Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore"

Transcript

1 Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore OLIMPIJADA ZNANJA Rješenja zadataka iz HEMIJE za IX razred osnovne škole 1. Koju zapreminu, pri standardnim uslovima, zauzimaju molekula vode? Gustina vode je ρ=1 gcm -3.NA = n = N / NA = / = 8,33 mol... 2 poena m(h2o) = n (H2O) M(H2O) = 8,33 18 = 149,9 g... 2 poena V = m / ρ= 150 cm poena Ukupno:...6 poena 2. Kada 2 mola acikličnog ugljovodonika sa četiri ugljenikova atoma potpuno sagori, utroši se 11 molova kiseonika. Koja je molekulska formula ugljovodonika? 2C4Hy + 11O2 8CO2 + yh2o... 2 poena za kiseonik:22 = 16 + y y = poena Molekulska formula: C4H poena Ukupno:...6 poena 3. U reakciji 18,4 g zasićene aciklične monokarboksilne kiseline sa magnezijumom, oslobodilo se 4,48 dm 3 vodonika pri standardnim uslovima. Koja je molekulska formula kiseline? Molekulska formula kiseline je: CnH2n+1COOH ili CnH2nO poena 2CnH2n+1COOH + Mg (CnH2n+1COO)2Mg + H2 ili 2CnH2nO2 + Mg (CnH2n-2O2)2Mg + H poena

2 2x(14n +32)g kiseline oslobadja 22,4 dm 3 vodonika 18,4g kiseline oslobadja 4,48 dm 3 vodonika 2x(14n +32)g : 22,4 dm 3 = 18,4g : 4,48 dm 3 n = poena CH2O2 odnosno HCOOH, metanska (mravlja) kiselina... 2 poena Ukupno:...8 poena 4. Potpunom kiselo-katalizovanom hidrolizom skroba nastaju samo molekuli glukoze. Hidrolizi je podvrgnuto 243g skroba čistoće 75%. Koliko grama glukoze je pri tome dobijeno, ako je prinos reakcije 80 %? (C6H10O5)n + (n-1)h2o nc6h12o poena m(skroba) = m(uzorka) ω = 243g 0,75 m(skroba) = 182,25g... 2 poena n M((C6H10O5)n) : n M(C6H12O6) = 182,25g : x g glukoze x = ,25 / 162g x = 202,5 g... 2 poena pošto je prinos reakcije 80% m(glukoze) = x 0,80 = 202,5 g 0.80 = 162 g... 2 poena Ukupno:...8 poena 5. Za bromovanje 26 g uzorka benzena, u prisustvu FeCl3 kao katalizatora, utrošeno je 400 cm 3 rastvora broma u ugljen-tetrahloridu koji u 1 dm 3 sadrži 0,2 mola broma. Koliko iznosi procentni maseni sadržajbenzena u uzorku? A(Br) = 80 C6H6 + Br2 C6H5Br + HBr... 2 poena Masa utrošenog broma: U 1 dm 3 ima 0,2 mola Br2 a u 0,4 dm 3 ima X mola n(br2) = 0,08 mol... 2 poena m(br2) = n(br2) M(Br2) m(br2) = 12,8 g... 2 poena za bromovanje 78g benzena troši se 160 g broma za bromovanje x g benzena troši se 12,8g broma 78 g : 160 g = X g : 12,8 g X = 6,24 g benzena... 2 poena

3 ω(%) = m(benzena) / m(uzorka) 100 ω(%) = 6,24g / 26 g 100 ω(%) = poena Ukupno:...10 poena 6. Napisati nazive datih jedinjenja po IUPAC nomenklaturi CH3 CH3 CH2 C C CH CH2 = CH CH2 OH HCOOCH3 CH2 CH2 CH CH3 CH CH2 CHO CH3 CH CH COOH OH CH3 NH Etil-3-metil-1-heksin 2-2-Propenol 3- Metil-metanoat 4-3-Hidroksibutanal 5-2-Amino-3-metilbutanska kiselina Ukupno:... 5 x 2 poen = 10 poena 7. Napisati jednoslovnim skraćenicama tripeptide koji se mogu sintetisati od aminokiselina glicina (G) i alanina (A), s obzirom da se aminokiseline mogu ponavljati u peptidnom nizu? GGG GGA GAG AGG AAA AAG AGA GAA Ukupno:... 8 x 1 poen = 8 poena 8. Napisati racionalne strukturne formule derivata benzena molekulske formule C8H10.

4 Ukupno:... 4 x 2 poena = 8 poena 9. Napisati formule dva triacilglicerola čiji kiselinski ostaci imaju po 18 C-atoma, ako je poznato da on za potpunu hidrogenizaciju troši 2 mola H2. CH2 OCO (CH2)7 CH = CH (CH2)7 CH3 CH OCO (CH2)7 CH = CH (CH2)7 CH3 CH2 OCO (CH2)16 CH poena CH2 OCO (CH2)7 CH = CH (CH2)7 CH3 CH OCO (CH2)16 CH3 CH2 OCO (CH2)7 CH = CH (CH2)7 CH poena 10. Da li navedeni parovi jedinjenja predstavljaju izomere a) glukoza i fruktoza DA NE b) sirćetna kiselina i etanska kiselina DA NE c) 2-pentanon i 2-pentanol DA NE d) 1-butanol i 2-butanol DA NE e) glicin i alanin DA NE f) butanal i butanon DA NE Rješenje a) DA b) NE c) NE d) DA e) NE f) DA Ukupno: poena Ukupno:...6 x 1 poen = 6 poena 11. Adicijom 0,7 g vodonika na jedan alken nastalo je 20,3 g proizvoda. Odgovarajućim računom doći do molekulske formulealkena. Napisati sve strukturne formule alkena koji su mogli učestvovati u reakciji. CnH2n + H2.CnH2n poena adicijommr(h2) nastajemr(cnh2n+2) adicijom 0,7 g H2nastaje 20,3 g CnH2n+2

5 2 g/mol :Mr(CnH2n+2) = 0,7 g : 20,3 g Mr (CnH2n+2) = poena 12 n + 2 n + 2 = poena 14 n = 56 n = 4 C4H8...1 poen CH2 = CH CH2 CH3CH3 CH = CH CH3...1 poen...1 poen...1 poen CH2 = C CH3 CH3 Ukupno: poena 12. Alkoholnim vrenjem šećera iz grožđa dobija se 15 %-tni (maseni procenti) vodeni rastvor alkohola. Koliko kilograma ovog alkoholnog rastvora se može dobiti iz 37,5 kg grožđa? Sadržaj grožđanog šećera u grožđu je 18 %, i sav šećer se u ovom procentu iskoristi. C6H12O6 enzim 2C2H5OH + 2CO2...2 poena m(šećera) = m(grožđa) ω = 37,5 kg 0,18 m(šećera) = 6,75 kg...2 poena Iz gornje hemijske jednačine slijedi proporcija: 180 g šećera : 92 g alkohola = 6,75 kg šećera : x g alkohola m(alkohola) = 3,45 kg...2 poena ω = m(alkohola) / m(rastvora)...2 poena m(rastvora) = m(alkohola) / ω = 3,45kg / 0,15 m(rastvora) = 23 kg...2 poena Ukupno: poena

OSNOVNA ŠKOLA HEMIJA

OSNOVNA ŠKOLA HEMIJA OSNOVNA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 6 7. 10 8. 8 9. 8 10. 10 11. 8 12. 8 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

UKUPAN BROJ OSVOJENIH BODOVA

UKUPAN BROJ OSVOJENIH BODOVA ŠIFRA DRŽAVNO TAKMIČENJE III razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao...... Podgorica,... 2009. godine 1. Jedinjenje sadrži ugljenik, vodonik, brom i možda kiseonik.potpunim sagorijevanjem

Διαβάστε περισσότερα

UKUPAN BROJ OSVOJENIH BODOVA

UKUPAN BROJ OSVOJENIH BODOVA ŠIFRA DRŽAVNO TAKMIČENJE VIII razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao...... Podgorica,... 2008. godine UPUTSTVO TAKMIČARIMA Zadatak Bodovi br. 1. 10 2. 10 3. 10 4. 5 5. 10 6. 5 7.

Διαβάστε περισσότερα

MEDICINSKI FAKULTET PRIJEMNI ISPIT

MEDICINSKI FAKULTET PRIJEMNI ISPIT UNIVERZITET U NIŠU MEDICINSKI FAKULTET PRIJEMNI ISPIT HEMIJA Niš 29.06.2016. PLAVOM HEMIJSKOM OLOVKOM ZAOKRUŽITI BROJ ISPRED JEDNOG OD PONUĐENIH ODGOVORA. SAMO JEDAN OD PONUĐENIH ODGOVORA JE TAČAN 1. Koliko

Διαβάστε περισσότερα

SREDNJA ŠKOLA HEMIJA

SREDNJA ŠKOLA HEMIJA SREDNJA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 6 2. 10 3. 12 4. 8 5. 6 6. 10 7. 8 8. 8 9. 4 10. 10 11. 8 12. 10 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

SREDNJA ŠKOLA HEMIJA

SREDNJA ŠKOLA HEMIJA SREDNJA ŠKOLA EMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 8 7. 6 8. 10 9. 8 10. 8 11. 10 12. 8 Ukupno 100 Za izradu testa planirano je 150 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Kiselo bazni indikatori

Kiselo bazni indikatori Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik

Διαβάστε περισσότερα

HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO

HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO HEMIJA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole školska 2012/2013. godina UPUTSTVO Ne otvarajte test dok vam test-administrator ne kaže da možete početi sa radom. Dozvoljen pribor:

Διαβάστε περισσότερα

UKUPAN BROJ OSVOJENIH BODOVA

UKUPAN BROJ OSVOJENIH BODOVA ŠIFRA DRŽAVNO TAKMIČENJE II razred UKUPAN BROJ OSVOJENIH BODOVA Test regledala/regledao...... Podgorica,... 008. godine 1. Izračunati steen disocijacije slabe kiseline, HA, ako je oznata analitička koncentracija

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore

Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 018. Rješenja zadataka iz HEMIJE za VIII razred osnovne škole 1. Posmatrati sliku i izračunati: a) masu kalijum-permanganata

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

3. Koliko g Fe može da se dobije iz 463,1 g rude gvoždja koja sadrži 50 % minerala magnetita (Fe 3 O 4 ) i 50 % jalovine?

3. Koliko g Fe može da se dobije iz 463,1 g rude gvoždja koja sadrži 50 % minerala magnetita (Fe 3 O 4 ) i 50 % jalovine? PRIJEMNI ISPIT IZ HEMIJE NA RUDARSKO-GEOLOŠKOM FAKULTETU UNIVERZITETA U BEOGRADU Katedra za hemiju; Prof. dr Slobodanka Marinković I) Oblasti 1. Jednostavna izračunavanja u hemiji (mol, molska masa, Avogadrov

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore

Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 08. Rješenja zadataka iz HEMIJE za III razred srednje škole (5) Za tačno napisane strukturne formule polaznih prekursora

Διαβάστε περισσότερα

Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju

Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju Prijemni ispit za upis na Osnovne akademske studije hemije na PMF-u u Nišu školske 2014/15. godine Test se popunjava zaokruživanjem

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Primeri test pitanja iz hemije za polaganje prijemnog ispita iz hemije - ORGANSKA HEMIJA -

Primeri test pitanja iz hemije za polaganje prijemnog ispita iz hemije - ORGANSKA HEMIJA - OMEGA MS PHARMACY Fakultet za farmaciju i menadžment u farmaciji 21.000 Novi Sad, Mite Ružića 1 tel: (+381 21) 44 75 77; (+381 65) 306 8310 fax: (+381 21) 44 75 77 www.omegams-pharmacy.com office@omegams-pharmacy.com

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore

Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 018. Rješenja zadataka iz HEMIJE za II razred srednje škole 1. Izračunaj masu magnezijum-sulfata heptahidrata (u

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ)

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

Budući brucoši, srećno!

Budući brucoši, srećno! Prijemni ispit za upis na Osnovne akademske studije hemije na PMF u u Nišu školske 2015/16. godine 1. Izrada testa traje 120 minuta. 2. Test se sastoji od 40 pitanja. 3. Test se popunjava zaokruživanjem

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

OSNOVNA ŠKOLA HEMIJA

OSNOVNA ŠKOLA HEMIJA OSNOVNA ŠKOLA HEMIJA UPUTSTVO TAKMIČARIMA Zadatak br. Bodovi 1. 10 2. 10 3. 10 4. 10 5. 1o 6. 10 7. 10 8. 10 9. 10 10. 10 Ukupno: 100 bodova - Za izradu testa planirano je 120 minuta. - U toku izrade

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

UNIVERZITET U PRIŠTINI MEDICINSKI FAKULTET. Program prijemnog ispita

UNIVERZITET U PRIŠTINI MEDICINSKI FAKULTET. Program prijemnog ispita UNIVERZITET U PRIŠTINI MEDICINSKI FAKULTET Program prijemnog ispita Hemija Struktura atoma Periodni sistem; Hemijske veze Energetika Hemijska kinetika; Hemijska ravnoteža Rastvori - koncentracije; Jonske

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ (15/06/2018)

ΧΗΜΕΙΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ (15/06/2018) ΘΕΜΑ Α Α1. β Α. β Α3. γ Α. δ Α5. δ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΧΗΜΕΙΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ (15/06/018) 6 Β1. α) Mg:1ssp3s 1 Βρίσκεται στην η ομάδα και την 3 η περίοδο

Διαβάστε περισσότερα

1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ

1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ Επαναληπτικά δέντρα.. Ανόργανης στο ph. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ αναφέρονται σε υδατικά διαλύματα. Το διάλυμα Α έχει όγκο 00mL και ph = HCl 00mL Ca(OH) 2 900mLH2O 0,448L

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA

Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Relativna skala masa elemenata: atomska jedinica mase 1/12 mase atoma ugljika C-12. Unificirana jedinica atomske mase (u)

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

ISPITNI KATALOG - HEMIJA. Ispitni katalog 2012/2013. pripremili:

ISPITNI KATALOG - HEMIJA. Ispitni katalog 2012/2013. pripremili: Ispitni katalog 2012/2013. pripremili: mr Vlatko Kastratović, Prirodno matematički fakultet Sandra Kosović, OŠ Vuk Karadžić, Podgorica Miomir Jevrić, OŠ Sutjeska, Podgorica Svetlana Varagić, Gimnazija

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Α1 Α2 Α3 Α4 Α5 γ β γ α β

Α1 Α2 Α3 Α4 Α5 γ β γ α β Χημεία Θετικής Κατεύθυνσης 27-5-2015 ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ ΑΔΑΜ ΓΙΑΝΝΗΣ ΒΑΡΒΑΡΙΓΟΣ ΜΑΝΟΣ ΘΕΟΔΩΡΟΠΟΥΛΟΣ ΠΑΝΑΓΙΩΤΗΣ ΚΑΠΛΑΝΗΣ ΘΑΝΑΣΗΣ ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ ΚΩΣΤΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΣΙΔΕΡΗ ΦΙΛΛΕΝΙΑ 1 ΘΕΜΑ Α Α1 Α2 Α3 Α4

Διαβάστε περισσότερα

ZBIRKA ZADATAKA ZA POLAGANJE KLASIFIKACIONOG ISPITA IZ HEMIJE

ZBIRKA ZADATAKA ZA POLAGANJE KLASIFIKACIONOG ISPITA IZ HEMIJE ZBIRKA ZADATAKA ZA POLAGANJE KLASIFIKACIONOG ISPITA IZ HEMIJE VISOKA TEHNIČKA ŠKOLA POŽAREVAC 1. Napiši formule kalaj(iv)-nitrita i gvožđe(iii)-sulfata. ----------------------------------------------------------------

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Φροντιστήριο ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Β Λυκείου. ΘΕΜΑ 1 ο

Φροντιστήριο ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Β Λυκείου. ΘΕΜΑ 1 ο Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Β Λυκείου ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1 έως 1.5 να επιλέξετε τη σωστή απάντηση: 1.1 Οι οργανικές ενώσεις που περιέχουν τη χαρακτηριστική ομάδα ΟΗ ονομάζονται

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο μέγιστος κβαντικός αριθμός του (n) που περιέχει ηλεκτρόνια είναι n = 3.

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο μέγιστος κβαντικός αριθμός του (n) που περιέχει ηλεκτρόνια είναι n = 3. 1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α1. β Α. α Α. γ Α. δ Α. δ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β Β1.α.

Διαβάστε περισσότερα

Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1. Θέματα

Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1. Θέματα Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1 Θέματα Θέμα 1 ο 1. Ποιες από τις παρακάτω ενώσεις είναι ακόρεστες και ποιες κορεσμένες; C O HO C 1... 5. 5 μονάδες. Σε ποια ομόλογη σειρά ανήκει καθεμιά

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola)

O ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) 1 Adicija alkohola 2 AETALI I PLUAETAL AETALI 3 Adicijom jednog mola alkohola na mol aldehida ili ketona nastaje poluacetal

Διαβάστε περισσότερα

BANKA PITANJA IZ HEMIJE

BANKA PITANJA IZ HEMIJE BANKA PITANJA IZ HEMIJE NEORGANSKA HEMIJA PUFERI 1. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće acidoze. 2. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014 Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina Predavanja iz opšte biohemije Školska 2014/2015. godina Aminokiseline 1 Metabolizam aminokiselina Proteini iz

Διαβάστε περισσότερα

ΚΑΥΣΗ Απ. α) 1,792L, β) 40%CO2 2. ii. iii. Απ. α) C3H6, β) i) 13.59g, ii) 1.125mol, iii) 16.8L 3. Απ. α) 1,2mol, β) C4H10, γ) 45g 4.

ΚΑΥΣΗ Απ. α) 1,792L, β) 40%CO2 2. ii. iii. Απ. α) C3H6, β) i) 13.59g, ii) 1.125mol, iii) 16.8L 3. Απ. α) 1,2mol, β) C4H10, γ) 45g 4. ΚΑΥΣΗ 1. Σε εργαστήριο ελέγχου καυσίμων πραγματοποιήθηκαν τα παρακάτω πειράματα: α. Ένα δείγμα C8H18 με μάζα 1,14 g κάηκε πλήρως με την απαιτούμενη ποσότητα αέρα. Να υπολογίσετε τον όγκο (σε L, STP) του

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald

Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald Ποιους θα ονομάζουμε «ισχυρούς ηλεκτρολύτες»; Τις χημικές ουσίες που όταν διαλύονται στο νερό, ένα μεγάλο ποσοστό των mole

Διαβάστε περισσότερα

@elimo vam uspeh u radu!

@elimo vam uspeh u radu! MINISTARSTVO PROSVETE I SPORTA REPUBLIKE SRBIJE SRPSKO HEMIJSKO DRU[TVO OP[TINSKO TAKMI^EWE IZ HEMIJE MART, 2005. GODINE TEST ZA VIII RAZRED [ifra u~enika: Pa`qivo pro~itajte tekstove zadataka. U prilogu

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

PRIRUČNIK ZA PRIJEMNI ISPIT

PRIRUČNIK ZA PRIJEMNI ISPIT PRIRUČNIK ZA PRIJEMNI ISPIT 1 OPŠTA I NEORGANSKA HEMIJA Visoka škola strukovnih studija Aranđelovac PRIRUČNIK ZA POLAGANJE PRIJEMNOG ISPITA IZ HEMIJE ARANĐELOVAC, 2017. 2 PRIRUČNIK ZA PRIJEMNI ISPIT PREDGOVOR

Διαβάστε περισσότερα

Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ)

Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Διαλύματα Εκφράσεις περιεκτικότητας α λ% w/v: Σε 100 ml Διαλύματος περιέχονται λ g διαλυμένης ουσίας β λ% w/w: Σε 100 g Διαλύματος περιέχονται λ g διαλυμένης ουσίας

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 30 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 30 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 30 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Απαντήσεις) Θέμα Α Α.1 - γ Α. - δ Α.3 - γ Α.4 - α Α.5

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α κ. Στον παρακάτω πίνακα δίνονται τα PH τριών διαλυµάτων. τριών µονοπρωτικών βάσεων Β

ΔΙΑΓΩΝΙΣΜΑ Α κ. Στον παρακάτω πίνακα δίνονται τα PH τριών διαλυµάτων. τριών µονοπρωτικών βάσεων Β ΔΙΑΓΩΝΙΣΜΑ Α κ Θέµα 1 ο Στον παρακάτω πίνακα δίνονται τα PH τριών διαλυµάτων 1,, τριών µονοπρωτικών βάσεων Β 1, Β, Β αντίστοιχα. Επίσης δίνεται ο όγκος V ενός πρότυπου διαλύµατος HCl που χρειάστηκε για

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΧΗΜΙΚΩΝ

ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΧΗΜΙΚΩΝ ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΧΗΜΙΚΩΝ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 15-06-2018 ΕΠΙΜΕΛΕΙΑ Γιάννης Αδάμ Γιώργος Βαρελάς Εύη Βραχνού Τάκης Θεοδωρόπουλος Τάσος Κάλλης Λεωνίδας Κωστόπουλος Δημήτρης Μειντάνης Φιλλένια Σιδέρη Νάνσυ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ Β' ΛΥΚΕΙΟΥ ΓΕΝ. ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ Β' ΛΥΚΕΙΟΥ ΓΕΝ. ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ Β' ΛΥΚΕΙΟΥ ΓΕΝ. ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1 ο 1. Γενικό μοριακό τύπο C v H 2v (v 2) έχουν : α. όλοι οι άκυκλοι υδρογονάνθρακες β. τα αλκάνια γ. τα αλκένια δ. τα αλκίνια 2. Η οργανική ένωση CH 3 - CH - CH 3

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Χημεία Α Λυκείου Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 57 1.. 1 kg = 1000 g 1 g = 0,001 kg 1

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα