako su X i Y diskretne slučajne varijable, dokažite da vrijedi formula E [X + Y ] = E [X] + E [Y ].
9. TESTIRANJE HIPOTEZA O PARAMETRU. Josipa Perkov, prof., pred. 1
9. TESTIRANJE HIPOTEZA O PARAMETRU Josipa Perkov, prof., pred. 1 na prethodnom predavanju upoznali smo se s metodom i postupcima koji omogućavaju da se iz dijela populacije, koji je slučajno izabran, procijeni
nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena.
Testiraje parametarskih hipoteza Pretpostavka (hipoteza) o parametru raspodele se zove parametarska hipoteza. Postupak jeog potvrđivaja ili odbacivaja a osovu podataka iz uzorka je parametarski test. t
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa
Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE
13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE χ - TEST χ -test je neparametrijski test kojim se vrlo uspješno rješavaju problemi masovnih pojava kao što su: testiranje hipoteze da distribucija
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Statistička obrada podataka
Statistička obrada podataka Ana Anušić Ervin Duraković Hrvoje Maltarić Ivan Pažin Sažetak U ovom članku provodimo statističko istraživanje koje se bazira na zavisnosti uspjeha na prijamnom ispitu i prve
Počela biostatistike, Poslijediplomski interdisciplinarni doktorski studij Molekularne bioznanosti. Molekularne bioznanosti. Molekularne bioznanosti
Analiza brojčanih podataka Nora Nikolac Klinički zavod za kemiju KB Sestre milosrdnice Kolegij: Počela biostatistike Statistička hipoteza postupak testiranja 1. postavljanje hipoteze: H 0, H 1 2. odabir
Uvod u neparametarske testove
Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.
Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,
Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim).
Str. 53;76; Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama
Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010
Neparametarski testovi za dva nezavisna uzorka Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi Hipoteze o raspodeli obeležja se nazivaju neparametarske hipoteze, a odgovarajući testovi
STATISTIKA S M E I M N I AR R 7 : METODE UZORKA
Fakultet za menadžment u turizmu i ugotiteljtvu, Opatija Sveučilišni preddiplomki tudij Polovna ekonomija u turizmu i ugotiteljtvu Noitelj kolegija: Prof. dr. c. Suzana Marković Aitentica: Jelena Komšić
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Izbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI. Specijalistički diplomski stručni studij
SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI Specijalistički diplomski stručni studij Test hipoteze o jednakosti aritmetičkih sredina K osnovnih skupova Seminarski rad Kolegij: Odabrana poglavlja
Osnove teorije uzoraka
Oove teorije uzoraka Oove teorije uzoraka UZORAK: lučaji, reprezetativi dio oovog kupa populacije Uzorci: 1.uzorak:,, 1 1.uzorak:,, i.uzorak:,, i i Razdioba aritmetičke redie uzorka f ( ) f ( ) razdioba
Str
Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Vjeºbe - Statistika Praktikum Statisti ki testovi (1)
Vjeºbe - Statistika Praktikum Statisti ki testovi (1) Usporedba o ekivanja dviju normalno distribuiranih populacija (t-test) Nevezani uzorci Mjerimo neko statisti ko obiljeºje u dvije razli ite populacije
Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi.
Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi. U SPSS-u su obradjeni: t test razlike između aritmetičke sredine osnovnog skupa i uzorka t test razlike
Statističko zaključivanje jedna varijabla
Poglavlje 5 Statističko zaključivanje jedna varijabla 5.1 Procjena distribucije, očekivanja i varijance U prethodnim poglavljima naučili smo da se veličine promatrane na jedinkama obuhvaćenim nekim istraživanjem
10. domaća zadaća. 3. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od odredite:
Napomena: U svim zadacima treba koristiti tablicu standardne normalne razdiobe. 1. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od 10 5 odredite: a) P(X 1.16), b) P(X 0.59);
Zaključivanje o jednakosti distribucija temeljeno na dva uzorka
Zaključivanje o jednakosti distribucija 1 Zaključivanje o jednakosti distribucija temeljeno na dva uzorka Odgovorom na ovako postavljeno pitanje u praksi možemo zaključiti dolazi li do promjene obilježja
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Prilagodba modela podacima. Vjeºbe - Statistika Praktikum Statisti ki testovi (2)
Vjeºbe - Statistika Praktikum Statisti ki testovi (2) Prilagodba modela podacima U praksi naj e² e imamo sljede i problem: Raspolaºemo s realizacijom nekog slu ajnog uzorka i htjeli bi utvrditi iz kojeg
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
VJEROJATNOST popravni kolokvij veljače 2017.
Zadatak 1. (20 bodova) (a) (4 boda) Precizno definirajte pojam σ-algebre događaja na nepraznom skupu Ω. (b) (6 bodova) Neka je (Ω, F, P) vjerojatnosni prostor i A, B F događaji. Pomoću aksioma vjerojatnosti
X. Testiranje hipoteza. Osnovni koncepti testiranja hipoteza TESTIRANJE HIPOTEZA OSNOVNI KONCEPTI I TESTOVI POVEZANOSTI 19/11/15
TESTIRANJE HIPOTEZA OSNOVNI KONCEPTI I TESTOVI POVEZANOSTI X. Testiranje hipoteza Osnovni koncepti testiranja hipoteza Unakrsno tabeliranje i hi-kvadrat Testiranje hipoteza o srednjoj vrednosti i proporcijama
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Analiza varijanse sa jednim Posmatra se samo jedna promenljiva
ANOVA Analiza varijanse (ANOVA) Analiza varijanse sa jednim faktorom Proširena ANOVA tabela 2 Tehnike za analizu podataka Analiza varijanse sa jednim faktorom Posmatra se samo jedna promenljiva Posmatra
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
BILJEŠKE ZA PREDAVANJA (za internu uporabu)
1. Statistika - Nazivlje... 2 2. Statistika podjela statističkih analiza... 2 3. Objekti, varijable, mjerne skale... 3 4. Ekstremne i nedostajuće vrijednosti podaci... 4 5. Ciljevi statističke analize...
Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:
2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
TESTIRANJE ZNAČAJNOSTI RAZLIKE
//0 TESTIRANJE ZNAČAJNOSTI RAZLIKE Z-TEST I T-TEST Beograd, 0 Ass. dr Zora Bukumirić Z-TEST I T-TEST z-testom i Studetovim t-testom testiramo razliku: jede aritmetičke sredie i pretpostavljee vredosti
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Testiranje statisti kih hipoteza. Vjeºbe - Statistika Praktikum
Vjeºbe - Statistika Praktikum Testiranje statisti kih hipoteza Testiranje statisti kih hipoteza Statisti ka hipoteza je pretpostavka o populacijskoj razdiobi promatrane varijable. U statisti kom modelu
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Slučajni procesi Prvi kolokvij travnja 2015.
Zadatak Prvi kolokvij - 20. travnja 205. (a) (3 boda) Neka je (Ω,F,P) vjerojatnosni prostor, neka je G σ-podalgebra od F te neka je X slučajna varijabla na (Ω,F,P) takva da je X 0 g.s. s konačnim očekivanjem.
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Uvod u neparametrijske testove. Usporedba. Neparametrijske inačice t-testa za dva nezavisna uzorka. dr. sc. Goran Kardum
Uvod u neparametrijske testove dr. sc. Goran Kardum 1 Usporedba NACRT ISTRAŽIVANJA PARAMETRIJSKA PROCEDURA NEPARAMETRIJSKA PROCEDURA Dva nezavisna uzorka T-test Mann-Whitney U-test Dva zavisna uzorka T-test
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
STATISTIKA. KONCEPTI : POPULACIJA i UZORAK. Primjer: svi glasači, samo neki glasači
STATISTIKA KONCEPTI : POPULACIJA i UZORAK Primjer: svi glasači, samo neki glasači populacija uključuje sve podatke, a uzorak samo dio, slučajno izabranih kako procjeniti reprezentativni element? MJERE
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s