MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE
|
|
- Κύμα Δραγούμης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba digitrona i korektora nije dozvoljena. Pažljivo pročitajte uputstvo. Ne okrećite stranice i ne rješavajte zadatke dok to ne dozvoli dežurni nastavnik. Test sadrži 15 zadataka. Tokom rada možete koristiti formule koje su date na stranama 4 i 5. Pažljivo pročitajte zadatke i razmislite prije rješavanja. Ako vam se čini da je zadatak pretežak, ne zadržavajte se predugo na njemu, već pokušajte da riješite sljedeći. Na neriješene zadatke se vratite kasnije. Test mora biti popunjen hemijskom olovkom, a grafitnu olovku možete koristiti za crtanje i tokom rada. Ukoliko pogriješite, prekrižite i rješavajte ponovo. Ako ste zadatak riješili na više načina, nedvosmisleno označite koje se rješenje boduje. Kad završite sa rješavanjem, provjerite svoje odgovore. Zadatak će se vrednovati sa 0 bodova ako je: netačan zaokruženo više ponuđenih odgovora nečitko i nejasno napisan rješenje napisano grafitnom olovkom Želimo vam puno uspjeha! JUN, ŠKOLSKE 2015/2016. GODINE ŠIFRA UČENIKA
2 EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINA
3 PRAZNA STRANA
4 FORMULE Kvadrat zbira: ( a + b) = a + 2ab + b Kvadrat razlike: ( a b) = a 2ab + b 2 2 Razlika kvadrata: a b = ( a + b)( a b) Množenje stepena jednakih osnova: Dijeljenje stepena jednakih osnova: Korijen proizvoda: ab = a b Korijen količnika: a : b = a : b a a m m a : a n n = a = a m+ n m n Pitagorina teorema: c = a + b (c dužina hipotenuze, a i b dužine kateta) aha bhb chc Površina trougla: P = = = (a, b i c dužine stranica, h a, hb i h c dužine odgovarajućih visina) Površina i visina jednakostraničnog trougla: (a dužina stranice) 2 a 3 P =, 4 a 3 h = 2 Površina paralelograma: P = a ha = b hb (a i b dužine stranica, ha i h b dužine visina) Površina romba: d 1 d P = 2 2 (d 1 i d 2 dužine dijagonala) a + b Površina trapeza: P = h 2 (a i b dužine osnovica, h dužina visine) Obim kružnice: O = 2r, Površina kruga: P = r 2 (r dužina poluprečnika) 4
5 2 Površina kocke: P = 6a (a dužina ivice) 3 Zapremina kocke: V = a (a dužina ivice) Površina kvadra: P = 2( ab + ac + bc) (a, b i c dužine ivica) Zapremina kvadra: V = abc (a, b i c dužine ivica) Oznake: B površina baze, M površina omotača i H dužina visine Površina prizme: P = 2 B + M Zapremina prizme: V = B H Površina piramide: P = B + M 1 Zapremina piramide : V = B H 3 Površina valjka: P = 2B + M = 2r (r+h) (r dužina poluprečnika osnove) Zapremina valjka: V = B H = r 2 H (r dužina poluprečnika osnove) Površina kupe: P = B + M = r (r+s) (r dužina poluprečnika osnove i s dužina izvodnice) Zapremina kupe: V = 3 1 B H = 3 1 r2 H (r dužina poluprečnika osnove) 5
6 U sljedećim zadacima zaokružite slovo ispred tačnog odgovora. 1. Koji od datih brojeva je jednak sa 12 5? A. 2, 2 B. 2, 4 C D bod 2. Kako se može jednostavnije zapisati A B C D ? 1 bod 3. Ako je A. -2 B. -1 C. 3 D. 4 x + = i 3 4y = 11 koliko je x+ y? 1 bod 4. Marko je odgovorio na 4 5 A. 20% pitanja na testu. Koliko je to u procentima? B. 45% C. 55% D. 80% 6 1 bod
7 5. Izaberite tačno tvrđenje koristeći podatke sa dijagrama. BROJ PRODATIH TELEFONA DANI A. Četvrtog dana je prodato dvostruko više telefona nego prvog dana B. Drugog dana je prodata trećina od broja prodatih telefona petog dana C. Trećeg dana je ukupno prodato telefona koliko drugog i petog dana zajedno D. Četvrtog dana je prodato četiri puta manje telefona nego drugog dana 1 bod 6. Na crtežu su dva koncentrična kruga sa centrima u tački O. Tačke B, O i C pripadaju duži AD. Prečnik većeg kruga je 18 mm. Koliki je poluprečnik manjeg kruga? A 4 mm B O C 4 mm A. 5 mm D B. 9 mm C. 10 mm D. 14 mm 7 1 bod
8 Zadatke koji slijede rješavajte postupno. Bodovi se dodjeljuju na osnovu tačne postavke, postupka rješavanja i rezultata koji slijedi iz korektnog rada. 7. a) Koji broj treba napisati u kvadratić ( ) tako da zbir bude tačan? bod b) Izračunajte. Napomena: biće priznata samo rješenja sa postupkom rada ( 9:3) 2 = 1 bod 8
9 Sredite izraz 2x 1 x + 2x 5x + 3xpa izračunajte njegovu brojnu vrijednost za x = 1. Rješenje: 2 boda 9
10 9. Tea, Ema i Sara su dobile paket čokoladica. Koliko je bilo čokoladica u paketu ako je Tea pojela 1 5, Ema 1 a Sara ostatak od 24 čokoladice? 2 Rješenje: 3 boda 10
11 10. U jednoj prodavnici 6 radnika obavi popis na kraju godine za 4 dana. Za koje vrijeme bi popis obavilo 8 radnika? Rješenje: 2 boda 11
12 11. Riješite nejednačinu 3 x 1 x+ < Rješenje: 2 boda 12
13 1 12. Nacrtaj grafik linearne funkcije y = x 1 u datom koordinatnom sistemu. 2 Rješenje: 4 y x boda 13
14 13. Dat je trougao ABC, sa pravim uglom kod tjemena C i uglom 30 o α = kod tjemena A. Dužina hipotenuze je AB =20cm. Ako je P sredina katete BC, a Q sredina hipotenuze AB, odredite dužinu duži PQ. Napomena: Nacrtajte skicu koja odgovara tekstu zadatka. Rješenje: 3 boda 14
15 14. Izračunajte visinu tijela sa slike poluprečnika osnove 12 cm i zapremine 720 π cm 3. Rješenje: 2 boda 15
16 15. Data je osnovna ivica a 18 = cm i visina H = 12cm pravilne četvorostrane piramide. Izračunajte visinu njene bočne strane. Rješenje: 2 boda 16
17 17
18
19 EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. EKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016. GODINAEKSTERNAPROVJERAZNANJAUČENIKANAKRAJUIIICIKLUSAOSNOVNEŠKOLEŠKOLSKA2015/2016.GODINA
20 POPUNJAVA KOMISIJA ZA OCJENJIVANJE Ukupan broj osvojenih bodova na testu: Ocjena: KOMISIJA: GLAVNI OCJENJIVAČ: Dana godine
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO
HEMIJA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole školska 2012/2013. godina UPUTSTVO Ne otvarajte test dok vam test-administrator ne kaže da možete početi sa radom. Dozvoljen pribor:
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
FIZIKA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. maj, školske 2013/2014. godine
FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole maj, školske 013/014. godine UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne kaže
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE MAJ, ŠKOLSKE 2016/2017. GODINE UPUTSTVO
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE MAJ, ŠKOLSKE 016/017. GODINE UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne kaže
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE JUN, ŠKOLSKE 2014/2015. GODINE UPUTSTVO
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE JUN, ŠKOLSKE 2014/2015. GODINE UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE JUN, ŠKOLSKE 2015/2016. GODINE UPUTSTVO
FIZIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE JUN, ŠKOLSKE 2015/2016. GODINE UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne
Racionalni algebarski izrazi
. Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:
FIZIKA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. jun, školske 2013/2014. godine
FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole jun, školske 2013/2014. godine UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne
FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole MAJ, školske 2014/2015. godine UPUTSTVO
FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole MAJ, školske 2014/2015. godine UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
9 Elementarni zadaci: Prizma i kvadar
9 Elementarni zadaci: Prizma i kvadar Elementarna pitanja: 1. Kako glasi formula za računanje površine prizme? 2. Kako glasi formula za računanje zapremine prizme? [V = B H] 3. Kako glasi formula za računanje
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Konstruktivni zadaci. Uvod
Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu
Elektrotehnički fakultet Univerziteta u Sarajevu P R I P R E M N I Z A D A C I za DRUGI PARCIJALNI ISPIT IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Š.G. 005 / 006. UPUTSTVO: 1. Za svaki od prva četiri zadatka
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
x bx c + + = 0 po nepoznatoj x, vrijedi da je
Elektrotehnički fakultet u Sarajevu studijska 0/4. ŠIFRA KANDIDATA _ Zadatak. Za rješenja, kvadratne jednačine + = i + = 7. Koliko iznosi? 9 b c + + = 0 po nepoznatoj, vrijedi da je a) 4 b) 6 c) 7 d) 4
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
> 0 svakako zadovoljen.
Elektrotehnički fakultet u Sarajevu akademska 0/3 ŠIFRA KANDIDATA _ Zadatak Za koje vrijednosti parametra ( ) + 3 = 0 m x mx oba iz skupa i suprotnog znaka? m su rješenja kvadratne jednačine a) m > 3 b)
Radni materijal 17 PRIZME
Radni materijal 17 PRIZME Odreži i zalijepi slike u bilježnicu, izvedi formule za oplošje i obujam, označi i izvedi formule za plošne i prostorne dijagonale. Oplošje OBP = + Volumen ili obujam V = Bv slika
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
GIMNAZIJA LAZAREVAC ZADACI IZ MATEMATIKE ZA MATURSKI ISPIT
GIMNAZIJA LAZAREVAC ZADACI IZ MATEMATIKE ZA MATURSKI ISPIT I RACIONALNI ALGEBARSKI IZRAZI I POLINOMI Uprostiti izraz ab abab : ab ba ab yy y y y y y y Uprostiti izraz : Uprostiti izraz Uprostiti izraz
10. Koji od brojeva -9,007; -8; 1 ; 0,018 je cijeli broj? 11. Razlomak 1 napiši u decimalnom obliku. 12. Broj 0,5 napiši u obliku razlomka.
MATEMATIKA Brojevi Osnovni nivo 1. Koji od navedenih brojeva: 8, -2, 0, 3, 2, 61, 5 su prirodni brojevi? 3 2. Koji od brojeva 2, -4, 5, -6, 0, -3 su negativni cijeli brojevi? 3. Koji od brojeva 12, -4,
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Aksiome podudarnosti
Aksiome podudarnosti Postoji pet aksioma podudarnosti (tri aksiome podudarnosti za duži + dvije aksiome podudarnosti za uglove) III 1 Za svaku polupravu a sa početnom tačkom A i za svaku duž AB, postoji
MATEMATIKA. osnovna razina MATB.11.HR.R.K1.20 MAT B D-S011. MAT B D-S011.indd :03:46
MATEMATIKA osnovna razina MAT B D-S MAT.HR.R.K. 44 MAT B D-S.indd 9.7. :3:46 Prazna stranica MAT B D-S 99 MAT B D-S.indd 9.7. :3:46 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte
Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA
Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni nastavnik.
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...
Elementarni zadaci iz Euklidske geometrije II
Elementarni zadaci iz Euklidske geometrije II Sličnost trouglova 1. Neka su dati krugovi k 1 (O 1, r 1 ), k 2 (O 2, r 2 ) i k 3 (O 3, r 3 ) takvi da k 1 dodiruje krug k 2 u tački P, k 2 dodiruje krug k
Zbirka testova za polaganje maturskog i stručnog ispita iz MATEMATIKE. Zavod za udžbenike i nastavna sredstva PODGORICA
Zbirka testova za polaganje maturskog i stručnog ispita iz MATEMATIKE Zavod za udžbenike i nastavna sredstva PODGORICA Zbirka testova za polaganje maturskog i stručnog ispita iz MATEMATIKE Zavod za udžbenike
Republika Srbija MINISTARSTVO PROSVETE I NAUKE ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I VASPITANJA PEDAGOŠKI ZAVOD VOJVODINE
Republika Srbija MINISTARSTVO PROSVETE I NAUKE ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I VASPITANJA PEDAGOŠKI ZAVOD VOJVODINE ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školska 2010./2011.godina
MAT B MATEMATIKA. osnovna razina MATB.32.HR.R.K1.20 MAT B D-S032. MAT B D-S032.indd :38:21
MAT B MATEMATIKA osnovna razina MAT3.HR.R.K. MAT B D-S3 MAT B D-S3.indd 5.3.6. :38: Prazna stranica MAT B D-S3 99 MAT B D-S3.indd 5.3.6. :38: OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne
Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija
18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
MATEMATIKA. viša razina MATA.15.HR.R.K1.24 MAT A D-S015
MATEMATIKA viša razina MAT A D-S5 MAT5.HR.R.K.4 344 Prazna stranica MAT A D-S5 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
POLIEDRI. Ivana Bojović 171/03
POLIEDRI Ivana Bojović 171/03 Sadržaj Poliedarske površi...2 Prizma...5 Piramida...8 Zarubljena piramida...10 Pravilni poliedri...11 Površina poliedara...12 Površina prizme...12 Površina pravouglog paralelopipeda...13
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo,
Elektrotehnički fakultet Univerziteta u Sarajevu Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA Akademska 008-009 godina Sarajevo, 09 0 009 IME I PREZIME STUDENTA
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE
**** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga
Small Basic zadatci - 8. Razred
Small Basic zadatci - 8. Razred 1. Izradi program koji de napisati na ekranu Ovo je prvi program crvenom bojom. TextWindow.ForegroundColor = "red" TextWindow.WriteLine("Ovo je prvi program") 2. Izradi
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
a je vrijednost Q x x iznosi P( a ). Primjenom tog stava zaključuje se da ostatak pri dijeljenju P( x ) sa ( ) = ( 1)
Elektrotehnički fakultet u Sarajevu akademska 0/. ŠIFRA KANDIDATA _ Zadatak. Proizvod rješenja jednačine 4 5 = 64 je: a) 6 b) -6 c) d) - Jednačinu je moguće napisati u obliku 4 5 64 = 0. Na osnovu Vietovih
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Kantonalno takmičenje iz matematike učenika srednjih škola sa područja TK
Kantonalno takmičenje iz matematike učenika srednjih škola sa područja TK Živinice 1.4.014. ZADACI UDRUŽENJE MATEMATIČARA TUZLANSKOG KANTONA PEDAGOŠKI ZAVOD TUZLA Takmičenje učenika srednjih škola Tuzlanskog
KATALOG ZADATAKA IZ MATEMATIKE
Jupić Vedad Rizvanović Aida Aganović Senada Sarajevo, mart 2018. godine KATALOG ZADATAKA IZ MATEMATIKE za prijemni ispit u medresama Sarajevo, mart 2018. godine Sadržaj 1. Uvod. 3 2. Zadaci.. 4 2.1. Skupovi
Algoritmi zadaci za kontrolni
Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
MATEMATIKA. viša razina MATA.09.HR.R.K1.24 MAT A D-S009. MAT A D-S009.indd :58:07
MATEMATIKA viša razina MAT A D-S9 MAT9.HR.R.K.4 47 MAT A D-S9.indd 7.. 8:58:7 Prazna stranica MAT A D-S9 99 MAT A D-S9.indd 7.. 8:58:7 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte
Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001
Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina MAT A D-S Prazna stranica MAT A D-S 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Analitička geometrija 1. Tačka 1. MF000 Neka su A(1, 1) i B(,11) tačke u koordinatnoj ravni Oxy. Ako tačka S deli duž AB
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Ovo je Izbor zadataka koji su namjenjeni budućim studentima za lakše pripremanje prijemnog ispita na Građevinskom fakultetu Univerziteta u Sarajevu.
Ovo je Izbor zadataka koji su namjenjeni budućim studentima za lakše pripremanje prijemnog ispita na Građevinskom fakultetu Univerziteta u Sarajevu. Izbor je napravljen prema: 1. Zbirka zadataka iz algebre
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati:
Staša Vujičić Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: pseudo jezikom prirodnim jezikom dijagramom toka. 2
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD
ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu
VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.
Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M