HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO
|
|
- Νηλεύς Μεσσηνέζης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 HEMIJA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole školska 2012/2013. godina UPUTSTVO Ne otvarajte test dok vam test-administrator ne kaže da možete početi sa radom. Dozvoljen pribor: grafitna olovka, gumica i hemijska olovka. Učenikov rad mora biti napisan hemijskom olovkom. Samo skice i grafici mogu biti nacrtani grafitnom olovkom. Tokom ispita dopuštena je upotreba digitrona (džepnog kalkulatora). Pažljivo pročitajte svaki zadatak. Pažljivo pročitajte uputstva koja su napisana ispred svake grupe zadataka. U zadacima od 1 do 5 zaokružite slovo ispred tačnog odgovora. Prilikom rješavanja zadataka 6 i 7 pažljivo popunite tabelu. U zadacima od 8 do 15 rješenja jasno i precizno napišite na za to predviđeno mjesto. Zadatke rješavajte postupno, pravilno zapišite jedinice mjere a brojne vrijednosti zaokružite na dvije decimale. Ako zadatak rješavate na više načina, nedvosmisleno označite koje rješenje da ocjenjivač boduje. Zadatak će se vrednovati sa 0 bodova ako je: netačan zaokruženo više ponuđenih odgovora nečitko i nejasno napisan rješenje napisano grafitnom olovkom Ukoliko pogriješite, prekrižite i rješavajte ponovo. Nije dozvoljena upotreba korektora. Kao prilog testu dat je Periodni sistem elemenata. Želimo vam puno uspjeha! šifra učenika
2 EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠ KOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENI KANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAE KSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠK OLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIK ANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEK STERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKO LEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKA NAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKST ERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLE ŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANA KRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTER NAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠK OLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKR AJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNA PROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOL SKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJ UIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPR O
3
4 U pitanjima od 1 do 5 zaokružite slovo ispred tačnog odgovora. 1. Zaokružite slovo ispred formule baze. A. NaOH B. NaCl C. H 2 SO 4 D. CaO 2. U kom nizu se nalaze samo metali? A. K, Na, Li B. Li, H, K C. Na, Cl, N D. S, Fe, O 4 3. Zaokružite slovo ispred tačne tvrdnje. A. Skrob se rastvara u hladnoj vodi. B. Skrob se sastoji od ostatka glukoze. C. Saharoza je monosaharid. D. Celuloza je disaharid. 4. Jedinjenje C 4 H 8 O 2 koje u reakciji sa vodom daje etansku kiselinu i metanol je: A. etil-etanoat B. etil-metanoat C. metil-etanoat D. metil-metanoat 4
5 5. Koja od navedenih tvrdnji nije tačna? Alkalni metali: A. imaju jedan valentni elektron B. njihovi oksidi su kisjeli C. u prirodi se nalaze samo u obliku jedinjenja D. sa kiseonikom grade okside U zadacima 6 i 7 pažljivo popunite tabele. 6. Upišite X ispred odgovarajuće tvrdnje (tačne ili netačne). A. Aluminijum ima raspored elektrona: K-2, L-8, M-3. B. Ruda aluminijuma je boksit Al 2 O 3 2H 2 O. 5 C. Valenca aluminijuma je jedan. D. Oksid aluminijuma reaguje sa vodom. TVRDNJA TAČNA NETAČNA A. B. C. D. 5
6 7. Upišite X na odgovarajuće mjesto u tabeli tako da pravilno povežete nazive hemijskog jedinjenja sa odgovarajućom formulom. A. heksen 1. C 6 H 10 B. heksin 2. C 6 H 12 C. heksan 3. C 6 H 6 4. C 6 H 14 Naziv jedinjenja A. B. C. Formula jedinjenja U zadacima od 8 do 15 upišite rješenje na za to predviđeno mjesto. 8. Rasporedi parove elemenata prema tipu hemijske veze koju mogu da ostvare: 1. K - Br 2. H - Cl 3. N - H 4. O - O Jonska veza Polarna kovalentna veza Nepolarna kovalentna veza 2 bod 6
7 9. Atomi elementa X građeni su od 7 protona, 7 neutrona i 7 elektrona. Odrediti: Rješenje: a) maseni i atomski broj tog elementa b) njegovu grupu i periodu. 10. Reakcija etina sa bromom je reakcija. 1 bod 7
8 11. Napišite racionalnu strukturnu formulu α-aminopropanske kiseline (alanina). Rješenje: 1 bod 8
9 12. Napišite molekulske i racionalne strukturne formule navedenih jedinjenja. Odrediti koji od njih su međusobno izomeri. Rješenje: A. 1-penten B. 2-metil 2-buten C. 2,2-dimetil butan D. 2-pentin E. 2-penten 3 boda 9
10 10
11 13. Popunite tabelu tako da pored naziva kiselina napišete formule, kao i formule njihovih anhidrida. Kiselina Formula kiseline Formula anhidrida Nitratna Fosfatna 14. Koliko grama soli se nalazi u 200g rastvora u kome je maseni udio soli ω=0,1? Rješenje: 11
12 15. Izačunati sadržaj sumpora i kiseonika u sumpor (IV) oksidu molekulske formule SO 2. Rješenje: Ar(S)=32, Ar(O)=16 3 boda 12
13 13
14 14
15 EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠ KOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENI KANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAE KSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠK OLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIK ANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEK STERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKO LEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKA NAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKST ERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLE ŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANA KRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTER NAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠK OLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKR AJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNA PROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOL SKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJ UIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2012/2013.GODINAEKSTERNAPR O
16 POPUNJAVA KOMISIJA ZA OCJENJIVANJE Ukupan broj osvojenih bodova na testu: Ocjena: KOMISIJA: GLAVNI OCJENJIVAČ: Dana godine 16
FIZIKA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. maj, školske 2013/2014. godine
FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole maj, školske 013/014. godine UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne kaže
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE MAJ, ŠKOLSKE 2016/2017. GODINE UPUTSTVO
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE MAJ, ŠKOLSKE 016/017. GODINE UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne kaže
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE JUN, ŠKOLSKE 2015/2016. GODINE UPUTSTVO
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE JUN, ŠKOLSKE 2015/2016. GODINE UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne
FIZIKA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. jun, školske 2013/2014. godine
FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole jun, školske 2013/2014. godine UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE JUN, ŠKOLSKE 2014/2015. GODINE UPUTSTVO
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE JUN, ŠKOLSKE 2014/2015. GODINE UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne
FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole MAJ, školske 2014/2015. godine UPUTSTVO
FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole MAJ, školske 2014/2015. godine UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore OLIMPIJADA ZNANJA 2018. Rješenja zadataka iz HEMIJE za IX razred osnovne škole 1. Koju zapreminu, pri standardnim uslovima, zauzimaju
ISPITNI KATALOG - HEMIJA. Ispitni katalog 2012/2013. pripremili:
Ispitni katalog 2012/2013. pripremili: mr Vlatko Kastratović, Prirodno matematički fakultet Sandra Kosović, OŠ Vuk Karadžić, Podgorica Miomir Jevrić, OŠ Sutjeska, Podgorica Svetlana Varagić, Gimnazija
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
HEMIJA ŠKOLSKA 2012/13. GODINA
HEMIJA ŠKOLSKA 2012/13. GODINA Ovaj primjerak Ispitnog kataloga je nelektorisan i tehnički nesređen. Ispitni katalog pripremile/pripremili: mr Vlatko Kastratovid, Prirodno matematički fakultet Sandra Kosovid,
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
OSNOVNA ŠKOLA HEMIJA
OSNOVNA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 6 7. 10 8. 8 9. 8 10. 10 11. 8 12. 8 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
UKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE II razred UKUPAN BROJ OSVOJENIH BODOVA Test regledala/regledao...... Podgorica,... 008. godine 1. Izračunati steen disocijacije slabe kiseline, HA, ako je oznata analitička koncentracija
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 018. Rješenja zadataka iz HEMIJE za VIII razred osnovne škole 1. Posmatrati sliku i izračunati: a) masu kalijum-permanganata
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
UKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE VIII razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao...... Podgorica,... 2008. godine UPUTSTVO TAKMIČARIMA Zadatak Bodovi br. 1. 10 2. 10 3. 10 4. 5 5. 10 6. 5 7.
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
MEDICINSKI FAKULTET PRIJEMNI ISPIT
UNIVERZITET U NIŠU MEDICINSKI FAKULTET PRIJEMNI ISPIT HEMIJA Niš 29.06.2016. PLAVOM HEMIJSKOM OLOVKOM ZAOKRUŽITI BROJ ISPRED JEDNOG OD PONUĐENIH ODGOVORA. SAMO JEDAN OD PONUĐENIH ODGOVORA JE TAČAN 1. Koliko
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
ZADACI ZA KVALIFIKACIONI ISPIT IZ HEMIJE. 1. Napišite elektronsku konfiguraciju broma, čiji je atomski broj Z= 35.
ZADACI ZA KVALIFIKACIONI ISPIT IZ HEMIJE 1. Napišite elektronsku konfiguraciju broma, čiji je atomski broj Z= 35. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 2. Utvrdite koji od navedenih parova hemijskih
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE
**** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 018. Rješenja zadataka iz HEMIJE za II razred srednje škole 1. Izračunaj masu magnezijum-sulfata heptahidrata (u
Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju
Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju Prijemni ispit za upis na Osnovne akademske studije hemije na PMF-u u Nišu školske 2014/15. godine Test se popunjava zaokruživanjem
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
BANKA PITANJA IZ HEMIJE
BANKA PITANJA IZ HEMIJE NEORGANSKA HEMIJA PUFERI 1. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće acidoze. 2. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće
@elimo vam uspeh u radu!
MINISTARSTVO PROSVETE I SPORTA REPUBLIKE SRBIJE SRPSKO HEMIJSKO DRU[TVO OP[TINSKO TAKMI^EWE IZ HEMIJE MART, 2005. GODINE TEST ZA VIII RAZRED [ifra u~enika: Pa`qivo pro~itajte tekstove zadataka. U prilogu
3. Koliko g Fe može da se dobije iz 463,1 g rude gvoždja koja sadrži 50 % minerala magnetita (Fe 3 O 4 ) i 50 % jalovine?
PRIJEMNI ISPIT IZ HEMIJE NA RUDARSKO-GEOLOŠKOM FAKULTETU UNIVERZITETA U BEOGRADU Katedra za hemiju; Prof. dr Slobodanka Marinković I) Oblasti 1. Jednostavna izračunavanja u hemiji (mol, molska masa, Avogadrov
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
OSNOVNA ŠKOLA HEMIJA
OSNOVNA ŠKOLA HEMIJA Uputstva za takmičare: Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti hemijsku olovku i kalkulator. Ostala sredstva nijesu dozvoljena za upotrebu.
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
GLAZBENA UMJETNOST. Rezultati državne mature 2010.
GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
UKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE III razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao...... Podgorica,... 2009. godine 1. Jedinjenje sadrži ugljenik, vodonik, brom i možda kiseonik.potpunim sagorijevanjem
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Doc. dr. sc. Markus Schatten. Zbirka rješenih zadataka iz baza podataka
Doc. dr. sc. Markus Schatten Zbirka rješenih zadataka iz baza podataka Sadržaj 1 Relacijska algebra 1 1.1 Izračun upita....................................... 1 1.2 Relacijska algebra i SQL.................................
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI
dr Ljiljana Vojinović-Ješić I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI ZAKON STALNIH MASENIH ODNOSA (I stehiometrijski zakon, Prust, 1799) Maseni odnos elemenata u datom jedinjenju je stalan, bez obzira na
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
SREDNJA ŠKOLA HEMIJA
SREDNJA ŠKOLA EMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 8 7. 6 8. 10 9. 8 10. 8 11. 10 12. 8 Ukupno 100 Za izradu testa planirano je 150 minuta. U toku izrade testa učenici mogu koristiti
PRIRUČNIK ZA PRIJEMNI ISPIT
PRIRUČNIK ZA PRIJEMNI ISPIT 1 OPŠTA I NEORGANSKA HEMIJA Visoka škola strukovnih studija Aranđelovac PRIRUČNIK ZA POLAGANJE PRIJEMNOG ISPITA IZ HEMIJE ARANĐELOVAC, 2017. 2 PRIRUČNIK ZA PRIJEMNI ISPIT PREDGOVOR
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu
Elektrotehnički fakultet Univerziteta u Sarajevu P R I P R E M N I Z A D A C I za DRUGI PARCIJALNI ISPIT IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Š.G. 005 / 006. UPUTSTVO: 1. Za svaki od prva četiri zadatka
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo,
Elektrotehnički fakultet Univerziteta u Sarajevu Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA Akademska 008-009 godina Sarajevo, 09 0 009 IME I PREZIME STUDENTA