Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
|
|
- Κλωθώ Γιάγκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju jedan za drugim: a Sa vraćanjem, a redosled izabranih brojeva je bitan b Sa vraćanjem, a redosled izabranih brojeva nije bitan c Bez vraćanja, a redosled izabranih brojeva je bitan d Bez vraćanja, a redosled izabranih brojeva nije bitan a Elementarni dogadjaji su uredjene petorke brojeva a, b, c, d, e i ima ih 00 5 varijacije sa ponavljanjem 5-te klase od 00 elemenata b Elementarni dogadjaji su petočlani skupovi a, b, c, d, e} i ima ih 0 kombinacije sa ponavljanjem 5-te klase od 00 elemenata 5 c Elementarni dogadjaji su uredjene petorke brojeva a, b, c, d, e i ima ih varijacije bez ponavljanja 5-te klase od 00 elemenata d Elementarni dogadjaji su petočlani skupovi a, b, c, d, e} i ima ih 00 kombinacije bez ponavljanja 5-te klase od 00 elemenata 5 2 Odrediti verovatnoću da se od slova i, l, s, t, formira jedna od reči list ili stil 2 3 Odrediti verovatnoće posmatranih dogadjaja ako se kocka numerisana brojevima,2,, 6 baca dva puta: a D = zbir dobijenih brojeva jednak 9 } b D 2 = zbir dobijenih brojeva veći od 5 a manji od 0 }
2 c D 3 = zbir dobijenih brojeva je paran broj } d D = prvi dobijeni broj je veći od drugog } e D 5 = veći od dobijenih brojeva je manji od } f D 6 = bar jedan od dobijenih brojeva je neparan } g D 7 = zbir kvadrata dobijenih brojeva je 25 } a P D = b P D 36 2 = P = 6+P = 7+P = 8+P = 9 = 20 c P D 36 3 = P = 2 + P = + + P = 2 = 2 d P D = 5 e P D 36 5 = 9 f P D 36 6 = P D 6 = 27 g 36 P D = 2 36 Kocka numerisana brojevima,2,, 6 baca se puta Odrediti verovatnoće da su: a svi dobijeni brojevi različiti b svi dobijeni brojevi jednaki c jedan od dobijenih brojeva jednak, a ostali jednaki medjusobno i različiti od a 6! 6 b c Iz špila od 52 karte na slučajan način su izabrane karte Odrediti verovatnoću dogadjaja: a D = izabrane su desetke } b D 2 = izabrana je bar jedna desetka }
3 c D 3 = sve izabrane karte su različitog znaka } d D = sve izabrane karte su iste boje } a 52 b 8 52 c d U vezi sa rezultatima bacanja dve kocke definisani su dogadjaji: A = zbir dobijenih brojeva je paran broj }, B = broj na prvoj kocki je neparan }, C = broj na drugoj kocki je neparan } Da li su dogadjaji A, B i C nezavisni?
4 P AB = P BC = P AC = P ABC =, P A = P B = P C = pa su dogadjaji A, B i C zavisni a nezavisni su 2 u parovima 7 Date su dve kutije U prvoj se nalazi a belih, b crnih, u drugoj c belih i d crnih kuglica Iz prve kutije se prebacuje jedna kuglica u drugu kutiju Iz druge kutije se izvlači kuglica Naći verovatnoću da je ona bela Neka je A dogadjaj da se izvlači bela kuglica, H hipoteza da je prebačena bela, H 2 hipoteza da je prebačena crna P H = P A = a, P H a+b 2 = b a c+ + b c a+b c+d+ a+b c+d+, P A/H a+b = c+, P A/H c+d+ 2 = c, c+d+ 8 U tri istovetne kutije su bele i crne kuglice, i to: u prvoj kutiji bele i 2 crne, u drugoj kutiji 6 belih i 3 crne i u trećoj 7 belih i 2 crne Iz jedne od kutija je na slučajan način izabrana jedna kuglica Naći verovatnoću da je ona bela Ako je izabrana bela, oderditi verovatnoću da je izabrana iz prve kutije Neka je A dogadjaj da se izvlači bela kuglica, H hipoteza da je izabrana kuglica iz prve kutije, H 2 hipoteza da je izabrana kuglica iz druge kutije i H 3 hipoteza da je izabrana kuglica iz treće kutije Po formuli potpune verovatnoće dobijamo da je P A = 9 Po Bajesovoj 27 formuli je P H /A = U kutiji su bele i tri crne kugle Iz nje se vade kugle do prvog pojavljivanja bele Napisati zakon raspodele slučajne promenljive X koja predstavlja broj izvlačenja kuglica Diskretna slučajna promenljiva X data je zakonom raspodele , 08 0, 0, 32 0, 2 Naći verovatnoću dogadjaja A = X < 2, B = X < 3 i C = < X 3
5 P A = 0, 8, P B = 0, 72 i P C = 0, 52 Diskretna slučajna promenljiva X data je zakonom raspodele , 2 0, 25 0, 3 0, 5 0, Naći zakon raspodele slučajnih promenljivih Y = 2X i Z = X 2 Y : , 2 0, 25 0, 3 0, 5 0, i Z : 9 0, 3 0, 5 0, 2 2 Dati su zakoni raspodele slučajnih promenljivih X i Y : 2 3 0, 3 0, 5 0, 2 i Y : 2 0, 0, 6 Naći zakon raspodele slučajnih promenljivih Z = X + Y i W = X Y i W : Z : 0 2 0, 2 0, 38 0, 38 0, , 08 0, 2 0, 2 0, 2 0, 8 3 Diskretna slučajna promenljiva X data je zakonom raspodele , 0, 2 0, 25 0, 5 0, 0, 2 Naći matematičko očekivanje i varijansu slučajnih promenljivih X, 2X i X 2
6 EX = 0, 55, V ar X = 2675, E 2X =, V ar 2X = 0, 59, EX 2 = 295, V ar X 2 = 075 Data je funkcija raspodele neke slučajne promenljive X 0, x < 3, F x = x 32, 3 x < 5,, x > 5 Naći gustinu raspodele fx i verovatnoću P X [3, P X [3, = 0, x < 3, fx = x 3, 3 x < 5, 2 0, x > 5, 5 Za koju vrednost parametra C funkcija C, x, fx = x 0, x <, predstavlja gustinu raspodele neke slučajne promenljive X? Naći P < X < 5 C = 3, P < X < 5 = Data je gustina raspodele slučajne promenljive X 3, x, fx = x 0, x <, Naći funkciju raspodele F x i skicirati grafike funkcija fx i F x F x = 0, x,, x 3 x > 7 Data je gustina raspodele slučajne promenljive X 3, x, fx = x 0, x < Naći matematičko očekivanje i varijansu slučajne promenljive X EX = 9 29, V ar X = 3 85
7 8 Data je gustina raspodele slučajne promenljive X 0, x < 0, fx = 8 x, 0 x < 0, x Naći matematičko očekivanje i varijansu slučajne promenljive X EX = 8 3, V ar X = Data je gustina raspodele slučajne promenljive X fx = Naći A, EX, i V ar X 0, 25 A, x [0, ], 0, x / [0, ] Iz uslova normiranosti imamo da je A = pa X ima uniformnu raspodelu na [0, ] Iz toga sledi da je EX = 2 i V ar X = 3 20 Data je gustina raspodele slučajne promenljive X fx = Naći λ, EX, i V ar X λ e x, x 0, 0, x < 0, Iz uslova normiranosti imamo da je λ = pa X ima eksponencijalnu raspodelu Iz toga sledi da je EX = i V ar X = 6 2 Dvodimenzionalna diskretna slučajna promenljiva je zadata zakonom raspodele Naći: X\Y 2 3 0,6 0,2 0,08 2 0,28 0, 0,25 a Zakone raspodele slučajnih promenljivih X i Y b Ispitati zavisnost slučajnih promenljivih X i Y c EX i EY
8 d V ar X i V ar Y e Covar X, Y i ρx, Y a 2 0, 36 0, 6, Y : 2 3 0, 0, 23 0, 33 b Zavisne c EX =, 6, EY =, 89; d V ar X = 0, 230, V ar Y = 0, 7579; e Covar X, Y = 0, 00, ρx, Y = 0, Dvodimenzionalna diskretna slučajna promenljiva je zadata zakonom raspodele X\Y ,2 0,03 0,05 0,2 0,6 0,5 0,30 0,35 Naći uslovno matematičko očekivanje EX Y = 2 EX Y = 2 = Gustina dvodimenzionalne neprekidne slučajne promenljive je zadata sa fx = C y xy, x, y D, 0, x, y / D, gde je D = x, y 0 x, 0 y } a Naći koeficijent C b Naći gustine raspodela slučajnih promenljivih X i Y c Naći P X, Y D, gde je D = x, y 0, 7 x 3, 0 y 0, 3} d Ispitati zavisnost slučajnih promenljivih X i Y e Naći parcijalne funkcije raspodele slučajnih promenljivih X i Y f Naći EX i EY g Naći V ar X i V ar Y ;
9 h Naći Covar X, Y i ρx, Y a C = ; b f x = 2 x, x [0, ], 0, x / [0, ], f 2 y = 2y, y [0, ], 0, y / [0, ] ; c 0,008; d Nezavisne; e 0, x 0, F x = 2x x 2, 0 < x,, x >, 0, y 0, F 2 y = y 2, 0 < y,, y > ; f EX =, EY = 2 ; g V ar X =, V ar Y = ; h Covar X, Y = , ρx, Y = 0
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραJednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
Διαβάστε περισσότεραIspit iz Matematike 2
Ispit iz Matematike 2 I grupa 1. Dato je preslikavanje H: M 2x2 M 2x2, H A = 1 2 A + AT. Pokazati da je to preslikavanje linearni operator, nadi matricu, sopstvene vrednosti i sopstvene vektore tog operatora.
Διαβάστε περισσότεραVEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013.
VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. 1. Novqi se baca tri puta. (a) Zapisati skup svih mogu ih ishoda. (b) Oznaqimo sa A k događaj da je u k-tom bacanju palo pismo, k {1, 2, 3}. Koriste
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραZavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Διαβάστε περισσότεραRešenje predhodnog primera: Neka je A događaj izvlačenja crne kuglice, a B verovatnoća izvlačenja bele kuglice iz prvog izvlačenja.
USLOVNA VEROVATNOĆA Često smo u prilici da tražimo verovatnoću nekog događaja A, posedujući informaciju o tome da se događaj B realizovao ili pretpostavljajući da će se realizovati. U kesi se nalazi belih
Διαβάστε περισσότεραVJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.
Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραSkup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }
VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,
Διαβάστε περισσότεραZadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Διαβάστε περισσότεραDRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραProgram testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Διαβάστε περισσότεραMATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότερα4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Διαβάστε περισσότερα3 Populacija i uzorak
3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραVerovatnoća i Statistika. I deo. Verovatnoća. Beleške Prof. Aleksandra Ivića
Verovatnoća i Statistika I deo. Verovatnoća Beleške Prof. Aleksandra Ivića 0.1 Slučajni doga - daji i osnovni pojmovi verovatnoće Matematička teorija verovatnoće je grana čiste matematike. Teorija verovatnoće
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραTeorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Διαβάστε περισσότεραOsnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Διαβάστε περισσότεραAutori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu
Biblioteka: ACADEMIA Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu MATEMATIČKA STATISTIKA SA PRIMENAMA
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραZadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
Διαβάστε περισσότεραTestiranje statistiqkih hipoteza
Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραKOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Διαβάστε περισσότεραVJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ==========================
VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== M. JOVANOVIĆ M. MERKLE Z. MITROVIĆ Elektrotehnički fakultet Banja Luka ================================== ii Autori: dr Milan
Διαβάστε περισσότεραFunkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραSadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI
Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........
Διαβάστε περισσότεραPrvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Διαβάστε περισσότεραPID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότεραMašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραSlučajne varijable Materijali za nastavu iz Statistike
Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje
Διαβάστε περισσότεραKVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Διαβάστε περισσότεραSadrˇzaj. Sadrˇzaj 1. 4 UVJETNA VJEROJATNOST Ponovimo... 14
Sadrˇzaj Sadrˇzaj 1 4 UVJETNA VJEROJATNOST 3 4.1 Ponovimo................................. 14 1 Radni materijal 2 Poglavlje 4 UVJETNA VJEROJATNOST Thomas Bayes (1702 1762) uvodi pojam uvjetne vjerojatnosti:
Διαβάστε περισσότεραMatematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.
Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i
Διαβάστε περισσότεραVJEROJATNOST popravni kolokvij veljače 2017.
Zadatak 1. (20 bodova) (a) (4 boda) Precizno definirajte pojam σ-algebre događaja na nepraznom skupu Ω. (b) (6 bodova) Neka je (Ω, F, P) vjerojatnosni prostor i A, B F događaji. Pomoću aksioma vjerojatnosti
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραUvod u vjerojatnost i matematičku statistiku
Uvod u vjerojatnost i matematičku statistiku - vježbe - Danijel Krizmanić 28. rujna 2007. Sadržaj Osnove vjerojatnosti 2 2 Kombinatorika i vjerojatnost 5 3 Uvjetna vjerojatnost. Nezavisnost 9 4 Geometrijske
Διαβάστε περισσότεραDvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Διαβάστε περισσότεραPOTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Διαβάστε περισσότερα21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότερα1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
Διαβάστε περισσότερα1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici
Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)
Διαβάστε περισσότεραMatematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραUvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραXI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Διαβάστε περισσότεραPredgovor 7. Uvod 8. 1 Uvod u teoriju verovatnoće Algebra dogad aja Aksiome teorije verovatnoće... 13
Sadržaj Predgovor 7 Uvod 8 1 Uvod u teoriju verovatnoće 11 11 Algebra dogad aja 12 12 Aksiome teorije verovatnoće 13 13 Metode zadavanja verovatnoće 16 131 Klasični metod 16 132 Metod zadavanja verovatnoće
Διαβάστε περισσότεραKlasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Διαβάστε περισσότεραSume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Διαβάστε περισσότεραPitanja za eliminacioni test od ranijih godina Januar Dat je niz brojeva, tipa Napisati koliko iznosi medijana.
Pitanja za eliminacioni test od ranijih godina Januar 2013. *Medijana i modus: 1. Naci medijanu: 7, 5, 4, 17, 15, 22, 25, 17, 20, 23 2. Dat je niz brojeva, tipa 2 4 8 6 2 2 5 3. Napisati koliko iznosi
Διαβάστε περισσότεραUvod u vjerojatnost i statistiku
Vježbe 5. 1 Uvjetna vjerojatnost i nezavisnost dogadaja 2 Zadaci 3 Formula potpune vjerojatnosti 4 Bayesova formula 5 Zadaci Monty Hall problem - Koze i auto I Pretpostavite da igrate igru u kojoj birate
Διαβάστε περισσότεραPismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραObrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Διαβάστε περισσότεραPrvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραVerovatnoće i statistike
Silvia Gilezan Zorana Lužanin Tatjana Grbić Biljana Mihailović Ljubo Nedović Zoran Ovcin Jelena Ivetić Ksenija Doroslovački Zbirka rešenih zadataka iz Verovatnoće i statistike Novi Sad, 9. godine Naslov:
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραOvo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραZADACI SA VEBI IZ PREDMETA VEROVATNOA I STATISTIKA A. dr Milan Jovanovi
ZADACI SA VEBI IZ PREDMETA VEROVATNOA I STATISTIKA A dr Milan Jovanovi TEORIJA VEROVATNOE 1. Bacaju se istovremeno novqi i kockica. Odrediti skup elementarnih ishoda. 2. U kutiji su qetiri listia obeleena
Διαβάστε περισσότερα2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI
2. OSNOVNI POJMOVI TEORIJE VJEROJATNOSTI 2. ALGEBRA DOGAĐAJA 2.. Intuitivna definicija Slučajan pokus (eksperiment) jest takav pokus čiji ishodi nisu jednoznačno određeni skupom uvjeta pokusa. Sa Ω označavamo
Διαβάστε περισσότεραSTATISTIKA. Miroslav M. Risti 2008/2009. Katedra za Matematiku Prirodno-matematiqki fakultet Univerzitet u Nixu
STATISTIKA Miroslav M. Risti Katedra za Matematiku Prirodno-matematiqki fakultet Univerzitet u Nixu 2008/2009 Literatura Miroslav M. Risti, Biljana Q. Popovi, Miodrag S. orđevi, Statistika za studente geografije,
Διαβάστε περισσότεραI Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
Διαβάστε περισσότεραDeljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.
Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat
Διαβάστε περισσότεραZadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
Διαβάστε περισσότεραTrigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
Διαβάστε περισσότερα